Georg Friedrich Bernhard Riemann

Total Page:16

File Type:pdf, Size:1020Kb

Georg Friedrich Bernhard Riemann Georg Friedrich Bernhard Riemann Ted Sheehy 1 Personal Life Georg Friedrich Bernhard Riemann is one of the most influential mathematicians the field has seen. In his short 40 year life he published works that changed the way mathematicians view problems and have provided a basis for modern mathematics. He posed problems that influenced great thinkers for centuries. One of which a century and a half later still has not been solved. Riemann was born in 1826 in Breselenz Germany. His family was not one of mathematical geniuses. His father was a Lutheran minister, as was his grandfa- ther and many others in his family. He had five siblings none of them displayed the same genius that quickly became apparent in Riemann. He excelled in school and became so far ahead of his peers he had to be given a personal tutor. This tutor was intended to teach Riemann subjects the rest of the children at his age could not understand. However, after a short time the tutor noted that he was learning from Riemann, not the other way around. At 14 Riemann left home and moved in with his grandmother to attend a well respected school in Hanover. This was hard on the young, shy student. He began to struggle with loneliness that would plague him for the rest of his short life [1]. Later Riemann enrolled in the University of Gottingen. He planned to follow the lineage of ministers that preceded him. He studied theology and philosophy. That is until he started attending the lectures of well known mathematician Carl Friedrich Gauss [1]. Gauss is a well respected and very influential mathematician. Some consider him the greatest mathematician of all time. Many later mathematicians, includ- ing Riemann, used his work as a basis for their own discoveries. At 21 Gauss wrote Disquisitiones Arithmeticae on number theory. This work is considered to be the foundation for modern mathematics. It helped establish Mathematics as its own field of study, separate from physics and astronomy, which at the time, was a major field of study. Anyone who could track and understand the movements of celestial bodies was highly respected. Astronomers at the time were tracking an asteroid call Ceres. They lost track of it and were unable to rediscover it. Gauss was able to use his newly developed methods to predict the location of the asteroid and rediscover it. This accomplishment gained tremen- dous respect for both Gauss as an individual and for the field of mathematics as a whole [2]. 1 By the time Riemann began to study at Gottingen Gauss was in his seventies. The old and ailing Gauss encouraged Riemann to transfer to the University of Berlin where he could study with a new generation of talented mathematicians. Riemann followed the advice and transferred to the University of Berlin where he graduated in 1849. He later returned to Gottingen to study under Gauss and complete his doctoral thesis, Foundations of a General Theory of Functions of a Complex Variable [1]. 2 Riemann Sums At the time mathematics was a fairly small field and there were very few job opportunities. Riemann struggled to find work so he wrote another dissertation called a Habilitation to help him secure a teaching job at a University. Rie- mann's Habilitation was titled On the representability of a function by means of a trigonometric series. At the time is was already known and understood that a definite integral was the sum of infinitely many smaller sums. That is, the area under a curve can be calculated by adding the area of infinitely many small shapes under the curve. The figure below represents this basic idea. [3] This understanding of integrals is fundamental to the study of calculus and plays a huge role in mathematics. However at the time there was a major hole in the understanding. Mathematicians in Riemann's age understood the principle displayed in the image but they preferred to use anti-derivatives and the Funda- mental Theorem of Calculus when dealing with integrals. The problem was, this 2 method only works on functions that have elementary anti-derivatives. Math- ematicians sought a method that would apply to a wider range of functions. Riemann would find that solution [1]. Riemann developed a method of calculating the infinite sums using any sub- intervals. The basic formula is: P1 b−a limx!1 n=1 f(x)∆x where ∆x = n This method allows us to calculate integrals for a larger array of functions. It has become known as a Riemann sum and is a fundamental part of any calculus class. 