Support Guide CONTENTS Metabolic Analysis Profile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cloning, Biochemical Characterization and Inhibition of Alanine Racemase from Streptococcus Iniae
bioRxiv preprint doi: https://doi.org/10.1101/611251; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cloning, Biochemical Characterization and Inhibition of Alanine racemase from Streptococcus iniae Murtala Muhammad, Yangyang Li, Siyu Gong, Yanmin Shi, Jiansong Ju, Baohua Zhao*, Dong Liu* College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; *Correspondence: Baohua Zhao and Dong Liu; E-mail: [email protected], [email protected]; College of Life Science, Hebei Normal University, Shijiazhuang 050024, China. Running Title: Inhibitors of alanine racemase Summary statement: Antimicrobial target 1 bioRxiv preprint doi: https://doi.org/10.1101/611251; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Streptococcus iniae is a pathogenic and zoonotic bacteria that impacted high mortality to many fish species, as well as capable of causing serious disease to humans. Alanine racemase (Alr, EC 5.1.1.1) is a pyridoxal-5′-phosphate (PLP)-containing homodimeric enzyme that catalyzes the racemization of L-alanine and D-alanine. In this study, we purified alanine racemase from the pathogenic strain of S. iniae, determined its biochemical characteristics and inhibitors. The alr gene has an open reading frame (ORF) of 1107 bp, encoding a protein of 369 amino acids, which has a molecular mass of 40 kDa. The optimal enzyme activity occurred at 35°C and a pH of 9.5. -
Dibasic Acids for Nylon Manufacture
- e Report No. 75 DIBASIC ACIDS FOR NYLON MANUFACTURE by YEN-CHEN YEN October 1971 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA CONTENTS INTRODUCTION, ....................... 1 SUMMARY .......................... 3 General Aspects ...................... 3 Technical Aspects ..................... 7 INDUSTRY STATUS ...................... 15 Applications and Consumption of Sebacic Acid ........ 15 Applications and Consumption of Azelaic Acid ........ 16 Applications of Dodecanedioic and Suberic Acids ...... 16 Applications of Cyclododecatriene and Cyclooctadiene .... 17 Producers ......................... 17 Prices ........................... 18 DIBASIC ACIDS FOR MANUFACTURE OF POLYAMIDES ........ 21 CYCLOOLIGOMERIZATIONOF BUTADIENE ............. 29 Chemistry ......................... 29 Ziegler Catalyst ..................... 30 Nickel Catalyst ..................... 33 Other Catalysts ..................... 34 Co-Cyclooligomerization ................. 34 Mechanism ........................ 35 By-products and Impurities ................ 37 Review of Processes .................... 38 A Process for Manufacture of Cyclododecatriene ....... 54 Process Description ................... 54 Process Discussion .................... 60 Cost Estimates ...................... 60 A Process for Manufacture of Cyclooctadiene ........ 65 Process Description ................... 65 Process Discussion .................... 70 Cost Estimates ...................... 70 A Process for Manufacture of Cyclodecadiene -
The Clinical Significance of the Organic Acids Test
The Clinical Significance of the Organic Acids Test The Organic Acids Test (OAT) provides an accurate metabolic snapshot of what is going on in the body. Besides offering the most complete and accurate evaluation of intestinal yeast and bacteria, it also provides information on important neurotransmitters, nutritional markers, glutathione status, oxalate metabolism, and much more. The test includes 76 urinary metabolite markers that can be very useful for discovering underlying causes of chronic illness. Patients and physicians report that treating yeast and bacterial abnormalities reduces fatigue, increases alertness and energy, improves sleep, normalizes bowel function, and reduces hyperactivity and abdominal pain. The OAT Assists in Evaluating: ■ Krebs Cycle Abnormalities ■ Neurotransmitter Levels ■ Nutritional Deficiencies ■ Antioxidant Deficiencies ■ Yeast and Clostridia Overgrowth ■ Fatty Acid Metabolism ■ Oxalate Levels ■ And More! The OAT Pairs Well with the Following Tests: ■ GPL-TOX: Toxic Non-Metal Chemical Profile ■ IgG Food Allergy + Candida ■ MycoTOX Profile ■ Phospholipase A2 Activity Test Learn how to better integrate the OAT into your practice, along with our other top tests by attending one of our GPL Academy Practitioner Workshops! Visit www.GPLWorkshops.com for workshop dates and locations. The following pages list the 76 metabolite markers of the Organic Acids Test. Included is the name of the metabolic marker, its clinical significance, and usual initial treatment. INTESTINAL MICROBIAL OVERGROWTH Yeast and Fungal Markers Elevated citramalic acid is produced mainly by Saccharomyces species or Propionibacteria Citramalic Acid overgrowth. High-potency, multi-strain probiotics may help rebalance GI flora. A metabolite produced by Aspergillus and possibly other fungal species in the GI tract. 5-Hydroxy-methyl- Prescription or natural antifungals, along with high-potency, multi-strain probiotics, furoic Acid may reduce overgrowth levels. -
Amino Acid Disorders
471 Review Article on Inborn Errors of Metabolism Page 1 of 10 Amino acid disorders Ermal Aliu1, Shibani Kanungo2, Georgianne L. Arnold1 1Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; 2Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA Contributions: (I) Conception and design: S Kanungo, GL Arnold; (II) Administrative support: S Kanungo; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: E Aliu, GL Arnold; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Georgianne L. Arnold, MD. UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Suite 1200, Pittsburgh, PA 15224, USA. Email: [email protected]. Abstract: Amino acids serve as key building blocks and as an energy source for cell repair, survival, regeneration and growth. Each amino acid has an amino group, a carboxylic acid, and a unique carbon structure. Human utilize 21 different amino acids; most of these can be synthesized endogenously, but 9 are “essential” in that they must be ingested in the diet. In addition to their role as building blocks of protein, amino acids are key energy source (ketogenic, glucogenic or both), are building blocks of Kreb’s (aka TCA) cycle intermediates and other metabolites, and recycled as needed. A metabolic defect in the metabolism of tyrosine (homogentisic acid oxidase deficiency) historically defined Archibald Garrod as key architect in linking biochemistry, genetics and medicine and creation of the term ‘Inborn Error of Metabolism’ (IEM). The key concept of a single gene defect leading to a single enzyme dysfunction, leading to “intoxication” with a precursor in the metabolic pathway was vital to linking genetics and metabolic disorders and developing screening and treatment approaches as described in other chapters in this issue. -
8342 RA Rosin Flux Paste
8342 RA Rosin Flux Paste MG Chemicals UK Limited Version No: A-1.0 2 Issue Date: 12/08/2019 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Revision Date: 14/01/2021 L.REACH.GBR.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING 1.1. Product Identifier Product name 8342 Synonyms SDS Code: 8342; 8342-50G | UFI: MKH0-J0US-C00M-20WV Other means of identification RA Rosin Flux Paste 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses flux paste Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Emergency telephone numbers +(44) 20 35147487 Other emergency telephone +(0) 800 680 0425 numbers SECTION 2 HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture Classification according to regulation (EC) No 1272/2008 H334 - Respiratory Sensitizer Category 1, H319 - Eye Irritation Category 2, H317 - Skin Sensitizer Category 1 [CLP] [1] Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI 2.2. Label elements Hazard pictogram(s) SIGNAL WORD DANGER Hazard statement(s) H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled. -
