Current Statewide Updates Regarding the Battle of the Asian Citrus Psyllid and Huanglongbing

Total Page:16

File Type:pdf, Size:1020Kb

Current Statewide Updates Regarding the Battle of the Asian Citrus Psyllid and Huanglongbing FARM ADVISORS Current Statewide Updates Regarding the Battle of the Asian Citrus Psyllid and Huanglongbing Figure 1. $QRUJDQLFFLWUXVJURYH located in Southern California, 5LYHUVLGH&RXQW\,PDJHE\6RQLD5LRV 6RQLD5LRV8QLYHUVLW\RI&DOLIRUQLD&RRSHUDWLYH([WHQVLRQ5LYHUVLGH6DQ'LHJR&R 5REHUW.UXHJHU86'$$561DWLRQDO&ORQDO*HUPSODVP5HSRVLWRU\IRU&LWUXV 'DWHV Introduction and Background the Middle East, whereas C L asiaticus is associated with ommercially grown citrus employs more than HLB in Asia and the New World. C L asiaticus is vectored 22,000 individuals in California on about 3,900 by the Asian citrus psyllid (ACP) (Diaphorina citri), while C Cfarms statewide (Fig. 1). The incurable and fatal L africanus is vectored by different psyllid species,Trioza plant disease Huanglongbing (HLB), also known as citrus erytreae. Both psyllids can transmit both C L spp under greening disease, threatens this $3.3 billion industry experimental conditions; the association of vector and (CPDPP 2017). Huanglongbing affects all citrus plants, pathogen is due to geographic occurrence. Since C L including orange, lemon, lime, mandarin, pummelo, asiaticus and D citri occur in the United States, the emphasis kumquat, grapefruit and tangerine trees. It also affects in the remainder of this article will be on these species. some relatives of citrus in the family Rutaceae, some of This tiny, mottled brown Asian citrus psyllid (ACP) which are occasionally grown as ornamentals. HLB is fatal is a sap-sucking, hemipteran bug from the Psyllidae for citrus trees and once a tree is infected, it will decline in family, that when it feeds injects a salivary toxin that stops health and eventually die. elongation and causes malformation of leaves and shoots Bacteria in the candidate genus Candidatus (Michaud 2004). The ACP takes C L asiaticus into its body Liberibacter are associated with trees infected with HLB. when it feeds on HLB-infected plants. The disease spreads However, these bacteria have not been proven to actually when a bacteria-carrying psyllid flies to a healthy plant and cause the disease. Working with this pathosystem is injects bacteria into it as it feeds (UC IPM Pest Notes 2017). difficult because it has not been possible to culture Sometimes symptoms can look somewhat like zinc or other Cancidatus Liberibacter spp; the fact that they have not been nutrient deficiencies and can be overlooked. However, cultured is the reason that the prefixCandidatus is affixed the pattern of yellowing caused by nutrient deficiencies to the species binomials (Bové 2006). Two main species typically occurs symmetrically, between or along leaf of C Liberibacter are associated with HLB world-wide. C L veins. HLB infected leaves have an asymmetrical pattern africanus is associated with HLB in Africa and portions of of blotchy yellowing or mottling of the leaf, with patches 36 CAPCA ADVISER | APRIL 2017 of green on one side of the leaf and Current ACP and HLB status in nearby property and tested positive for yellow on the other side (UC IPM California HLB. Agriculture officials quickly set Pest Notes 2017). Diseased trees are In 2008, the ACP expanded its to work to identify any infected trees meagerly foliated with small leaves range, likely from Mexico, to Southern in the area and the infected citrus tree that point upward, and the trees have California, where the insect was first in Cerritos was removed and all citrus extensive twig and limb dieback. Fruit detected in San Diego and Imperial trees within an 800- meter area were are small, green, with dry interiors, Counties and soon thereafter in Los treated. In Mexico, the State of Baja and are not marketable. In due course, Angeles County. Throughout the years, California is adjacent to the southern the tree stops bearing fruit and dies. it spread particularly in urban and border of California. HLB was detected Fruit and vegetative symptoms may suburban environments, but also in in Ensenada, BC, early 2016 (CDFA not begin to appear for two or more commercial groves. The psyllid has 2016). In addition, on August 26, 2016 years after the bacteria infect a tree. since expanded its range to the San a tree also tested positive for HLB 23 HLB can kill a citrus tree in five years, Joaquin Valley and the Central Coast, miles south of the U.S.