3 Riemann Geometry Once Riemann completed his second dissertation he still was unable to get a teaching job. He had to also complete a Habilitation lecture. Gauss chose On the hypotheses that underlie the foundations of geometry for Riemann to present on. This is a field that Gauss himself had been working in. He was trying to survey triangles who's angles did not add up to 180 degrees. This lecture would eventually give birth to what many now call Riemann Geometry. The concepts discussed in the lecture are fairly complex. But we can get a simplified understanding if we examine Riemann's idea of curvature and see how it challenged the conventions of Euclidean geometry. Riemann re- examined basic ideas like, \the sum of the angles of a triangle is 180" and \the shortest distance between two points is a straight line". Riemann applied the concepts of curvature and multidimensional spaces. If we apply curvature these basic rules of Euclidean Geometry can be broken. If you take a piece of paper and draw two points the shortest distance be- tween them is obviously a straight line. But what if we do the same thing on a cylinder or a sphere? Now the shortest distance along the surface is not a straight line. It is actually a curved line that follows the curvature of the surface. This idea can also be applied to triangles. The image below represents the idea of positive and negative curvature. We can see that in a space with positive curvature, each angle of the triangle is larger than 60 degrees and the sum of the angles of the triangle is greater than 180. In a space with negative curvature the angles are each less than 60 degrees and the sum is less than 180. 3 [4] Riemann's ideas would become the basis which Einstein used to build his famous theory of relativity [1, 2]. 4 Mental Health Once Riemann finished his Habilitation lecture he was able to start teaching. However he was unable to land a permanent chair as a professor. Instead he survived by giving lectures to small groups of students. This was not a high paying occupation and he struggled to support himself financially. To make matters worse, Riemann's mentor Gauss and Riemann's father both died in the same year. This combined with the stress of his financial situation caused Riemann to have a mental breakdown. Riemann left the world of teaching and mathematics. He fled to the moun- tains where spent time with nature and worked to ease his troubled disposition. Eventually, after two years of recovering in nature, Riemann was ready to return to mathematics. In 1857 he began teaching as an assistant professor. Finally Riemann had a steady job and his finances in order. Just as things started to look up for him, his brother died and he was forced to care for his three unmarried sisters. This took a huge toll on Riemann. He began to show signs of tuberculous, a nagging illness that would eventually take his life [1]. 5 Riemann Hypothesis In 1859 Riemann became the chair of mathematics at the University of Gottin- gen and was elected to the Berlin Academy of Science. This success inspired him to write another paper. This one was entitled On the Number of Prime Numbers Less Than a Given Magnitude. In this paper Riemann would would outline what is now called the Riemann Hypothesis. This is one of the most fa- mous unsolved problems of mathematics. Mathematicians have been struggling to prove (or disprove) this hypothesis for over a century and a half to no avail. There is currently a $1,000,000 prize for anyone that can prove the hypothesis. 4 The very basic idea of Riemann's Hypothesis says that the only non-trivial solutions to the Zeta Function, shown below, lie along the line where s is a complex number with its real part equal to 1=2 [1]. 1 X 1 1 1 1 ζ(s) = = + + ::: ns 1s 2s 3s n=1 6 Decline and Death In 1862 Riemann married Elise Koch, but almost immediately his health began to decline. He fled to Italy during the winter, hoping the warm weather would help his condition. After a few years of struggling with illness Riemann eventually died on July 20, 1866, just before his 40th birthday. He left behind his wife Elise and their daughter Ida [1, 2]. References [1] Hawking, Stephen. God Created the Integers: the Mathematical Break- throughs That Changed History. Running Press, 2007. [2] Riemann, Bernhard, and Jurgen Jost. On the Hypotheses Which Lie at the Bases of Geometry. Birkhauser, 2016. [3] KSmrq. \Intergral Approximations." Wikimedia Commons, 7 July 2007, commons.wikimedia.org/wiki/File:Integralapproximations.svg. [4] \Geometry of the Universe." University of Oregon, abyss.uoregon.edu/ js/21stcenturyscience/lectures/lec21.html. 5.