Orfadin, INN-Nitisinone
SCIENTIFIC DISCUSSION 1. Introduction 1.1 Problem statement Hereditary tyrosinaemia type 1 (HT-1) is a devastating inherited disease, mainly of childhood. It is characterised by severe liver dysfunction, impaired coagulation, painful neurological crises, renal tubular dysfunction and a considerable risk of hepatocellular carcinoma (Weinberg et al. 1976, Halvorsen 1990, Kvittingen 1991, van Spronsen et al. 1994, Mitchell et al. 1995). The condition is caused by an inborn error in the final step of the tyrosine degradation pathway (Lindblad et al. 1977). The incidence of HT-1 in Europe and North America is about one in 100,000 births, although in certain areas the incidence is considerably higher. In the province of Quebec, Canada, it is about one in 20,000 births (Mitchell et al. 1995). The mode of inheritance is autosomal recessive. The primary enzymatic defect in HT-1 is a reduced activity of fumarylacetoacetate hydrolase (FAH) in the liver, the last enzyme in the tyrosine degradation pathway. As a consequence, fumaylacetoacetate (FAA) and maleylacetoacetate (MAA), upstream of the enzymatic block, accumulate. Both intermediates are highly reactive and unstable and cannot be detected in the serum or urine of affected children. Degradation products of MAA and FAA are succinylacetone (SA) and succinylacetoacetate (SAA) which are (especially SA) toxic, and which are measurable in the serum and urine and are hallmarks of the disease. SA is also an inhibitor of Porphobilinogen synthase (PBG), leading to an accumulation of 5-aminolevulinate (5-ALA) which is thought to be responsible for the neurologic crises resembling the crises of the porphyrias. The accumulation of toxic metabolites starts at birth and the severity of phenotype is reflected in the age of onset of symptoms (Halvorsen 1990, van Spronsen et al. -
Selection and Characterization of Alanine Racemase Inhibitors Against
Wang et al. BMC Microbiology (2017) 17:122 DOI 10.1186/s12866-017-1010-x RESEARCHARTICLE Open Access Selection and characterization of alanine racemase inhibitors against Aeromonas hydrophila Yaping Wang1, Chao Yang2, Wen Xue1, Ting Zhang1, Xipei Liu1, Jiansong Ju1, Baohua Zhao1* and Dong Liu1* Abstract Background: Combining experimental and computational screening methods has been of keen interest in drug discovery. In the present study, we developed an efficient screening method that has been used to screen 2100 small-molecule compounds for alanine racemase Alr-2 inhibitors. Results: We identified ten novel non-substrate Alr-2 inhibitors, of which patulin, homogentisic acid, and hydroquinone were active against Aeromonas hydrophila. The compounds were found to be capable of inhibiting Alr-2 to different extents with 50% inhibitory concentrations (IC50) ranging from 6.6 to 17.7 μM. These compounds inhibited the growth of A. hydrophila with minimal inhibitory concentrations (MICs) ranging from 20 to 120 μg/ml. These compounds have no activity on horseradish peroxidase and D-amino acid oxidase at a concentration of 50 μM. The MTT assay revealed that homogentisic acid and hydroquinone have minimal cytotoxicity against mammalian cells. The kinetic studies indicated a competitive inhibition of homogentisic acid against Alr-2 with an inhibition constant (Ki) of 51.7 μM, while hydroquinone was a noncompetitive inhibitor with a Ki of 212 μM. Molecular docking studies suggested that homogentisic acid binds to the active site of racemase, while hydroquinone lies near the active center of alanine racemase. Conclusions: Our findings suggested that combining experimental and computational methods could be used for an efficient, large-scale screening of alanine racemase inhibitors against A. -
The Human Urine Metabolome