-Mexico border and there is no known cure. and has also been found as far north in a small citrus grove in Mexicali, ACP was first discovered in the as the Bay Area and Sacramento. The BC. Now that HLB has been detected United States in June 1998 in Palm first detection of HLB in California in Mexicali, Ensenada and in Orange Beach County, Florida, on backyard was in a backyard tree in Hacienda and Los Angeles Counties, Southern plantings of orange jessamine Heights, Los Angeles County, in 2012. California commercial citrus growers (Murraya paniculata) (Fig. 2). By 2001, In 2015 and 2016, multiple incidences and residents who have any citrus the ACP had spread to 31 counties of the disease were found in San growing in their back yard must in Florida, primarily due to the Gabriel, also in Los Angeles County. remain vigilant. movement of ACP-infested nursery A total of 30 diseased citrus trees plants. By 2005, HLB was found in all have been detected and removed, How to protect your citrus Trees commercial citrus orchards in that all in residential properties within Inspect trees for the presence state. Agriculture officials believe HLB Los Angeles County. The California of ACP and symptoms of HLB. Use was present in Florida in backyard Department of Food and Agriculture a hand lens to look for small yellow citrus trees, and the psyllid rapidly (CDFA) detected the most recent eggs, psyllid nymphs with their spread the disease to other backyards case of HLB in an orange tree in a waxy tubules, and adults. Immature and commercial citrus not long after residential area of Cerritos, Orange stages (eggs and nymphs) are limited the psyllid arrived in the state. In County, on December 29, 2016. Earlier to tender new leaves and they don’t 2001, ACP spread to the Rio Grande that month ACP were collected from a fly. Look for the characteristic Valley in Texas on nursery stock and was also detected in Louisiana. The insect then spread to other states, and is now found in Alabama, Georgia, Mississippi, South Carolina, Arizona, and Hawaii, as well as Mexico (UC IPM Pest Notes 2017). Figure 2. $VLDQ&LWUXV3V\OOLG,PDJHE\ 'DYLG+DOO86'$$56 Figure 3. Protective structures are essential to help keep the citrus nursery stock SURFHVVVDIHIURPSHVWVDQGGLVHDVHV,PDJHE\6RQLD5LRV APRIL 2017 | CAPCA ADVISER 37 “blotchy mottle” or “yellow shoot” symptoms and report not changed. Bulk citrus must also be declared “ACP free,” them to the County Agricultural Commissioner. Keep either by chemical treatment or field cleaning vegetative nursery protective structures maintained (Fig. 3). Don’t material from fruit. Penalties for non-compliance may move citrus trees or propagative material into or out of be assessed by the state or county and can include fines your quarantined area. Fruit must be free of vegetative as high as $10,000 per violation, and potentially also material and commercial fruit has additional requirements include revocation of the compliance agreement. If you did (see section below). Buy citrus trees from licensed, local not receive a revised compliance agreement in the mail, nurseries and only use registered budwood. please contact the program at (916) 403-6848. Additional Cooperate with government and agriculture resources may become available – check CitrusInsider.org officials (CDFA, USDA, UC, and CPDPP) as they may regularly. ask to place yellow sticky traps in your residence or grove for monitoring and continue to participate in The future of California’s Citrus areawide coordinated treatments. The program also HLB has spread throughout Florida and citrus trees includes recurrent testing of psyllids and leaf samples are dying at alarming rates. Thousands of jobs have been for the presence of HLB. Results from these activities are lost and the economy is suffering. Florida growers are being used to define quarantine zones, guide releases doing everything they can to save their citrus trees, but of biological control agents, and prioritize areas for a researchers have not yet found a long-term solution to residential chemical control program. A tiny wasp from the disease. Florida agriculture officials believe HLB was Asia called Tamarixia radiata naturally preys on the ACP, present in backyard citrus trees, and the psyllid rapidly which prevents psyllids from spreading unrestrained. spread the disease to other backyards and commercial Researchers are currently exploring the effectiveness of citrus not long after the psyllid arrived in 1998. That is another beneficial insect calledDiaphorencyrtus aligarhensis why in order to combat HLB in California, we must learn to assist Tamarixia with control of the Asian citrus psyllid. from Florida’s situation, the industry needs to be willing to To see where Tamarixia and Diaphorencyrtus have been make decisions and invest in actions that will protect both released, visit this University of California’s website map conventional and organic groves and include neighboring and turn on the parasite layers: http://ucanr.edu/sites/ACP/. neighborhood communities. We must work together for There is a fairly new initiative by California Citrus the livelihood of growers, pickers, packers and haulers are Mutual and Bayer CropScience to stop the spread of all at stake. the ACP. The high cost of water and prolonged drought conditions have caused many rural homeowners to stop Resources for citrus growers irrigating their trees. However, dead and dying citrus trees can still be a host for ACP and HLB (Fig. 4). The programs UC -Division of ANR – pest management information and aims to help homeowners help their citrus grower a robust map of pest, disease, quarantines and biological neighbors by removing uncared for or abandoned trees control activities around the state- at no cost.
