Edward Milne's Influence on Modern Cosmology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AST 541 Lecture Notes: Classical Cosmology Sep, 2018
ClassicalCosmology | 1 AST 541 Lecture Notes: Classical Cosmology Sep, 2018 In the next two weeks, we will cover the basic classic cosmology. The material is covered in Longair Chap 5 - 8. We will start with discussions on the first basic assumptions of cosmology, that our universe obeys cosmological principles and is expanding. We will introduce the R-W metric, which describes how to measure distance in cosmology, and from there discuss the meaning of measurements in cosmology, such as redshift, size, distance, look-back time, etc. Then we will introduce the second basic assumption in cosmology, that the gravity in the universe is described by Einstein's GR. We will not discuss GR in any detail in this class. Instead, we will use a simple analogy to introduce the basic dynamical equation in cosmology, the Friedmann equations. We will look at the solutions of Friedmann equations, which will lead us to the definition of our basic cosmological parameters, the density parameters, Hubble constant, etc., and how are they related to each other. Finally, we will spend sometime discussing the measurements of these cosmological param- eters, how to arrive at our current so-called concordance cosmology, which is described as being geometrically flat, with low matter density and a dominant cosmological parameter term that gives the universe an acceleration in its expansion. These next few lectures are the foundations of our class. You might have learned some of it in your undergraduate astronomy class; now we are dealing with it in more detail and more rigorously. 1 Cosmological Principles The crucial principles guiding cosmology theory are homogeneity and expansion. -
Expanding Space, Quasars and St. Augustine's Fireworks
Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible. -
Philosophy and the Physicists Preview
L. Susan Stebbing Philosophy and the Physicists Preview il glifo ebooks ISBN: 9788897527466 First Edition: December 2018 (A) Copyright © il glifo, December 2018 www.ilglifo.it 1 Contents FOREWORD FROM THE EDITOR Note to the 2018 electronic edition PHILOSOPHY AND THE PHYSICISTS Original Title Page PREFACE NOTE PART I - THE ALARMING ASTRONOMERS Chapter I - The Common Reader and the Popularizing Scientist Chapter II - THE ESCAPE OF SIR JAMES JEANS PART II - THE PHYSICIST AND THE WORLD Chapter III - ‘FURNITURE OF THE EARTH’ Chapter IV - ‘THE SYMBOLIC WORLD OF PHYSICS’ Chapter V - THE DESCENT TO THE INSCRUTABLE Chapter VI - CONSEQUENCES OF SCRUTINIZING THE INSCRUTABLE PART III - CAUSALITY AND HUMAN FREEDOM Chapter VII - THE NINETEENTH-CENTURY NIGHTMARE Chapter VIII - THE REJECTION OF PHYSICAL DETERMINISM Chapter IX - REACTIONS AND CONSEQUENCES Chapter X - HUMAN FREEDOM AND RESPONSIBILITY PART IV - THE CHANGED OUTLOOK Chapter XI - ENTROPY AND BECOMING Chapter XII - INTERPRETATIONS BIBLIOGRAPHY INDEX BACK COVER Susan Stebbing 2 Foreword from the Editor In 1937 Susan Stebbing published Philosophy and the Physicists , an intense and difficult essay, in reaction to reading the works written for the general public by two physicists then at the center of attention in England and the world, James Jeans (1877-1946) and Arthur Eddington (1882- 1944). The latter, as is known, in 1919 had announced to the Royal Society the astronomical observations that were then considered experimental confirmations of the general relativity of Einstein, and who by that episode had managed to trigger the transformation of general relativity into a component of the mass and non-mass imaginary of the twentieth century. -
Demystifying Special Relativity; the K-Factor Angel Darlene Harb
Demystifying Special Relativity; the K-Factor Angel Darlene Harb University of Texas at San Antonio, TX, U.S.A. ABSTRACT This paper targets upper-level high school students and incoming college freshmen who have been less exposed to Special Relativity (SR). The goal is to spark interest and eliminate any feelings of intimidation one might have about a topic brought forth by world genius Albert Einstein. For this purpose, we will introduce some ideas revolving around SR. Additionally, by deriving the relationship between the k-factor and relative velocity, we hope that students come to an appreciation for the impact of basic mathematical skills and the way these can be applied to quite complex models. Advanced readers can directly jump ahead to the section discussing the k-factor. keywords : relative velocity, world lines, space-time 1 Introduction 1.1 A Morsel of History Throughout time, scientists have searched for ’just the right’ model comprised of laws, assumptions and theories that could explain our physical world. One example of a leading physical law is: All matter in the universe is subject to the same forces. It is important to note, this principle is agreeable to scientists, not because it is empirically true, but because this law makes for a good model of nature. Consequently, this law unifies areas like mechanics, electricity and optics traditionally taught separate from each other. Sir Isaac Newton (1643-1727) contributed to this principle with his ’three laws of motion.’ They were so mathematically elegant, that the Newtonian model dominated the scientific mind for nearly two centuries. -
