THE WHITE DWARF AFFAIR: Chandrasekhar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AST 541 Lecture Notes: Classical Cosmology Sep, 2018
ClassicalCosmology | 1 AST 541 Lecture Notes: Classical Cosmology Sep, 2018 In the next two weeks, we will cover the basic classic cosmology. The material is covered in Longair Chap 5 - 8. We will start with discussions on the first basic assumptions of cosmology, that our universe obeys cosmological principles and is expanding. We will introduce the R-W metric, which describes how to measure distance in cosmology, and from there discuss the meaning of measurements in cosmology, such as redshift, size, distance, look-back time, etc. Then we will introduce the second basic assumption in cosmology, that the gravity in the universe is described by Einstein's GR. We will not discuss GR in any detail in this class. Instead, we will use a simple analogy to introduce the basic dynamical equation in cosmology, the Friedmann equations. We will look at the solutions of Friedmann equations, which will lead us to the definition of our basic cosmological parameters, the density parameters, Hubble constant, etc., and how are they related to each other. Finally, we will spend sometime discussing the measurements of these cosmological param- eters, how to arrive at our current so-called concordance cosmology, which is described as being geometrically flat, with low matter density and a dominant cosmological parameter term that gives the universe an acceleration in its expansion. These next few lectures are the foundations of our class. You might have learned some of it in your undergraduate astronomy class; now we are dealing with it in more detail and more rigorously. 1 Cosmological Principles The crucial principles guiding cosmology theory are homogeneity and expansion. -
Expanding Space, Quasars and St. Augustine's Fireworks
Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible. -
Philosophy and the Physicists Preview
L. Susan Stebbing Philosophy and the Physicists Preview il glifo ebooks ISBN: 9788897527466 First Edition: December 2018 (A) Copyright © il glifo, December 2018 www.ilglifo.it 1 Contents FOREWORD FROM THE EDITOR Note to the 2018 electronic edition PHILOSOPHY AND THE PHYSICISTS Original Title Page PREFACE NOTE PART I - THE ALARMING ASTRONOMERS Chapter I - The Common Reader and the Popularizing Scientist Chapter II - THE ESCAPE OF SIR JAMES JEANS PART II - THE PHYSICIST AND THE WORLD Chapter III - ‘FURNITURE OF THE EARTH’ Chapter IV - ‘THE SYMBOLIC WORLD OF PHYSICS’ Chapter V - THE DESCENT TO THE INSCRUTABLE Chapter VI - CONSEQUENCES OF SCRUTINIZING THE INSCRUTABLE PART III - CAUSALITY AND HUMAN FREEDOM Chapter VII - THE NINETEENTH-CENTURY NIGHTMARE Chapter VIII - THE REJECTION OF PHYSICAL DETERMINISM Chapter IX - REACTIONS AND CONSEQUENCES Chapter X - HUMAN FREEDOM AND RESPONSIBILITY PART IV - THE CHANGED OUTLOOK Chapter XI - ENTROPY AND BECOMING Chapter XII - INTERPRETATIONS BIBLIOGRAPHY INDEX BACK COVER Susan Stebbing 2 Foreword from the Editor In 1937 Susan Stebbing published Philosophy and the Physicists , an intense and difficult essay, in reaction to reading the works written for the general public by two physicists then at the center of attention in England and the world, James Jeans (1877-1946) and Arthur Eddington (1882- 1944). The latter, as is known, in 1919 had announced to the Royal Society the astronomical observations that were then considered experimental confirmations of the general relativity of Einstein, and who by that episode had managed to trigger the transformation of general relativity into a component of the mass and non-mass imaginary of the twentieth century. -
Rotating Stars in Relativity
Noname manuscript No. (will be inserted by the editor) Rotating Stars in Relativity Vasileios Paschalidis Nikolaos Stergioulas · Received: date / Accepted: date Abstract Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densi- ties and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is re- viewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f-modes and r-modes have been updated. Several new sections have been added on equilibria in modi- fied theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativ- ity including both hydrodynamic and magnetohydrodynamic studies of these objects. Keywords Relativistic stars · Rotation · Stability · Oscillations · Magnetic fields · Numerical relativity Vasileios Paschalidis Theoretical Astrophysics Program, Departments of Astronomy and Physics, University of Arizona, Tucson, AZ 85721, USA Department of Physics, Princeton University Princeton, NJ 08544, USA E-mail: [email protected] http://physics.princeton.edu/~vp16/ Nikolaos Stergioulas Department of Physics, Aristotle University of Thessaloniki Thessaloniki, 54124, Greece E-mail: [email protected] http://www.astro.auth.gr/~niksterg arXiv:1612.03050v2 [astro-ph.HE] 30 Nov 2017 2 Vasileios Paschalidis, Nikolaos Stergioulas The article has been substantially revised and updated. New Section 5 and various Subsections (2.3 { 2.5, 2.7.5 { 2.7.7, 2.8, 2.10-2.11,4.5.7) have been added. -