Recommended publications
  • Asian Citrus Psyllid, Diaphorina Citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F
    EENY-033 Asian Citrus Psyllid, Diaphorina citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F. W. Mead and T. R. Fasulo2 Introduction In June 1998, the insect was detected on the east coast of Florida, from Broward to St. Lucie counties, and was The Asian citrus psyllid, Diaphorina citri Kuwayama, is apparently limited to dooryard host plantings at the time of widely distributed in southern Asia. It is an important pest its discovery. By September 2000, this pest had spread to 31 of citrus in several countries as it is a vector of a serious Florida counties (Halbert 2001). citrus disease called greening disease or Huanglongbing. This disease is responsible for the destruction of several Diaphorina citri is often referred to as citrus psylla, but this citrus industries in Asia and Africa (Manjunath 2008). is the same common name sometimes applied to Trioza Until recently, the Asian citrus psyllid did not occur in erytreae (Del Guercio), the psyllid pest of citrus in Africa. North America or Hawaii, but was reported in Brazil, by To avoid confusion, T. erytreae should be referred to as the Costa Lima (1942) and Catling (1970). African citrus psyllid or the two-spotted citrus psyllid (the latter name is in reference to a pair of spots on the base of the abdomen in late stage nymphs). These two psyllids are the only known vectors of the etiologic agent of citrus greening disease (Huanglongbing), and are the only eco- nomically important psyllid species on citrus in the world. Six other species of Diaphorina are reported on citrus, but these are non-vector species of relatively little importance (Halbert and Manjunath 2004).
    [Show full text]
  • Annotation and Analysis of Yellow Genes in Diaphorina Citri, Vector for the Huanglongbing Disease Crissy Massimino1, Chad Vosburg1, Teresa Shippy2, Prashant S
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.422960; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Annotation and analysis of yellow genes in Diaphorina citri, vector for the Huanglongbing disease Crissy Massimino1, Chad Vosburg1, Teresa Shippy2, Prashant S. Hosmani3, Mirella Flores- Gonzalez3, Lukas A. Mueller3, Wayne B. Hunter4, Joshua B. Benoit5, Susan J. Brown2, Tom D’Elia1 and Surya Saha3,6 1 Indian River State College, Fort Pierce, FL 34981 2 Division of Biology, Kansas State University, Manhattan, KS 66506 3 Boyce Thompson Institute, Ithaca, NY 14853 4 USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945 5 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221 6 Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721 ABSTRACT Huanglongbing (HLB), also known as citrus greening disease, is caused by the bacterium Candidatus Liberibacter asiaticus (CLas) and represents a serious threat to global citrus production. This bacteria is transmitted by the Asian citrus psyllid, Diaphorina citri (Hemiptera) and there are no effective in-planta treatments for CLas. Therefore, one strategy is to manage the psyllid population. Manual annotation of the D. citri genome can identify and characterize gene families that could serve as novel targets for psyllid control. The yellow gene family represents an excellent target as yellow genes are linked to development and immunity due to their roles in melanization.
