Stepping Stone Dispersal of the Okinawa Tree Lizard Across the East Asian Island Arc

Total Page:16

File Type:pdf, Size:1020Kb

Stepping Stone Dispersal of the Okinawa Tree Lizard Across the East Asian Island Arc DOI: 10.1111/jbi.13111 ORIGINAL ARTICLE Riding the Kuroshio Current: Stepping stone dispersal of the Okinawa tree lizard across the East Asian Island Arc Shang-Fang Yang1 | Shohei Komaki2 | Rafe M. Brown3 | Si-Min Lin1 1Department of Life Science, National Taiwan Normal University, Taipei, Taiwan Abstract 2Division of Biomedical Information Aim: Located hundreds of kilometres offshore of continental mainland Asia, the Analysis, Iwate Tohoku Medical Megabank extremely high level of land vertebrate endemism in the East Asian Island Arc pro- Organization, Iwate Medical University, Morioka, Iwate, Japan vides an excellent opportunity to test hypotheses regarding biogeographic processes 3Biodiversity Institute and Department of and speciation. In this study, we aim to test alternative explanations for lineage Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA diversification (vicariance versus dispersal models), and further develop a temporal framework for diversification in our focal taxon, which is consistent with the known Correspondence Si-Min Lin, Department of Life Science, age of these islands. We achieve these tests by investigating the historical biogeog- National Taiwan Normal University, Taipei, raphy of the Okinawa tree lizard (Japalura polygonata), one of the few widely- Taiwan. Email: [email protected] distributed reptiles across this archipelago. Location: The East Asian Island Arc: (1) Central Ryukyu (Amami and Okinawa Funding information Japan Society for the Promotion of Science, groups); (2) Southern Ryukyu (Miyako and Yaeyama groups); (3) Taiwan and Grant/Award Number: No. 25-5065; adjacent islands. Ministry of Science and Technology, Taiwan, Grant/Award Number: MOST 105-2621-B- Methods: A total of 246 tissues were sampled from 10 localities in the Ryukyu 003-001-MY3, MOST 105-2621-B-003- archipelago and 17 localities in Taiwan, covering the entire distributional range of 002-MY3; National Science Foundation, USA, Grant/Award Number: DEB 0743491, this species, including all subspecies. DNA sequences of the mitochondrial cyto- NSF DEB 1418895 chrome b, 16S ribosomal RNA, nuclear BACH-1 and RAG-1 genes (total: 4,684 bp) Editor: Isabel Sanmartın were obtained from these samples. We used maximum likelihood and Bayesian methods to infer phylogeny and divergence time, and used a model-fitting method of biogeographical inference to estimate ancestral range evolution. Results: Multiple lines of evidence combine to identify a general pattern of disper- sal-mediated diversification northward through the archipelago, following initial dis- persal from Taiwan. These included (1) a phylogenetic estimate, revealing a sequential, south-to-north branching pattern; (2) ancestral range estimation, inferring multiple overseas dispersals and subsequent colonization of new landmasses; and (3) a reduction in genetic variation observed in successively-diverging lineages, decreasing from Taiwan northward, towards more remote islands. These results pro- vide strong statistical support for an interpretation of successive bouts of dispersal via the powerful, well-documented, south-to-north Kuroshio Current. Estimation of divergence times suggests that most clades in southern Ryukyu and Taiwan diverged early, giving rise to lineages that have remained isolated, and that more recently-diverged lineages then colonized northward to subsequently occupy the landmasses of the Central Ryukyu archipelago. Main conclusions: Our general inference of biogeographic history in Japalura polyg- onata suggested that this species originated on Taiwan and the Yaeyama group, and | Journal of Biogeography. 2018;45:37–50. wileyonlinelibrary.com/journal/jbi © 2017 John Wiley & Sons Ltd 37 38 | YANG ET AL. arrived at its current distribution in Miyako, Okinawa, Toku and Amami islands by a series of stepping-stone dispersals, which we report for the first time for a terres- trial vertebrate endemic to this region. KEYWORDS Agamidae, geographical range evolution, historical biogeography, Japalura polygonata, Ryukyu archipelago, Taiwan 1 | INTRODUCTION intraspecific population genetic studies of Ryuku fauna are still extremely rare. Today’s evolutionary biologists continue a rich tradition of the study The Okinawa tree lizard, Japalura polygonata (Hallowell, 1861), is of speciation on islands (Grant & Grant, 2008; Shaw & Gillespie, one of only two terrestrial vertebrates that are widely distributed 2016). Archipelagos, consisting of a group of geographically and/or throughout the East Asian Island Arc (the other is Buergeria japonica, geologically related islands, provide unique opportunities to evaluate a tree frog of the family