Gold T. Rotating Neutron Stars As the Origin of the Pulsating Radio Sources
CC/NUMBER 8 ® FEBRUARY 22, 1993 This Week's Citation Classic Gold T. Rotating neutron stars as the origin of the pulsating radio sources. Nature 218:731-2, 1968; and Gold T. Rotating neutron stars and the nature of pulsars. Nature 221:25-7, 1969. [Center for Radiophysics and Space Research: and Cornell-Sydney University Astronomy Center. Cornell University, Ithaca. NY] Enigmatic, rapidly pulsating radio sources were preferred to attribute these sources to interpreted as rotating beacons sweeping over distant galaxies, not to stellar objects. the Earth, radiating out from rapidly rotating, The pulsars now seemed to repre- extremely collapsed stars ("neutron stars"). Nu- merous detailed predictions followed from this sent just the stellar objects I had dis- model, and all were soon verified. The model cussed then. Calculations existed for also accounted closely for the previously unex- the collapsed "neutron stars" that in- plained luminosity of the Crab Nebula. [The dicated approximately their size, as SCI® indicates that these papers have been small as a few kilometers, and their cited in more than 240 and 150 publications, mass, on the order of a solar mass.4 respectively.] Astronomers generally thought that even if they existed, they could never be discovered. However hot, a star so small could not be seen at astronomi- The Nature of Pulsars cal distances. But they had not con- sidered the energy concentration re- Thomas Gold sulting from the collapse: enormous Center for Radiophysics magnetic field strengths and a spin and Space Research energy quite comparable with the en- Cornell University tire content of nuclear energy of the Ithaca, NY 14853 star before its collapse. -
Lemaître and Hoyle: Contrasting Characters in Science and Religion
S & CB (2012), 24, 111–127 0954–4194 RODNEY HOLDER Lemaître and Hoyle: Contrasting Characters in Science and Religion Georges Lemaître was a jocular Roman Catholic priest and Fred Hoyle a bluff Yorkshireman who despised organised religion. Both were giants of twentieth century cosmology but espoused diametrically opposed cosmological models. This paper explores the extent to which ideology, and particularly religion, played a part in the controversies over the Big Bang and steady-state theories. A significant problem for many cosmologists, including Hoyle, was posed by the idea that the universe had a temporal beginning: an eternal, unchanging universe seemed metaphysically preferable. And Hoyle was highly polemical about religion in his popular writings. In contrast, Lemaître saw no theological import from the Big Bang, and never entered a debate about its theological implications until, perhaps unexpectedly, he took issue with an address given by the Pope. Hoyle’s seminal work on stellar nucleosynthesis led him to speak of a ‘superintellect monkeying with physics’ though this was never identified with the God of classical theism. The work of both Lemaître and Hoyle resonates with more recent debates concerning cosmology. Key words: Lemaître, Hoyle, Big Bang, steady-state theory, cosmology, creation Introduction In Georges Lemaître and Fred Hoyle we have two characters who are so utterly different in many ways, yet who shared one very significant attrib- ute: they were giants in twentieth century cosmology and astrophysics. In short, here we have a Belgian Roman Catholic priest who can rightly be described as the Father of the Big Bang, and in Hoyle an atheist York- shireman who pioneered the alternative of a steady-state universe with neither beginning nor end. -
The 29 of May Or Sir Arthur and The