    [Show full text]
  • Biocontrol Program Targets Asian Citrus Psyllid in California's Urban
    REVIEW ARTICLE Biocontrol program targets Asian citrus psyllid in California’s urban areas Two parasitoids of the Asian citrus psyllid, from Pakistan, have been released in Southern California with promising results. by Ivan Milosavljević, Kelsey Schall, Christina Hoddle, David Morgan and Mark Hoddle sian citrus psyllid (ACP), Diaphorina citri Ku- wayama (Hemiptera: Liviidae), has emerged as Abstract Athe most important exotic insect pest of citrus in California. Damage is two-fold. First, psyllids cause In California, Asian citrus psyllid vectors the bacterium Candidatus direct injury to citrus through feeding on phloem juice Liberibacter asiaticus, which causes the lethal citrus disease in immature foliage, deforming the leaves (Halbert and huanglongbing. The top priority for California’s citrus industry has been Manjunath 2004); and second, and more importantly, to diminish the rate of bacterium spread by reducing Asian citrus psyllid they vector the bacterium Candidatus Liberibacter asi- populations in urban areas, where this pest primarily resides. Attempts aticus (CLas), which causes the lethal and untreatable at eradicating and containing the psyllid with insecticides were citrus disease, huanglongbing (HLB), also called citrus unsuccessful. An alternative approach has been a classical biological greening disease. control program using two parasitoids from Pakistan, Tamarixia radiata Characteristic symptoms associated with CLas in- and Diaphorencyrtus aligarhensis, which attack the psyllid nymphs. fection are reduced vigor, foliar discoloration and die- T. radiata has established widely and, in combination with generalist back, misshapen fruit with bitter juice and malformed predators, natural enemies are providing substantial control of psyllids seeds, premature fruit drop, overall yield reductions in urban areas. and, ultimately, tree death (Gottwald 2010).
    [Show full text]
  • Workflows for Rapid Functional Annotation of Diverse
    insects Article Workflows for Rapid Functional Annotation of Diverse Arthropod Genomes Surya Saha 1,2 , Amanda M. Cooksey 2,3, Anna K. Childers 4 , Monica F. Poelchau 5 and Fiona M. McCarthy 2,* 1 Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA; [email protected] 2 School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA; [email protected] 3 CyVerse, BioScience Research Laboratories, University of Arizona, 1230 N. Cherry Ave., Tucson, AZ 85721, USA 4 Bee Research Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Ave., Beltsville, MD 20705, USA; [email protected] 5 National Agricultural Library, Agricultural Research Service, USDA, 10301 Baltimore Ave., Beltsville, MD 20705, USA; [email protected] * Correspondence: fi[email protected] Simple Summary: Genomic technologies are accumulating information about genes faster than ever before, and sequencing initiatives, such as the Earth BioGenome Project, i5k, and Ag100Pest Initiative, are expected to increase this rate of acquisition. However, if genomic sequencing is to be used for the improvement of human health, agriculture, and our understanding of biological systems, it is necessary to identify genes and understand how they contribute to biological outcomes. While there are several well-established workflows for assembling genomic sequences and identifying genes, understanding gene function is essential to create actionable knowledge. Moreover, this functional annotation process must be easily accessible and provide information at a genomic scale to keep up Citation: Saha, S.; Cooksey, A.M.; with new sequence data. We report a well-defined workflow for rapid functional annotation of whole Childers, A.K.; Poelchau, M.F.; proteomes to produce Gene Ontology and pathways information.
    [Show full text]
  • Tamarixia Radiata (Hymenoptera: Eulophidae) 3 Diaphorina Citri (Hemiptera: Liviidae): Mass Rearing and Potential Use of the Parasitoid in Brazil
    Journal of Integrated Pest Management (2016) 7(1): 5; 1–11 doi: 10.1093/jipm/pmw003 Profile Tamarixia radiata (Hymenoptera: Eulophidae) 3 Diaphorina citri (Hemiptera: Liviidae): Mass Rearing and Potential Use of the Parasitoid in Brazil Jose´Roberto Postali Parra, Gustavo Rodrigues Alves, Alexandre Jose´Ferreira Diniz,1 and Jaci Mendes Vieira Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de Sa˜o Paulo, Av. Padua Dias, 11, Piracicaba, Sa˜o Paulo, Brazil ([email protected]; [email protected]; [email protected]; [email protected]), and 1Corresponding author, e-mail: [email protected] Received 3 July 2015; Accepted 15 January 2016 Downloaded from Abstract Huanglongbing (HLB) is the most serious disease affecting citriculture worldwide. Its vector in the main produc- ing regions is the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908 (Hemiptera: Liviidae). Brazil has the larg- est orange-growing area and is also the largest exporter of processed juice in the world. Since the first detection http://jipm.oxfordjournals.org/ of the disease in this country, >38 million plants have been destroyed and pesticide consumption has increased considerably. During early research on control methods, the parasitoid Tamarixia radiata (Waterston, 1922) (Hymenoptera: Eulophidae) was found in Brazil. Subsequent studies focused on its bio-ecological aspects and distribution in citrus-producing regions. Based on successful preliminary results for biological control with T. radiata in small areas, mass rearing was initiated for mass releases in Brazilian conditions. Here, we review the Brazilian experience using T. radiata in D. citri control, with releases at sites of HLB outbreaks, adjacent to commercial areas, in abandoned groves, areas with orange jessamine (a psyllid host), and backyards.