Rhacophoridae), and its distributional range competing biogeographical hypotheses of pattern and processes. extends from northern Taiwan to Central Ryukyus (Ota, 1991, Multiple geological and climatic factors have been invoked to explain 2003). The species inhabits evergreen broad-leaf forest and is the variation in distributional and genetic patterns of archipelago terres- most common arboreal insectivore in the archipelago (Shang, 2008; trial organisms. These include as sea-level changes, land bridge for- Uchiyama, Maeda, Numata, & Seki, 2009). Five subspecies have mation and island connectivity, ocean currents, and long-term been proposed: J. p. polygonata, J. p. ishigakiensis, J. p. miyakensis, J. climate oscillations (Atkins, Preston, & Cronk, 2001; Bittkau & p. xanthostoma and J. p. donan. Matsumoto, 1979 synonymized J. p. Comes, 2005; Hedges, Hass, & Maxson, 1992; Ohdachi, Dokuchaev, miyakensis with J. p. ishigakiensis, leaving four subspecies recognized Hasegawa, & Masuda, 2001; Poulakakis et al., 2003). With recent in most recent studies (Ota, 1991, 2003). progress in the development of novel molecular tools and analytical How these lizards came to occupy their current geographical approaches, archipelagoes continue to provide opportunities to test range remains poorly understood, yet the linear configuration of the key predictions in biogeography, which have played formative roles East Asian Island Arc provides an opportunity to test statistically in the development of the field ever since the 19th century (reviews two prevailing classes of alternative hypotheses. On one side of this by Brown, 2016; Lomolino, Riddle, Whittaker, & Brown, 2010): dichotomy, many biogeographers have assumed that periodic dry namely, the role of vicariance versus dispersal in the shaping of dis- land connections (land bridges), driven by climate oscillations and junct distribution patterns. (Brown, 2016; de Queiroz, 2005, 2014; fluctuating sea levels, may provide the most plausible route for ter- Morrone, 2009). restrial vertebrates to colonize across ocean barriers (Brown & Dies- The East Asian Island Arc, comprising Japan, the Ryukyu archipe- mos, 2009; Brown et al., 2013). Several studies in the late 20th lago, Taiwan, and their surrounding islets, provides an ideal setting century have suggested the existence of a land connection among to study diversification of terrestrial organisms. The central region of the East Asian Island Arc during glaciations, which may have resulted this island arc is the Ryukyu archipelago, which extends more than in continuous distributions for terrestrial species (Kimura, 2000; Ota, 1,000 km and forms a long chain of highly isolated landmasses ori- 1999, 2000). Under a purely vicariant scenario, gradual separation of ented in a north-east to south-west direction between Japan and continuous landmasses could have resulted in a series of sequential Taiwan (Figure 1). The region was left relatively unexplored until the diversification events. Under such a scenario, the topology of last decade of the 20th century, when biogeographers became inferred phylogenetic/phylogeographic relationships should be influ- attracted to the Ryuku’s high levels of faunal endemism, long-term enced by the sequence of landmass separation and depths of inter- isolation, and relatively low estimates of the diversity of terrestrial vening straits. As such, if Okinawa tree lizard lineages underwent fauna (Ota, 1999, 2000). More than two-thirds (68.4%) of native ter- population divergence in response to pure vicariance, then we might restrial reptiles are endemic to the archipelago (Ota, 2000), with the predict that populations occurring on remote north-eastern islands majority of species restricted to a single island or a small group of (e.g., Amami or Okinawa islands, separated from Southern Ryukyu by islets. Moreover, deep divergences between insular endemic species the deepest oceanic channels, the Kerama Straight; Figure 1) would and their continental relatives provide valuable opportunities to test be the first-diverging group(s) inferred in phylogeographic analyses. phylogeny-based biogeographical hypotheses and infer the mecha- As a corollary, we would expect these first-diverging lineages to pos- nism of speciation in codistributed lineages (Honda, Okamoto, sess higher standing genetic variation (relative to recently isolated Hikida, & Ota, 2008; Lin, Chen, & Lue, 2002; Matsui et al., 2005; demes) as a consequence of their longer period of isolation. This Ota et al., 2002; Toda, Hikida, & Ota, 2001). However, only a hand- pattern has been shown in lizards (Lin et al., 2002), frogs (Tominaga, ful of terrestrial vertebrates possess wide distributional ranges Matsui, Eto, & Ota, 2015), and spiders (Su, Brown, Chang, Lin, & throughout the archipelago. As a result, phylogeographic and Tso, 2016; Xu et al., 2016).