International Journal of Management and Applied Science, ISSN: 2394-7926 Volume-4, Issue-4, Apr.-2018 http://iraj.in THE 29TH OF MAY OR SIR ARTHUR AND THE BENDING LIGHT (TEACHING SCIENCE AND LITERATURE JOINTLY) MICHAEL KATZ Faculty of Education, Haifa University, Mount Carmel, Haifa, Israel E-mail: [email protected] Abstract - In this paper I present an instance illustrating a program of joint teaching of science and literature. The instance sketched here rests on recognition that at the age when children read books like Kästner's "The 35th of May" they can already taste notions of Relativity Theory through the story of Eddington's expedition to Principe Island. Eddington's story is briefly recounted here with references to Kästner's book. The relationships thus exhibited between science and fiction, fantasy and reality, theory and actuality, humor and earnestness, should help evoke school age children's interest in science and literature at early stages in their studies' endeavor. Keywords - Bending Light, Fantasy, Gravitation, Relativity, Science and Literature. I. INTRODUCTION South Seas" – a story of adventure and humor by Erich Kästner, the well known German author of The idea that teaching science and humanities in more than a few dearly loved novels, mostly for primary and secondary schools needn't necessarily be children and adolescents. The book was first seen as disjoint objectives is prevalent in the thought published in German in 1931 and in English shortly and practice of more than a few scholars and teachers after. in recent years. Carole Cox [1], for example, unfolds forty strategies of literature based teaching of various Twelve years earlier, in 1919, another journey topics in arts and sciences. -
The Deep, Hot Biosphere (Geochemistry/Planetology) THOMAS GOLD Cornell University, Ithaca, NY 14853 Contributed by Thomas Gold, March 13, 1992
Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6045-6049, July 1992 Microbiology The deep, hot biosphere (geochemistry/planetology) THOMAS GOLD Cornell University, Ithaca, NY 14853 Contributed by Thomas Gold, March 13, 1992 ABSTRACT There are strong indications that microbial gasification. As liquids, gases, and solids make new contacts, life is widespread at depth in the crust ofthe Earth, just as such chemical processes can take place that represent, in general, life has been identified in numerous ocean vents. This life is not an approach to a lower chemical energy condition. Some of dependent on solar energy and photosynthesis for its primary the energy so liberated will increase the heating of the energy supply, and it is essentially independent of the surface locality, and this in turn will liberate more fluids there and so circumstances. Its energy supply comes from chemical sources, accelerate the processes that release more heat. Hot regions due to fluids that migrate upward from deeper levels in the will become hotter, and chemical activity will be further Earth. In mass and volume it may be comparable with all stimulated there. This may contribute to, or account for, the surface life. Such microbial life may account for the presence active and hot regions in the Earth's crust that are so sharply of biological molecules in all carbonaceous materials in the defined. outer crust, and the inference that these materials must have Where such liquids or gases stream up to higher levels into derived from biological deposits accumulated at the surface is different chemical surroundings, they will continue to repre- therefore not necessarily valid. -
Towards a Theory of Gravitational Radiation Or What Is a Gravitational Wave?
Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 Towards a theory of gravitational radiation or What is a gravitational wave? Paweł Nurowski Center for Theoretical Physics Polish Academy of Sciences King’s College London, 28 April 2016 1/48 Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 Plan 1 Recent LIGO announcement 2 Gravitational radiation theory: summary 3 Prehistory: 1916-1956 4 History: 1957-1962 2/48 Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 LIGO detection: Its relevance the first detection of gravitational waves the first detection of a black hole; of a binary black-hole; of a merging process of black holes creating a new one; Kerr black holes exist; black holes with up to 60 Solar masses exist; the most energetic process ever observed important test of Einstein’s General Theory of Relativity new window: a birth of gravitational wave astronomy 3/48 Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 LIGO detection: Its relevance the first detection of gravitational waves the first detection of a black hole; of a binary black-hole; of a merging process of black holes creating a new one; Kerr black holes exist; black holes with up to 60 Solar masses exist; the most energetic process ever observed important test of Einstein’s General Theory of Relativity new window: a birth of gravitational wave astronomy -
Revised Theory of Gravity Doesn't Predict a Big Bang 12 July 2010, by Lisa Zyga