    [Show full text]
  • Incidence of Invasive Diaphorina Citri (Hemiptera: Psyllidae) and Its Introduced Parasitoid Tamarixia Radiata (Hymenoptera: Eulophidae) in Florida Citrus
    HORTICULTURAL ENTOMOLOGY Incidence of Invasive Diaphorina citri (Hemiptera: Psyllidae) and Its Introduced Parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) in Florida Citrus 1,2 3 4 1 JAWWAD A. QURESHI, MICHAEL E. ROGERS, DAVID G. HALL, AND PHILIP A. STANSLY Department of Entomology and Nematology, University of Florida/IFAS, SWFREC, 2686 State Road 29 North, Immokalee, FL 34142 J. Econ. Entomol. 102(1): 247Ð256 (2009) ABSTRACT Diaphorina citri Kuwayama (Hemiptera: Psyllidae), vectors the bacterium Candidatus Liberibacter asiaticus, one of the causal organisms of the devastating citrus disease “huanglongbing” or citrus greening. In the United States, D. citri was Þrst discovered in Florida, in 1998. Tamarixia radiata Waterston (Hymenoptera: Eulophidae) was imported from Asia and released in Florida in 1999Ð2001 to improve biological control of D. citri before citrus greening was detected in Florida in 2005. Florida citrus groves were surveyed during 2006Ð2007 for D. citri and T. radiata. Results showed that D. citri was established in all 28 citrus groves surveyed across 16 counties. Adult populations averaged 3.52, 1.27, and 1.66 individuals per “tap” sample at locations in the central, southwest, and eastern coastal regions, respectively. A tap sample consisted of 22- by 28-cm white paper sheet (on a clipboard) held under branches selected at random that were tapped three times. Averages of 67, 44, and 45% citrus shoots infested with psyllid eggs or nymphs were obtained in the central, southwest, and eastern coastal regions, respectively. T. radiata was recovered from fourth- and Þfth-instar psyllid nymphs at 26 of the 28 locations. However, apparent parasitism rates were variable and averaged Ͻ20% during spring and summer over all locations.
    [Show full text]
  • Redalyc.CHILOCORUS CACTI (COLEOPTERA: COCCINELLIDAE
    Acta Zoológica Mexicana (nueva serie) ISSN: 0065-1737 [email protected] Instituto de Ecología, A.C. México Machkour-M’rabet, S.; Ferral-Piña, J.; Henaut, Y. CHILOCORUS CACTI (COLEOPTERA: COCCINELLIDAE), A POTENTIAL NATURAL ENEMY FOR THE RED PALM MITE IN MEXICO Acta Zoológica Mexicana (nueva serie), vol. 31, núm. 3, diciembre, 2015, pp. 512-517 Instituto de Ecología, A.C. Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=57542699025 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 512ISSN 0065-1737 Machkour-M’rabetActa Zoológica et al.: MexicanaChilocorus (n.s.), cacti 31(3):and the 512-517 red palm (2015) mite Nota Científica (Short Communication) CHILOCORUS CACTI (COLEOPTERA: COCCINELLIDAE), A POTENTIAL NATURAL ENEMY FOR THE RED PALM MITE IN MEXICO Recibido: 12/05/2015; aceptado: 14/08/2015 Machkour-M’rabet, S., Ferral-Piña, J. y Henaut, Y. 2015. Chilo- potentially infest a wide diversity of plants, many of corus cacti (Coleoptera: Coccinellidae), enemigo natural potencial which are economically and ecologically important (Car- del ácaro rojo de las palmas en México. Acta Zoológica Mexicana rillo et al. 2012a). In Mexico, 16 species of commercially (n. s.), 31(3): 512-517. grown plants (some of which form entire genus) belong- RESUMEN. Raoiella indica Hirst (Acari: Tenuipalpidae), el ácaro ro- ing to four families (Arecaceae, Heliconiaceae, Musaceae jo de las palmas, es una plaga importante en el mundo, dañando plan- and Strelitziaceae) have been reported as hosts of the red tas comerciales y ornamentales.