The Human Urine Metabolome Souhaila Bouatra1, Farid Aziat1, Rupasri Mandal1, An Chi Guo2, Michael R. Wilson2, Craig Knox2, Trent C. Bjorndahl1, Ramanarayan Krishnamurthy1, Fozia Saleem1, Philip Liu1, Zerihun T. Dame1, Jenna Poelzer1, Jessica Huynh1, Faizath S. Yallou1, Nick Psychogios3, Edison Dong1, Ralf Bogumil4, Cornelia Roehring4, David S. Wishart1,2,5* 1 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, 2 Department of Computing Sciences, University of Alberta, Edmonton, Alberta, Canada, 3 Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 4 BIOCRATES Life Sciences AG, Innsbruck, Austria, 5 National Institute for Nanotechnology, Edmonton, Alberta, Canada Abstract Urine has long been a ‘‘favored’’ biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. -
COMPILATION of AMINO ACIDS, DRUGS, METABOLITES and OTHER COMPOUNDS in MASSTRAK AMINO ACID ANALYSIS SOLUTION Paula Hong, Kendon S
COMPILATION OF AMINO ACIDS, DRUGS, METABOLITES AND OTHER COMPOUNDS IN MASSTRAK AMINO ACID ANALYSIS SOLUTION Paula Hong, Kendon S. Graham, Alexandre Paccou, T homas E. Wheat and Diane M. Diehl INTRODUCTION LC conditions Physiological amino acid analysis is commonly performed to LC System: Waters ACQUITY UPLC® System with TUV monitor and study a wide variety of metabolic processes. A wide Column: MassTrak AAA Column 2.1 x 150 mm, 1.7 µm variety of drugs, foods, and metabolic intermediates that may Column Temp: 43 ˚C be present in biological fluids can appear as peaks in amino Flow Rate: 400 µL/min. acid analysis, therefore, it is important to be able to identify Mobile Phase A: MassTrak AAA Eluent A Concentrate, unknown compounds.1,2,3 The reproducibility and robustness of diluted 1:10 the MassTrak Amino Acid Analysis Solution make this method well Mobile Phase B: MassTrak AAA Eluent B suited to such a study as well.4 Weak Needle Wash: 5/95 Acetonitrile/Water Strong Needle Wash: 95/5 Acetonitrile/Water Gradient: MassTrak AAA Standard Gradient (as provided in kit) Detection: UV @ 260 nm Injection Volume: 1 µL EXPERIMENTAL Injection Mode: Partial Loop with Needle Overfill (PLNO) Compound sample preparation A library of compounds was assembled. Each compound was derivatized individually and spiked into the MassTrak™ AAA Solution Standard prior to chromatographic analysis. The elution RESULTS AND DISCUSSION position of each tested compound could be related to known amino acids. A wide variety of antibiotics, pharmaceutical compounds and metabolite by-products are found in biological fluids. The reten- 1. -
Nucleic Acid Metabolism in Regenerating Rat Liver I. the Rate of Deoxyribonucleic Acid Synthesis in Vivo1
Nucleic Acid Metabolism in Regenerating Rat Liver I. The Rate of Deoxyribonucleic Acid Synthesis in Vivo1 LISELOTTEI.HECHTANDVANR. POTTER (McArdie Memorial Laboratory, University of Wisconsin, Madison 6, Wis.) An ideal system for examining the relationship MATERIALS AND METHODS between ribonucleic acid (UNA) and deoxyribo- Partial hepatectomy was performed by the method of nucleic acid (DNA) metabolism in animals would Higgins and Anderson (18) on male albino rats1 weighing 180 be a tissue where synchronous cell division occurs. to 185 gm. The animals were fasted for 16-18 hours before the Isotopie tracer studies (9, 22, 25) and determina operation and fed ad libitum after the operation. At the indi cated times each animal received a single intraperitoneal in tion of the DNA content per nucleus in the liver jection of 1 mg. (5.75 pinoles) of orotic acid-6-C14which con cells of partially hepatectomized rats (25, 26, 83) tained 4.1 X 10* counts/min/mg. Following the injection, have suggested that in animals the most feasible some animals were kept in metabolism cages to facilitate col approach to this situation is by the use of re lection of urine and respiratory CO2. The animals were killed by decapitation. The liver was perfused in situ with ice-cold generating liver. The observations that incorpora 0.25 H sucrose containing 0.00018 M CaCl2, excised, and tion of isotopically labeled precursors into DNA weighed. is correlated with the occurrence of cell division Preparation of cellfractions.'—Theliver was forced through (5,17,30) and that isotopes are retained extensive a plastic mincer, and a 10 per cent homogenate of the liver was ly in the DNA of mitotically inactive and active prepared in 0.25 Msucrose + 0.00018 u CaCl2 (19) with the use cells (2, 4, 6,10-12,16, 31, 32) indicate that DNA of a Potter-Elvehjem glass homogenizer. -