Recommended publications
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Gekko Canaensis Sp. Nov. (Squamata: Gekkonidae), a New Gecko from Southern Vietnam
    Zootaxa 2890: 53–64 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Gekko canaensis sp. nov. (Squamata: Gekkonidae), a new gecko from Southern Vietnam NGO VAN TRI1 & TONY GAMBLE2 1Department of Environmental Management and Technology, Institute of Tropical Biology, Vietnamese Academy of Sciences and Tech- nology, 85 Tran Quoc Toan Street, District 3, Hochiminh City, Vietnam. E-mail: [email protected] 2Department of Genetics, Cell Biology and Development, University of Minnesota 6-160 Jackson Hall, 321 Church St SE, Minneapolis MN 55455. USA. E-mail: [email protected] Abstract A new species of Gekko Laurenti 1768 is described from southern Vietnam. The species is distinguished from its conge- ners by its moderate size: SVL to maximum 108.5 mm, dorsal pattern of five to seven white vertebral blotches between nape and sacrum and six to seven pairs of short white bars on flanks between limb insertions, 1–4 internasals, 30–32 ven- tral scale rows between weak ventrolateral folds, 14–18 precloacal pores in males, 10–14 longitudinal rows of smooth dor- sal tubercles, 14–16 broad lamellae beneath digit I of pes, 17–19 broad lamellae beneath digit IV of pes, and a single transverse row of enlarged tubercles along the posterior portion of dorsum of each tail segment. Key words: Cà Ná Cape, description, Gekko, Gekko canaensis sp. nov., Gekkonidae, granitic outcrop, Vietnam Introduction Members of the Gekko petricolus Taylor 1962 species group (sensu Panitvong et al. 2010) are rock-dwelling spe- cialists occurring in southeastern Indochina.
    [Show full text]
  • Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
    Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF.
    [Show full text]
  • Cretaceous Fossil Gecko Hand Reveals a Strikingly Modern Scansorial Morphology: Qualitative and Biometric Analysis of an Amber-Preserved Lizard Hand
    Cretaceous Research 84 (2018) 120e133 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand * Gabriela Fontanarrosa a, Juan D. Daza b, Virginia Abdala a, c, a Instituto de Biodiversidad Neotropical, CONICET, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuman, Argentina b Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Lee Drain Building Suite 300, Huntsville, TX 77341, USA c Catedra de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de Tucuman, Argentina article info abstract Article history: Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that Received 16 May 2017 today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is Received in revised form available regarding the origin of scansoriality, which subsequently became widespread and diverse in 15 September 2017 terms of ecomorphology in this clade. An undescribed amber fossil (MCZ Re190835) from mid- Accepted in revised form 2 November 2017 Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, Available online 14 November 2017 preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized Keywords: Squamata paleobiology adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use Paraphalanges morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis Hand evolution and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus.
    [Show full text]
  • Review Article Distribution and Conservation Status of Amphibian
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol.7 (1):1-25 2014 Review Article Distribution and conservation status of amphibian and reptile species in the Lacandona rainforest, Mexico: an update after 20 years of research Omar Hernández-Ordóñez1, 2, *, Miguel Martínez-Ramos2, Víctor Arroyo-Rodríguez2, Adriana González-Hernández3, Arturo González-Zamora4, Diego A. Zárate2 and, Víctor Hugo Reynoso3 1Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México; Av. Universidad 3000, C.P. 04360, Coyoacán, Mexico City, Mexico. 2 Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico. 3Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. 4División de Posgrado, Instituto de Ecología A.C. Km. 2.5 Camino antiguo a Coatepec No. 351, Xalapa 91070, Veracruz, Mexico. * Corresponding author: Omar Hernández Ordóñez, email: [email protected] Abstract Mexico has one of the richest tropical forests, but is also one of the most deforested in Mesoamerica. Species lists updates and accurate information on the geographic distribution of species are necessary for baseline studies in ecology and conservation of these sites. Here, we present an updated list of the diversity of amphibians and reptiles in the Lacandona region, and actualized information on their distribution and conservation status. Although some studies have discussed the amphibians and reptiles of the Lacandona, most herpetological lists came from the northern part of the region, and there are no confirmed records for many of the species assumed to live in the region.