    [Show full text]
  • Biological Control of Diaphorina Citri (Hermosillo, Sonora
    Biological control of Diaphorina citri (Hermosillo, Sonora. México 2008) BIOLOGICAL CONTROL OF Diaphorina citri David G. Hall USDA-ARS, U.S. Horticultural Research Laboratory 2001 South Rock Road Fort Pierce, FL 34945 E-mail: [email protected] Key words: Psyllids. Huanglongbing, citrus disease greening ABSTRACT Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is subjected to various levels of biological control throughout its geographic distribution. The species complex of biological control agents attacking D. citri varies geographically but usually includes various species of ladybeetles (Coleoptera: Coccinellidae); syrphid flies (Diptera: Syrphidae); lacewings (Neuroptera: Chrysopidae, Hemerobiidae); and spiders (Aranae). The psyllid is attacked in Asia by two primary parasitoid species, Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae) and Diaphorencyrtus aligarhensis (Shafee, Alam & Agarwal) (Hymenoptera: Encyrtidae). Classical biological control projects have been conducted to establish these two parasitoids in a number of countries invaded by D. citri including Mauritius, Réunion Island, and the United States (Florida). T. radiata was successfully established in the United States, but D. aligarhensis was not. T. radiata was also released for psyllid control in Taiwan and Guadeloupe. Dramatic success in reducing populations of D. citri was achieved following releases and establishment of T. radiata in Réunion Island. Good levels of biological control were reported in Guadeloupe after this parasitoid was introduced. Mediocre biological control of D. citri has been achieved by T. radiata in the United States (Florida). T. radiata has been inadvertently introduced into other areas in the United States (Texas), Puerto Rico, Venezuela, and Brazil. T. radiata in India and other areas in Asia are attacked by a complex of hyperparasitoids.
    [Show full text]
  • Natural Enemies Associated to Diaphorina Citri Kuwayama (Hemiptera: Psyllidae) in Citrus Latifolia Tanaka, in the State of Nayarit, Mexico
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317476568 Natural enemies associated to Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in Citrus latifolia Tanaka, in the state of Nayarit, Mexico Article · December 2012 CITATIONS READS 6 16 5 authors, including: Marcia Rodríguez-Palomera Agustin Robles Universidad Autónoma de Nayarit Universidad Autónoma de Nayarit 4 PUBLICATIONS 9 CITATIONS 31 PUBLICATIONS 37 CITATIONS SEE PROFILE SEE PROFILE Orlando Estrada Universidad Autónoma de Nayarit 6 PUBLICATIONS 13 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Proyecto: PRODEP 2016-2017. View project Insecticidal activity of Laurelia sempervirens (Ruiz & Pav.) Tul. essential oil against Sitophilus zeamais Motschulsky View project All content following this page was uploaded by Orlando Estrada on 16 April 2018. The user has requested enhancement of the downloaded file. ISSN 0065-1737 Acta Zoológica MexicanaActa Zool. (n.s.), Mex. 28(3): (n.s.) 625-629 28(3) (2012) Nota Científica (Short Communication) ENEMIGOS NATURALES ASOCIADOS A DIAPHORINA CITRI KUWAYAMA (HEMIPTERA: PSYLLIDAE) EN LIMÓN PERSA (CITRUS LATIFOLIA TANAKA) EN NAYARIT, MÉXICO Rodríguez-Palomera, M., Cambero-Campos, J., Robles-Bermúdez, A., Carvajal-Cazola, C. & Estrada-Virgen, O. 2012. Natural enemies associated to Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in Citrus latifolia Tanaka, in the state of Nayarit, Mexico. Acta Zoológica Mexicana (n. s.), 28(3): 625-629. ABSTRACT. Natural enemies associated to Diaphorina citri in the state of Nayarit were identified. The study was carried out in three orchards of Persian lime from May to October 2011. The identified depredator species were Olla v-nigrum, Chilocorus cacti, Cycloneda sanguinea, and Ceraeochrysa sp.; as well as the parasitoid Tamarixia radiata and the entomopathogenic Beauveria bassiana.