Purine and Pyrimidine Metabolism in Human Epidermis* Jean De Bersaques, Md
THE JOURNAL OP INVESTIGATIVE DERMATOLOGY Vol. 4s, No. Z Copyright 1957 by The Williams & Wilkins Co. Fri nte,1 in U.S.A. PURINE AND PYRIMIDINE METABOLISM IN HUMAN EPIDERMIS* JEAN DE BERSAQUES, MD. The continuous cellular renewal occurring inthine, which contained 5% impurity, and for uric the epidermis requires a very active synthesisacid, which consisted of 3 main components. The reaction was stopped after 1—2 hours in- and breakdown of nuclear and cytoplasmiecubation at 37° and the products were spotted on nucleic acids. Data on the enzyme systemsWhatman 1 filter paper sheets. According to the participating in these metabolic processes arereaction products expected, a choice was made of rather fragmentary (1—9) and some are, inat least 2 among the following solvents, all used terms of biochemical time, in need of up- in ascending direction: 1. isoamyl alcohol—5% Na2HPO4 (1:1), dating. In some other publications (10—18), 2. water-saturated n-butanol, the presence and concentration of various in- 3. distilled water, termediate products is given. 4. 80% formic acid—n-hutanol——n-propanol— In this paper, we tried to collect and supple- acetone—30% trichloro-aeetic acid (5:8:4: ment these data by investigating the presence 5:3), 5. n-butanol——4% boric acid (43:7), or absence in epidermis of enzyme systems 6. isobutyrie acid—water—ammonia 0.880—ver- that have been described in other tissues. sene 0.1M(500:279:21:8), This first investigation was a qualitative one, 7. upper phase of ethyl acetate—water—formic and some limitations were set by practical acid (12:7:1), 8. -
Nitrogen-Stimulated Orotic Acid Synthesis and Nucleotide Imbalance1
[CANCER RESEARCH (SUPPL.) 52. 2082s-2084s. April I. 1992] Nitrogen-stimulated Orotic Acid Synthesis and Nucleotide Imbalance1 Willard J. Visek2 University of Illinois, College of Medicine, Urbana, Illinois 61801 Abstract bound to the inner mitochondria! membrane. The cytoplasmic enzymes reside in two separate multifunctional complexes. One Orotic acid, first discovered in ruminant milk, is an intermediate in contains carbamoyl phosphate synthetase II, aspartate trans- the pyrimidine biosynthesis pathway of animal cells. Its synthesis is carbamylase, and dihydroorotase, whereas the other includes initiated by the formation of carbamoyl phosphate (CP) in the cytoplasm, orotate phosphoribosyl transferase and orotodine-5"-phosphate with ammonia derived from glutamine. Ureotelic species also form CP in the first step of urea synthesis in liver mitochondria. For that, ammonia decarboxylase (2, 3). A deficiency of the latter two enzyme is derived from tissue fluid. When there is insufficient capacity for activities results in accumulation of orotate and a profound rise detoxifying the load of ammonia presented for urea synthesis, CP leaves in its excretion in the urine, a condition known as hereditary the mitochondria and enters the pyrimidine pathway, where orotic acid orotic aciduria (4). This bifunctional protein complex with its biosynthesis is stimulated, orotic acid excretion in urine then increases. two enzyme activities is also referred to as UMP synthase. Orotic acid synthesis is abnormally high with hereditary deficiencies of A severe deficiency of UMP synthase elevates urinary orotic urea-cycle enzymes or uridine monophosphate synthase. It is also ele acid excretion in humans to 1500 mg/day, compared with the vated by ammonia intoxication and during feeding of diets high in protein, usual 2.5 mg/day.