    [Show full text]
  • Phylogenetic Perspectives on Viviparity, Gene-Tree Discordance, and Introgression in Lizards (Squamata)
    Phylogenetic Perspectives on Viviparity, Gene-Tree Discordance, and Introgression in Lizards (Squamata) Item Type text; Electronic Dissertation Authors Lambert, Shea Maddock Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 08:50:17 Link to Item http://hdl.handle.net/10150/630229 1 PHYLOGENETIC PERSPECTIVES ON VIVIPARITY, GENE-TREE DISCORDANCE, AND INTROGRESSION IN LIZARDS (SQUAMATA). by Shea Maddock Lambert ____________________________ Copyright © Shea Maddock Lambert 2018 A Dissertation Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 THEUNIVERSITY OF ARIZONA GRADUATE COLLEGE Asmembers of the Dissertation Committee, we certify that we have read the dissertation prepared by Shea M. Lambert, titled "Phylogenetic perspectives on viviparity,gene-tree discordance, and introgressionin lizards {Squamata)" and recomme11dthat it be accepted as fulfillingthe dissertation requirem�t for the Degree of Doctor of Philosophy. _.c.---� ---------Date: May 21, 2018 _wJohn__ . �e� --�_:-_:-__:_ W_ -----�----'-------------------Date: May 21, 2018 Michael Barker M ichael ( s��t=t ��A". =----.�+o/-�i � -\.\----�--------._______ Date: May 21, 2018 Noa�man Final approval and acceptance· of this dissertation is contingent uporithe candidate's submission of the final copies of the· dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my ditettion and recommend that it be accepted as fulfillin_;the �issertation requirement.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Kajika Frogs (Buergeria Buergeri) As Premium Pets During the Japanese Modern Monarchical Period
    Research Communicaon Kajika Frogs (Buergeria buergeri) as Premium Pets During the Japanese Modern Monarchical Period Hideto Hoshina1* 1Faculty of Educaon, University of Fukui, Fukui City, Japan. *hhoshina@f‐edu.u‐fukui.ac.jp Abstract This study reviews arcles about the prices of Kajika frogs (Buergeria buergeri) in eight Japanese newspapers published between 1884 and 1938. Frog prices have been converted to present‐day United States dollars (US$). The frogs had a wide range of prices. Premium individuals, in parcular, were oen sold for US$1,000–2,000. In this paper, I discuss the reasons why exceponal individuals were traded at a high price in the market, although Kajika frogs were a common nave species. Other topics, such as the presentaon of frogs as gis to royal families, are also discussed. Received January 7, 2020 OPEN ACCESS Accepted April 17, 2020 DOI 10.14237/ebl.11.1.2020.1672 Published September 18, 2020 Keywords Japanese singing frogs, Newspaper arcle, Pet shop, Price, Rearing containers Copyright © 2020 by the author(s) licensee Society of Ethnobiology. This is an open‐access article distributed under the terms of the Creative Commons Attribution‐NonCommercial 4.0 International Public License (https://creativecommons.org/licenses/by‐nc/4.0), which permits non‐commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction singing Orthoptera—except for Meloimorpha japonica In Japan, there are 48 known frog species (Amphibia: (de Haan 1844)—at normal pet shops and summer Anura), including invasive species (Matsui and Maeda festivals. Moreover, present-day Japanese newspapers 2018).