Revised theory of gravity doesn't predict a Big Bang 12 July 2010, By Lisa Zyga decades he became more interested in finding a theory to unify gravity and quantum mechanics - a task that is still being studied today. In 1924, Eddington proposed a new “gravitational action” as an alternative to the Einstein-Hilbert action, which could serve as an alternative starting point to general relativity. In astrophysics, a gravitational action is the mechanism that describes how gravity can emerge from space-time being curved by matter and energy. However, Eddington’s theory of gravity only worked for empty space and didn’t Illustration: Time Line of the Universe Credit: include any source of energy such as matter, NASA/WMAP making it an incomplete theory. Since Eddington’s proposal, scientists have attempted various ways of including matter into the (PhysOrg.com) -- The Big Bang theory has formed theory, although they have run into problems. In the basis of our understanding of the universe's this study, Banados and Ferreira have tried a new origins since it was first proposed in 1927 by way to extend the theory to include matter by using Georges Lemaitre. And for good reason: the theory a gravitational action called the Born-Infeld action. is supported by scientists' latest observations and experiments, and is based on Einstein's widely In their analysis, the scientists found that a key accepted theory of general relativity. But scientists characteristic of Eddington’s revised theory of are always on the lookout for any evidence that gravity is that it reproduces Einstein gravity might suggest an alternative to the Big Bang. -
An Interpretation of Milne Cosmology
An Interpretation of Milne Cosmology Alasdair Macleod University of the Highlands and Islands Lews Castle College Stornoway Isle of Lewis HS2 0XR UK [email protected] Abstract The cosmological concordance model is consistent with all available observational data, including the apparent distance and redshift relationship for distant supernovae, but it is curious how the Milne cosmological model is able to make predictions that are similar to this preferred General Relativistic model. Milne’s cosmological model is based solely on Special Relativity and presumes a completely incompatible redshift mechanism; how then can the predictions be even remotely close to observational data? The puzzle is usually resolved by subsuming the Milne Cosmological model into General Relativistic cosmology as the special case of an empty Universe. This explanation may have to be reassessed with the finding that spacetime is approximately flat because of inflation, whereupon the projection of cosmological events onto the observer’s Minkowski spacetime must always be kinematically consistent with Special Relativity, although the specific dynamics of the underlying General Relativistic model can give rise to virtual forces in order to maintain consistency between the observation and model frames. I. INTRODUCTION argument is that a clear distinction must be made between models, which purport to explain structure and causes (the Edwin Hubble’s discovery in the 1920’s that light from extra- ‘Why?’), and observational frames which simply impart galactic nebulae is redshifted in linear proportion to apparent consistency and causality on observation (the ‘How?’). distance was quickly associated with General Relativity (GR), and explained by the model of a closed finite Universe curved However, it can also be argued this approach does not actually under its own gravity and expanding at a rate constrained by the explain the similarity in the predictive power of Milne enclosed mass. -
Resolving Hubble Tension with the Milne Model 3
Resolving Hubble tension with the Milne model* Ram Gopal Vishwakarma Unidad Acade´mica de Matema´ticas Universidad Auto´noma de Zacatecas, Zacatecas C. P. 98068, ZAC, Mexico [email protected] Abstract The recent measurements of the Hubble constant based on the standard ΛCDM cos- mology reveal an underlying disagreement between the early-Universe estimates and the late-time measurements. Moreover, as these measurements improve, the discrepancy not only persists but becomes even more significant and harder to ignore. The present situ- ation places the standard cosmology in jeopardy and provides a tantalizing hint that the problem results from some new physics beyond the ΛCDM model. It is shown that a non-conventional theory - the Milne model - which introduces a different evolution dynamics for the Universe, alleviates the Hubble tension significantly. Moreover, the model also averts some long-standing problems of the standard cosmology, for instance, the problems related with the cosmological constant, the horizon, the flat- ness, the Big Bang singularity, the age of the Universe and the non-conservation of energy. Keywords: Milne model; ΛCDM model; Hubble tension; SNe Ia observations; CMB observations. arXiv:2011.12146v1 [physics.gen-ph] 20 Nov 2020 1 Introduction The Hubble constant H0 is one of the most important parameters in cosmology which mea- sures the present rate of expansion of the Universe, and thereby estimates its size and age. This is done by assuming a cosmological model. However, the two values of H0 predicted by the standard ΛCDM model, one inferred from the measurements of the early Universe and the other from the late-time local measurements, seem to be in sever tension.