Lemaître and Hoyle: Contrasting Characters in Science and Religion
S & CB (2012), 24, 111–127 0954–4194 RODNEY HOLDER Lemaître and Hoyle: Contrasting Characters in Science and Religion Georges Lemaître was a jocular Roman Catholic priest and Fred Hoyle a bluff Yorkshireman who despised organised religion. Both were giants of twentieth century cosmology but espoused diametrically opposed cosmological models. This paper explores the extent to which ideology, and particularly religion, played a part in the controversies over the Big Bang and steady-state theories. A significant problem for many cosmologists, including Hoyle, was posed by the idea that the universe had a temporal beginning: an eternal, unchanging universe seemed metaphysically preferable. And Hoyle was highly polemical about religion in his popular writings. In contrast, Lemaître saw no theological import from the Big Bang, and never entered a debate about its theological implications until, perhaps unexpectedly, he took issue with an address given by the Pope. Hoyle’s seminal work on stellar nucleosynthesis led him to speak of a ‘superintellect monkeying with physics’ though this was never identified with the God of classical theism. The work of both Lemaître and Hoyle resonates with more recent debates concerning cosmology. Key words: Lemaître, Hoyle, Big Bang, steady-state theory, cosmology, creation Introduction In Georges Lemaître and Fred Hoyle we have two characters who are so utterly different in many ways, yet who shared one very significant attrib- ute: they were giants in twentieth century cosmology and astrophysics. In short, here we have a Belgian Roman Catholic priest who can rightly be described as the Father of the Big Bang, and in Hoyle an atheist York- shireman who pioneered the alternative of a steady-state universe with neither beginning nor end. -
The 29 of May Or Sir Arthur and The
International Journal of Management and Applied Science, ISSN: 2394-7926 Volume-4, Issue-4, Apr.-2018 http://iraj.in THE 29TH OF MAY OR SIR ARTHUR AND THE BENDING LIGHT (TEACHING SCIENCE AND LITERATURE JOINTLY) MICHAEL KATZ Faculty of Education, Haifa University, Mount Carmel, Haifa, Israel E-mail: [email protected] Abstract - In this paper I present an instance illustrating a program of joint teaching of science and literature. The instance sketched here rests on recognition that at the age when children read books like Kästner's "The 35th of May" they can already taste notions of Relativity Theory through the story of Eddington's expedition to Principe Island. Eddington's story is briefly recounted here with references to Kästner's book. The relationships thus exhibited between science and fiction, fantasy and reality, theory and actuality, humor and earnestness, should help evoke school age children's interest in science and literature at early stages in their studies' endeavor. Keywords - Bending Light, Fantasy, Gravitation, Relativity, Science and Literature. I. INTRODUCTION South Seas" – a story of adventure and humor by Erich Kästner, the well known German author of The idea that teaching science and humanities in more than a few dearly loved novels, mostly for primary and secondary schools needn't necessarily be children and adolescents. The book was first seen as disjoint objectives is prevalent in the thought published in German in 1931 and in English shortly and practice of more than a few scholars and teachers after. in recent years. Carole Cox [1], for example, unfolds forty strategies of literature based teaching of various Twelve years earlier, in 1919, another journey topics in arts and sciences. -
Revised Theory of Gravity Doesn't Predict a Big Bang 12 July 2010, by Lisa Zyga
Revised theory of gravity doesn't predict a Big Bang 12 July 2010, By Lisa Zyga decades he became more interested in finding a theory to unify gravity and quantum mechanics - a task that is still being studied today. In 1924, Eddington proposed a new “gravitational action” as an alternative to the Einstein-Hilbert action, which could serve as an alternative starting point to general relativity. In astrophysics, a gravitational action is the mechanism that describes how gravity can emerge from space-time being curved by matter and energy. However, Eddington’s theory of gravity only worked for empty space and didn’t Illustration: Time Line of the Universe Credit: include any source of energy such as matter, NASA/WMAP making it an incomplete theory. Since