A Range-Wide Restoration Strategy for Whitebark Pine (Pinus Albicaulis)
Total Page:16
File Type:pdf, Size:1020Kb
United States Department A Range-Wide Restoration Strategy for of Agriculture Forest Service Rocky Mountain Research Station Whitebark Pine (Pinus albicaulis) General Technical Report RMRS-GTR-279 June 2012 Keane, Robert E.; Tomback, D.F.; Aubry, C.A.; Bower, A.D.; Campbell, E.M.; Cripps, C.L.; Jenkins, M.B.; Mahalovich, M.F.; Manning, M.; McKinney, S.T.; Murray, M.P.; Perkins, D.L.; Reinhart, D.P.; Ryan, C.; Schoettle, A.W.; Smith, C.M. 2012. A range-wide restoration strategy for whitebark pine (Pinus albicaulis). Gen. Tech. Rep. RMRS-GTR-279. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 108 p. ABSTRACT Whitebark pine (Pinus albicaulis), an important component of western high- elevation forests, has been declining in both the United States and Canada since the early Twentieth Century from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the spread of the exotic disease white pine blister rust (caused by the pathogen Cronartium ribicola). The pine is now a candidate species for listing under the Endangered Species Act. Within the last decade, with major surges of pine beetle and increasing damage and mortality from blister rust, the cumulative whitebark pine losses have altered high-elevation community composition and ecosystem processes in many regions. Whitebark pine is a keystone species because of its various roles in supporting community diversity and a foundation species for its roles in promoting community development and stability. Since more than 90 percent of whitebark pine forests occur on public lands in the United States and Canada, maintaining whitebark pine communities requires a coordinated and trans-boundary effort across Federal and provincial land management agencies to develop a comprehensive strategy for restoration of this declining ecosystem. We outline a range-wide strategy for maintaining whitebark pine populations in high mountain areas based on the most current knowledge of the efficacy of techniques and differences in their application across communities. The strategy is written as a general guide for planning, designing, implementing, and evaluating fine-scale restoration activities for whitebark pine by public land management agencies, and to encourage agency and inter-agency coordination for greater efficiency. The strategy is organized into six scales of implementation, and each scale is described by assessment factors, restoration techniques, management concerns, and examples. Keywords: whitebark pine, ecosystem restoration, fire regime, blister rust, mountain pine beetle, grizzly bear, Clark’s nutcracker, seed dispersal, regeneration, red squirrels, upper subalpine communities, climate change The use of trade or firm names in the publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service. You may order additional copies of this publication by sending your mailing information in label form through one of the following media. Please specify the publication title and series number. Publishing Services Telephone (970) 498-1392 FAX (970) 498-1122 E-mail [email protected] Website http://www.fs.fed.us/rm/publications Mailing address Publications Distribution Rocky Mountain Research Station 240 West Prospect Road Fort Collins, CO 80526 EXECUTIVE SUMMARY Whitebark pine (Pinus albicaulis) forests are declining across most of their range in North America because of the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic pathogen Cronartium ribicola, which infects five-needle white pines and causes the disease white pine blister rust. The loss of this high-elevation tree species poses serious consequences for upper subalpine ecosystems, both in terms of impacts on biodiversity and losses in ecosystem processes; whitebark pine is now a candidate species for listing under the Endangered Species Act. Large, nutritious seeds produced by whitebark pine are an important food for many bird and small mammal species, as well as grizzly (Ursus arctos horribilis) and black bears (Ursus americanus), and whitebark pine communities provide habitat for many additional wildlife species. Whitebark pine seed dispersal by Clark’s nutcrackers (Nucifraga columbiana) combined with hardy seedlings results in early whitebark pine community development after fire and other disturbances; whitebark pine seedlings survive on harsh, arid sites and may act as nurse trees to less hardy conifers and vegetation. Whitebark pine at higher elevations, where it is common in many regions, helps regulate snow melt and reduce soil erosion. For these collective functions, whitebark pine is considered both a keystone species for promoting