Crystallography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Space Groups and Lattice Complexes ; —
Mm 1W 18 072 if "^^^"^ Space Groups and Lattice Complexes ; — — Werner FISHER Mineralogisches Institut der Philipps-Universitat D-3550 Marburg/Lahn, German Federal Republic Hans BURZLAFF Lehrstuhl fiir Kristallographie der Friedrich-Alexander-Universitat Erlangen-Niirnberg D-8520 Erlangen, German Federal Republic Erwin HELLNER Fachbereich Geowissenschaften der Philipps-Universitat D-3550 Marburg/Lahn, German Federal Republic J. D. H. DONNAY Department de Geologic, Universite'de Montreal CP 6128 Montreal 101, Quebec, Canada Formerly, The Johns Hopkins University, Baltimore, Maryland Prepared under the auspices of the Commission on International Tables, International Union of Crystallography, and the Office of Standard Reference Data, National Bureau of Standards. U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secreiory NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Dnecior Issued May 1973 Library of Congress Catalog Number: 73-600099 National Bureau of Standards Monograph 134 Nat. Bur. Stand. (U.S.), Monogr. 134, 184 pages (May 1973) CODEN: NBSMA6 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13,44:134). Price: $4.10, domestic postpaid; $3.75, GPO Bookstore Stock Number 0303-01143 Abstract The lattice complex is to the space group what the site set is to the point group - an assemblage of symmetry- related equivalent points. The symbolism introduced by Carl Hermann has been revised and extended. A total of 402 lattice complexes are derived from 67 Weissenberg com- plexes. The Tables list site sets and lattice complexes in standard and alternate representations. They answer the following questions: What are the co-ordinates of the points in a given lattice complex? In which space groups can a given lattice complex occur? What are the lattice complexes that can occur in a given space group? The higher the symmetry of the crystal structures is, the more useful the lattice- complex approach should be on the road to the ultimate goal of their classification. -
List of Space Groups
List of space groups There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have a point group of the unit cell. Contents Symbols List of Triclinic List of Monoclinic List of Orthorhombic List of Tetragonal List of Trigonal List of Hexagonal List of Cubic References External links Symbols In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group. These are the Bravais lattices in three dimensions: P primitive I body centered (from the German "Innenzentriert") F face centered (from the German "Flächenzentriert") A centered on A faces only B centered on B faces only C centered on C faces only R rhombohedral A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure. , , or glide translation along half the lattice vector of this face glide translation along with half a face diagonal glide planes with translation along a quarter of a face diagonal. -
Space Groups and Lattice Complexes ; —
Mm 1W 18 072 if "^^^"^ Space Groups and Lattice Complexes ; — — Werner FISHER Mineralogisches Institut der Philipps-Universitat D-3550 Marburg/Lahn, German Federal Republic Hans BURZLAFF Lehrstuhl fiir Kristallographie der Friedrich-Alexander-Universitat Erlangen-Niirnberg D-8520 Erlangen, German Federal Republic Erwin HELLNER Fachbereich Geowissenschaften der Philipps-Universitat D-3550 Marburg/Lahn, German Federal Republic J. D. H. DONNAY Department de Geologic, Universite'de Montreal CP 6128 Montreal 101, Quebec, Canada Formerly, The Johns Hopkins University, Baltimore, Maryland Prepared under the auspices of the Commission on International Tables, International Union of Crystallography, and the Office of Standard Reference Data, National Bureau of Standards. U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secreiory NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Dnecior Issued May 1973 Library of Congress Catalog Number: 73-600099 National Bureau of Standards Monograph 134 Nat. Bur. Stand. (U.S.), Monogr. 134, 184 pages (May 1973) CODEN: NBSMA6 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13,44:134). Price: $4.10, domestic postpaid; $3.75, GPO Bookstore Stock Number 0303-01143 Abstract The lattice complex is to the space group what the site set is to the point group - an assemblage of symmetry- related equivalent points. The symbolism introduced by Carl Hermann has been revised and extended. A total of 402 lattice complexes are derived from 67 Weissenberg com- plexes. The Tables list site sets and lattice complexes in standard and alternate representations. They answer the following questions: What are the co-ordinates of the points in a given lattice complex? In which space groups can a given lattice complex occur? What are the lattice complexes that can occur in a given space group? The higher the symmetry of the crystal structures is, the more useful the lattice- complex approach should be on the road to the ultimate goal of their classification. -
C Standard^ 1Q73*B*3F*J Space Groups and Lattice Complexes
Science Docs. ILS DEPARTMENT OF COMMERCE Nations! Bureau c Standard^ 1Q73*b*3f*J Space Groups and Lattice Complexes Werner FISHER Mineralogisches Institut der Philipps-Universitat D-3550 Marburg/Lahn, German Federal Republic Hans BURZLAFF Lehrstuhl fiir Kristallographie der Friedrich-Alexander-Universitat Erlangen-Niirnberg D-8520 Erlangen, German Federal Republic Erwin HELLNER Fachbereich Geowissenschaften der Philipps-Universitat D-3550 Marburg/Lahn, German Federal Republic J. D. H. DONNAY Department de Geologie, Universite©de Montreal CP 6128 Montreal 101, Quebec, Canada Formerly, The Johns Hopkins University, Baltimore, Maryland Prepared under the auspices of the Commission on International Tables, International Union of Crystallography, and the Office of Standard Reference Data, National Bureau of Standards. U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, D/recfor Issued May 1973 Library of Congress Catalog Number: 73-600099 National Bureau of Standards Monograph 134 Nat. Bur. Stand. (U.S.), Monogr. 134, 184 pages (May 1973) CODEN: NBSMA6 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. Cl3.44-.134). Price: $4.10, domestic postpaid; $3.75, GPO Bookstore Stock Number 0303-01143 Abstract The lattice complex is to the space group what the site set is to the point group - an assemblage of symmetry-related equivalent points. The symbolism introduced by Carl Hermann has been revised and extended, A total