Eddington’s proposal, scientists have attempted various ways of including matter into the (PhysOrg.com) -- The Big Bang theory has formed theory, although they have run into problems. In the basis of our understanding of the universe's this study, Banados and Ferreira have tried a new origins since it was first proposed in 1927 by way to extend the theory to include matter by using Georges Lemaitre. And for good reason: the theory a gravitational action called the Born-Infeld action. is supported by scientists' latest observations and experiments, and is based on Einstein's widely In their analysis, the scientists found that a key accepted theory of general relativity. But scientists characteristic of Eddington’s revised theory of are always on the lookout for any evidence that gravity is that it reproduces Einstein gravity might suggest an alternative to the Big Bang. -
Arxiv:1912.00685V2 [Gr-Qc] 30 Mar 2020
USTC-ICTS-19-29 Relativistic stars in mass-varying massive gravity Xue Sun1 and Shuang-Yong Zhou2 1School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China 2Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China and Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China (Dated: March 31, 2020) Mass-varying massive gravity allows the graviton mass to vary according to different environ- ments. We investigate neutron star and white dwarf solutions in this theory and find that the graviton mass can become very large near the compact stars and settle down quickly to small cosmological values away the stars, similar to that of black holes in the theory. It is found that there exists a tower of compact star solutions where the graviton mass decreases radially to zero non-trivially. We compute the massive graviton effects on the mass-radius relations of the compact stars, and also compare the relative strengths between neutron stars and white dwarfs in constraining the parameter space of mass-varying massive gravity. I. INTRODUCTION ton mass near the horizon, there is an extra potential barrier to the left of the photosphere barrier in the mod- ified Regge-Wheeler-Zerilli equation, and this can lead to Recent advances in astrophysics, particularly the ar- gravitational wave echoes [18, 19] in the late time ring- rival of gravitational wave astronomy [1, 2], have pro- down waveform when the black hole is perturbed [16]. vided fresh new opportunities to test gravity in the strong field regime with compact astronomical objects. -
An Interpretation of Milne Cosmology
An Interpretation of Milne Cosmology Alasdair Macleod University of the Highlands and Islands Lews Castle College Stornoway Isle of Lewis HS2 0XR UK [email protected] Abstract The cosmological concordance model is consistent with all available observational data, including the apparent distance and redshift relationship for distant supernovae, but it is curious how the Milne cosmological model is able to make predictions that are similar to this preferred General Relativistic model. Milne’s cosmological model is based solely on Special Relativity and presumes a completely incompatible redshift mechanism; how then can the predictions be even remotely close to observational data? The puzzle is usually resolved by subsuming the Milne Cosmological model into General Relativistic cosmology as the special case of an empty Universe. This explanation may have to be reassessed with the finding that spacetime is approximately flat because of inflation, whereupon the projection of cosmological events onto the observer’s Minkowski spacetime must always be kinematically consistent with Special Relativity, although the specific dynamics of the underlying General Relativistic model can give rise to virtual forces in order to maintain consistency between the observation and model frames. I. INTRODUCTION argument is that a clear distinction must be made between models, which purport to explain structure and causes (the Edwin Hubble’s discovery in the 1920’s that light from extra- ‘Why?’), and observational frames which simply impart galactic nebulae is redshifted in linear proportion to apparent consistency and causality on observation (the ‘How?’). distance was quickly associated with General Relativity (GR), and explained by the model of a closed finite Universe curved However, it can also be argued this approach does not actually under its own gravity and expanding at a rate constrained by the explain the similarity in the predictive power of Milne enclosed mass. -
Resolving Hubble Tension with the Milne Model 3