community diversity and a foundation species for promoting community stability. Since more than 90 percent of whitebark pine forests exist on public land in the United States and Canada, it is important that government natural resource management agencies play an important role in ensuring future presence of this tree species by initiating concerted, coordinated, and comprehensive restoration efforts. This is best accomplished through a coordinated, trans-boundary restoration strategy that includes shared infrastructure and expertise for conserving seeds, growing blister rust-resistant seedlings, protecting trees, restoring ecosystem processes, and promoting natural regeneration. We detail a multi-scale strategy for restoring whitebark pine across its range in the western United States and Canada. The strategy was compiled by researchers, land managers, and resource specialists for use as a reference for prioritizing, designing, and implementing successful whitebark pine restoration activities across many scales from stands to landscapes to its entire range. The whitebark pine restoration strategy consists of the following principles: (1) promote rust resistance, (2) conserve genetic diversity, (3) save seed sources, and (4) employ restoration treatments. These guiding principles are then used to implement the whitebark pine restoration strategy using a set of possible actions: 1. assess condition, 2. plan activities, 3. reduce pest impacts, 4. gather seed, 5. grow seedlings, 6. protect seed sources, 7. implement restoration treatments, 8. plant burned areas, 9. support research, and 10. monitor activities. The strategy is also organized by six spatial scales of analysis and organization: 1. range-wide, 2. region (National Forest Region or Provincial Regions), 3. forest (National Forest, National Park, and Canadian Forest District), 4. landscape (watershed or landform), 5. stand, and 6. tree. At each scale, we present four important factors in the restoration strategy: (1) assessment, (2) restoration actions, (3) management concerns, and (4) an example. Strategic restoration plans are presented for the coarse-scale strategies, while illustrated examples are presented for the finer scales (tree, stand, and landscape). i AUTHORS Robert E. Keane is a Research Ecologist with the U.S. Forest Service, Rocky Mountain Research Station at the Missoula Fire Sciences Laboratory in Missoula, Montana. His most recent research includes (1) developing ecological computer simulation models for exploring landscape, fire, and climate dynamics, (2) sampling, describing, modeling, and mapping fuel characteristics, and (3) investigating the ecology and restoration of whitebark pine. He received his B.S. degree in Forest Engineering from the University of Maine, Orono; his M.S. degree in Forest Ecology from the University of Montana, Missoula; and his Ph.D. in Forest Ecology from the University of Idaho, Moscow. Diana F. Tomback is a Professor in the Department of Integrative Biology University of Colorado Denver, an Evolutionary Ecologist and Conservation Biologist, and volunteer Director of the Whitebark Pine Ecosystem Foundation, a non-profit organization based in Missoula, Montana. Her current research examines several aspects of the interaction between Clark’s nutcrackers and whitebark pine, including: (1) timeframe of post-fire regeneration of whitebark pine, (2) detecting changes in nutcracker seed dispersal services as whitebark pine declines, and (3) the role of whitebark pine in vegetation dynamics at treeline. She received her B.A. and M.A. degrees in Zoology from the University of California at Los Angeles, and her Ph.D. in Biological Sciences from the University of California at Santa Barbara. Carol A. Aubry is a Forest Geneticist with the U.S. Forest Service, Olympic National Forest in Olympia, Washington. She works on National Forests in the Pacific Northwest, and her work focuses on the protection and management of forest genetic resources, including (1) whitebark pine conservation and restoration, and (2) climate change adaptation strategies for forest tree species. She received her B.S. degree in Biology from the University of Hartford, Connecticut; her M.S. degree in Forestry from Yale School of Forestry and Environmental Studies; and her Ph.D. in Forest Genetics from Oregon State University, Corvallis. Andrew D. Bower is a Forest Geneticist with the U.S. Forest Service, Olympic National Forest in Olympia, Washington. Andrew is the U.S. Forest Service Pacific Northwest Region Whitebark Pine Restoration Program Lead and has been involved in research on genetic issues with whitebark pine since 2001. He received his B.S. degree in Forestry from the University