    [Show full text]
  • To Infestations of Asian Citrus Psyllid, (Hemiptera: Psyllidae) in Florida
    608 Florida Entomologist 84(4) December 2001 NUMERICAL RESPONSE OF OLLA V-NIGRUM (COLEOPTERA: COCCINELLIDAE) TO INFESTATIONS OF ASIAN CITRUS PSYLLID, (HEMIPTERA: PSYLLIDAE) IN FLORIDA J. P. MICHAUD University of Florida, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33881 ABSTRACT Data are presented on the relative abundance of the coccinellid Olla v-nigrum (Mulsant) in Florida citrus, before and after invasion by the Asian citrus psyllid, Diaphorina citri Ku- wayama. Adults and larvae of O. v-nigrum were observed preying on immature psyllids throughout their range in Florida. Immature psyllids were eliminated by predation from many flushed citrus terminals that exhibited damage symptoms; pupae of O. v-nigrum and Harmonia axyridis Pallas were recovered from adjacent leaves. Olla v-nigrum, a relatively rare species before the invasion by D. citri, is now a dominant species throughout Florida in citrus groves where the psyllid is present, but remains rare in regions where D. citri is ab- sent. The strong numerical response of this native ladybeetle to D. citri populations indi- cates that it is assuming a key role in biological control of the psyllid. Key Words: abundance, biological control, coccinellids, Diaphorina citri, Harmonia axyridis, Olla v-nigrum RESUMEN Se presentan datos sobre la abundancia relativa del coccinélido Olla v-nigrum (Mulsant) en cítricos en la Florida, antes y después de la invasión del psílido Asiático, Diphorina citri Kuwayama. Adultos y larvas de Olla v-nigrum fueron observados alimentándose de las for- mas inmaduras del psílido a través de la Florida. Se observaron muchos brotes terminales en los cítrcos con daños del psílido, pero estos fueron eliminados por depredación; pupas de O.
    [Show full text]
  • Distribution, Biology, Ecology and Control of the Psyllid Diaphorina Citri Kuwayama, a Major Pest of Citrus: a Status Report for China
    International Journal of Pest Management, October – December 2006; 52(4): 343 – 352 Distribution, biology, ecology and control of the psyllid Diaphorina citri Kuwayama, a major pest of citrus: A status report for China YUEPING YANG1, MINGDU HUANG1, G. ANDREW C. BEATTIE2, YULU XIA3, GECHENG OUYANG1, & JINJUN XIONG1 1Guangdong Entomological Institute, Guangzhou, Guangdong, People’s Republic of China, 2Centre for Plant and Food Science, University of Western Sydney, Penrith South DC, New South Wales, Australia, and 3National Science Foundation Center for Integrated Pest Management, North Carolina State University, Raleigh, NC, USA Abstract The Asiatic citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is a major pest of citrus in China. Its status derives, not from the damage it causes, but from its role as the only known vector in China of huanglongbing, a phloem- limited bacterial disease of international importance. The disease can devastate orchards within a few years of planting. It also poses a major threat to endangered indigenous citrus germplasm in Asia and Australasia. The distribution, biology, ecology and control of the psyllid in China are reviewed in these contexts. Constraints and challenges related to control of the vector in China are discussed. Keywords: Diaphorina citri, huanglongbing, distribution, biology, ecology, control gram-negative bacterium Candidatus Liberibacter 1. Introduction asiaticus Jagoueix, Bove´& Garnier (a-Proteobacteria) Asiatic citrus psyllid (Diaphorina citri Kuwayama (Jagoueix et al. 1994; Garnier et al. 2000). ‘Huan- [Hemiptera: Psyllidae]) was recognised as a major glongbing’ is the official name of the disease (van pest of citrus in subtropical and tropical Asia, initially Vuuren 1996) although it has a number of common in India and then elsewhere in the region (Husain and names and is most widely known as citrus greening Nath 1927; Pruthi and Mani 1945; Ebeling 1950).
    [Show full text]
  • Field Release of the Parasitoid Diaphorencyrtus Aligarhensis for the for the Biological Control of the Asian Citrus Psyllid in the Contiguous United States
    United States Department of Agriculture Marketing and Field Release of the Regulatory Programs Parasitoid Animal and Plant Health Inspection Diaphorencyrtus Service aligarhensis for the Biological Control of the Asian Citrus Psyllid in the Contiguous United States Environmental Assessment, October 2014 Field Release of the Parasitoid Diaphorencyrtus aligarhensis for the for the Biological Control of the Asian Citrus Psyllid in the Contiguous United States Environmental Assessment, October 2014 Agency Contact: Shirley Wager-Page, Ph.D. Pest Permitting Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 133 Riverdale, MD 20737–1236 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form.
    [Show full text]