Resolving Hubble tension with the Milne model* Ram Gopal Vishwakarma Unidad Acade´mica de Matema´ticas Universidad Auto´noma de Zacatecas, Zacatecas C. P. 98068, ZAC, Mexico [email protected] Abstract The recent measurements of the Hubble constant based on the standard ΛCDM cos- mology reveal an underlying disagreement between the early-Universe estimates and the late-time measurements. Moreover, as these measurements improve, the discrepancy not only persists but becomes even more significant and harder to ignore. The present situ- ation places the standard cosmology in jeopardy and provides a tantalizing hint that the problem results from some new physics beyond the ΛCDM model. It is shown that a non-conventional theory - the Milne model - which introduces a different evolution dynamics for the Universe, alleviates the Hubble tension significantly. Moreover, the model also averts some long-standing problems of the standard cosmology, for instance, the problems related with the cosmological constant, the horizon, the flat- ness, the Big Bang singularity, the age of the Universe and the non-conservation of energy. Keywords: Milne model; ΛCDM model; Hubble tension; SNe Ia observations; CMB observations. arXiv:2011.12146v1 [physics.gen-ph] 20 Nov 2020 1 Introduction The Hubble constant H0 is one of the most important parameters in cosmology which mea- sures the present rate of expansion of the Universe, and thereby estimates its size and age. This is done by assuming a cosmological model. However, the two values of H0 predicted by the standard ΛCDM model, one inferred from the measurements of the early Universe and the other from the late-time local measurements, seem to be in sever tension. -
Relativistic Stars with a Linear Equation of State: Analogy with Classical Isothermal Spheres and Black Holes
A&A 483, 673–698 (2008) Astronomy DOI: 10.1051/0004-6361:20078287 & c ESO 2008 Astrophysics Relativistic stars with a linear equation of state: analogy with classical isothermal spheres and black holes P. H. Chavanis Laboratoire de Physique Théorique (UMR 5152 du CNRS), Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France e-mail: [email protected] Received 16 July 2007 / Accepted 10 February 2008 ABSTRACT We complete our previous investigations concerning the structure and the stability of “isothermal” spheres in general relativity. This concerns objects that are described by a linear equation of state, P = q, so that the pressure is proportional to the energy density. In the Newtonian limit q → 0, this returns the classical isothermal equation of state. We specifically consider a self-gravitating radiation (q = 1/3), the core of neutron stars (q = 1/3), and a gas of baryons interacting through a vector meson field (q = 1). Inspired by recent works, we study how the thermodynamical parameters (entropy, temperature, baryon number, mass-energy, etc.) scale with the size of the object and find unusual behaviours due to the non-extensivity of the system. We compare these scaling laws with the area scaling of the black hole entropy. We also determine the domain of validity of these scaling laws by calculating the critical radius (for a given central density) above which relativistic stars described by a linear equation of state become dynamically unstable. For photon stars (self-gravitating radiation), we show that the criteria of dynamical and thermodynamical stability coincide. Considering finite spheres, we find that the mass and entropy present damped oscillations as a function of the central density. -
Structure Formation in a Dirac-Milne Universe: Comparison with the Standard Cosmological Model Giovanni Manfredi, Jean-Louis Rouet, Bruce N
Structure formation in a Dirac-Milne universe: comparison with the standard cosmological model Giovanni Manfredi, Jean-Louis Rouet, Bruce N. Miller, Gabriel Chardin To cite this version: Giovanni Manfredi, Jean-Louis Rouet, Bruce N. Miller, Gabriel Chardin. Structure formation in a Dirac-Milne universe: comparison with the standard cosmological model. Physical Review D, Ameri- can Physical Society, 2020, 102 (10), pp.103518. 10.1103/PhysRevD.102.103518. hal-02999626 HAL Id: hal-02999626 https://hal.archives-ouvertes.fr/hal-02999626 Submitted on 28 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright PHYSICAL REVIEW D 102, 103518 (2020) Structure formation in a Dirac-Milne universe: Comparison with the standard cosmological model Giovanni Manfredi * Universit´e de Strasbourg, CNRS, Institut de Physique et Chimie des Mat´eriaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France Jean-Louis Rouet Universit´ed’Orl´eans, CNRS/INSU, BRGM, ISTO, UMR7327, F-45071 Orl´eans, France Bruce N. Miller Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, USA † Gabriel Chardin Universit´e de Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, France (Received 15 July 2020; accepted 12 October 2020; published 13 November 2020) The presence of complex hierarchical gravitational structures is one of the main features of the observed universe.