    [Show full text]
  • Gekko Japonicus)
    Central Washington University ScholarWorks@CWU All Master's Theses Master's Theses Summer 2015 The Evolution of Sex Determination and the DMRT1 Gene in the Japanese Gecko (Gekko japonicus) Lisa-Marie Mullen Central Washington University, [email protected] Follow this and additional works at: https://digitalcommons.cwu.edu/etd Part of the Evolution Commons, and the Genetics Commons Recommended Citation Mullen, Lisa-Marie, "The Evolution of Sex Determination and the DMRT1 Gene in the Japanese Gecko (Gekko japonicus)" (2015). All Master's Theses. 229. https://digitalcommons.cwu.edu/etd/229 This Thesis is brought to you for free and open access by the Master's Theses at ScholarWorks@CWU. It has been accepted for inclusion in All Master's Theses by an authorized administrator of ScholarWorks@CWU. For more information, please contact [email protected]. THE EVOLUTION OF SEX DETERMINATION AND THE DMRT1 GENE IN THE JAPANESE GECKO (GEKKO JAPONICUS) __________________________________ A Thesis Presented to The Graduate Faculty Central Washington University ___________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science Biology ___________________________________ by Lisa-Marie Mullen August 2015 CENTRAL WASHINGTON UNIVERSITY Graduate Studies We hereby approve the thesis of Lisa-Marie Mullen Candidate for the degree of Master of Science APPROVED FOR THE GRADUATE FACULTY ______________ _________________________________________ Dr. Lixing Sun, Committee Chair ______________ _________________________________________ Dr. April Binder ______________ _________________________________________ Dr. Joseph Lorenz ______________ _________________________________________ Dr. Steven Wagner ______________ _________________________________________ Dean of Graduate Studies ii ABSTRACT THE EVOLUTION OF SEX DETERMINATION AND THE DMRT1 GENE IN THE JAPANESE GECKO (GEKKO JAPONICUS) By Lisa-Marie Mullen August 2015 There are different sex-determining mechanisms in our environment.
    [Show full text]
  • A Gecko of the Genus Gekko from Taka-Shima Island
    Japanese Journal of Herpetology 12 (3): 127-130 ., Jun. 1988 (C) 1988 by The Herpetological Society of Japan In this paper, I report the external morphology A Gecko of the Genus Gekko of a female gecko with the same common from Taka-shima Island, Hirado, characteristics as the above geckos. The gecko was collected from Taka-shima Island (33°11'N, Nagasaki, Japan (Reptilia: Lac- 129°21'E, Fig. 1), Hirado, Nagasaki, Japan on ertilia) August 26, 1980. There has been no report on geckos from the island. Among the neigh- SHOJI TOKUNAGA boring islands, G. japonicus was found on Azuchio-shima Island, Ikitsuki-jima Is., Fukue- Abstract: A female gecko collected from Taka- jima Is., and Uku-jima Is. (Shibata, 1983; shima Island (33°11'N, 129°21'E) had characteristics Ikezaki, 1988). of both G. hokouensis and G. japonicus. It had The gecko was collected by the author in one pair of cloacal spurs, like G. hokouensis, and a room of a small shrine near (within 50m) the enlarged tubercles on the back of the body, the seashore. The snout-to-vent length, head width forearms, the crura, and the thighs, like G. japon- head length, and body weight measured in icus. These characteristics coincide with those of life were 63.1, 1.41, 17.9mm, and 6.35g, some geckos recorded from the Goto Islands and Danjo-gunto Islands. Although the published records respectively. The gecko had a regenerated tail. and specimens of more than 1,300 geckos belonging The length of the original and regenerated parts to G.
    [Show full text]
  • Tracing the Evolution of Amniote Chromosomes
    Chromosoma (2014) 123:201–216 DOI 10.1007/s00412-014-0456-y REVIEW Tracing the evolution of amniote chromosomes Janine E. Deakin & Tariq Ezaz Received: 20 December 2013 /Revised: 3 March 2014 /Accepted: 4 March 2014 /Published online: 25 March 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract A great deal of diversity in chromosome number birds and non-avian reptiles presents an opportunity to study and arrangement is observed across the amniote phylogeny. chromosome evolution to determine the timing and types of Understanding how this diversity is generated is important for events that shaped the chromosomes of extant amniote spe- determining the role of chromosomal rearrangements in gen- cies. This involves comparing chromosomes of different spe- erating phenotypic variation and speciation. Gaining this un- cies to reconstruct the most likely chromosome arrangement derstanding is achieved by reconstructing the ancestral ge- in a common ancestor. Tracing such events can provided great nome arrangement based on comparisons of genome organi- insight into the evolutionary process and even the role chro- zation of extant species. Ancestral karyotypes for several mosomal rearrangements play in phenotypic evolution and amniote lineages have been reconstructed, mainly from speciation. cross-species chromosome painting data. The availability of Reconstruction of ancestral karyotypes at various positions anchored whole genome sequences for amniote species has along the amniote (reptiles, birds and mammals) phylogenetic increased the evolutionary depth and confidence of ancestral tree has been made possible by the large number of cross- reconstructions from those made solely from chromosome species chromosome painting and gene mapping studies that painting data.
    [Show full text]