Recommended publications
  • LOOKING BACKWARD: from EULER to RIEMANN 11 at the Age of 24
    LOOKING BACKWARD: FROM EULER TO RIEMANN ATHANASE PAPADOPOULOS Il est des hommes auxquels on ne doit pas adresser d’´eloges, si l’on ne suppose pas qu’ils ont le goˆut assez peu d´elicat pour goˆuter les louanges qui viennent d’en bas. (Jules Tannery, [241] p. 102) Abstract. We survey the main ideas in the early history of the subjects on which Riemann worked and that led to some of his most important discoveries. The subjects discussed include the theory of functions of a complex variable, elliptic and Abelian integrals, the hypergeometric series, the zeta function, topology, differential geometry, integration, and the notion of space. We shall see that among Riemann’s predecessors in all these fields, one name occupies a prominent place, this is Leonhard Euler. The final version of this paper will appear in the book From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017. AMS Mathematics Subject Classification: 01-02, 01A55, 01A67, 26A42, 30- 03, 33C05, 00A30. Keywords: Bernhard Riemann, function of a complex variable, space, Rie- mannian geometry, trigonometric series, zeta function, differential geometry, elliptic integral, elliptic function, Abelian integral, Abelian function, hy- pergeometric function, topology, Riemann surface, Leonhard Euler, space, integration. Contents 1. Introduction 2 2. Functions 10 3. Elliptic integrals 21 arXiv:1710.03982v1 [math.HO] 11 Oct 2017 4. Abelian functions 30 5. Hypergeometric series 32 6. The zeta function 34 7. On space 41 8. Topology 47 9. Differential geometry 63 10. Trigonometric series 69 11. Integration 79 12. Conclusion 81 References 85 Date: October 12, 2017.
    [Show full text]
  • Bernhard Riemann 1826-1866
    Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden.
    [Show full text]
  • Simply-Riemann-1588263529. Print
    Simply Riemann Simply Riemann JEREMY GRAY SIMPLY CHARLY NEW YORK Copyright © 2020 by Jeremy Gray Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-21-6 Brought to you by http://simplycharly.com Contents Praise for Simply Riemann vii Other Great Lives x Series Editor's Foreword xi Preface xii Introduction 1 1. Riemann's life and times 7 2. Geometry 41 3. Complex functions 64 4. Primes and the zeta function 87 5. Minimal surfaces 97 6. Real functions 108 7. And another thing . 124 8. Riemann's Legacy 126 References 143 Suggested Reading 150 About the Author 152 A Word from the Publisher 153 Praise for Simply Riemann “Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity.Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures “Very few mathematicians have exercised an influence on the later development of their science comparable to Riemann’s whose work reshaped whole fields and created new ones.
    [Show full text]
  • Riemann's Contribution to Differential Geometry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematics 9 (1982) l-18 RIEMANN'S CONTRIBUTION TO DIFFERENTIAL GEOMETRY BY ESTHER PORTNOY UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801 SUMMARIES In order to make a reasonable assessment of the significance of Riemann's role in the history of dif- ferential geometry, not unduly influenced by his rep- utation as a great mathematician, we must examine the contents of his geometric writings and consider the response of other mathematicians in the years immedi- ately following their publication. Pour juger adkquatement le role de Riemann dans le developpement de la geometric differentielle sans etre influence outre mesure par sa reputation de trks grand mathematicien, nous devons &udier le contenu de ses travaux en geometric et prendre en consideration les reactions des autres mathematiciens au tours de trois an&es qui suivirent leur publication. Urn Riemann's Einfluss auf die Entwicklung der Differentialgeometrie richtig einzuschZtzen, ohne sich von seinem Ruf als bedeutender Mathematiker iiberm;issig beeindrucken zu lassen, ist es notwendig den Inhalt seiner geometrischen Schriften und die Haltung zeitgen&sischer Mathematiker unmittelbar nach ihrer Verijffentlichung zu untersuchen. On June 10, 1854, Georg Friedrich Bernhard Riemann read his probationary lecture, "iber die Hypothesen welche der Geometrie zu Grunde liegen," before the Philosophical Faculty at Gdttingen ill. His biographer, Dedekind [1892, 5491, reported that Riemann had worked hard to make the lecture understandable to nonmathematicians in the audience, and that the result was a masterpiece of presentation, in which the ideas were set forth clearly without the aid of analytic techniques.
    [Show full text]
  • Riemann and Partial Differential Equations. a Road to Geometry and Physics
    Riemann and Partial Differential Equations. A road to Geometry and Physics Juan Luis Vazquez´ Departamento de Matematicas´ Universidad Autonoma´ de Madrid “Jornada Riemann”, Barcelona, February 2008 “Jornada Riemann”, Barcelona, February 20081 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Outline 1 Mathematics, Physics and PDEs Origins of differential calculus XVIII century Modern times 2 G. F. B. Riemann 3 Riemmann, complex variables and 2-D fluids 4 Riemmann and Geometry 5 Riemmann and the PDEs of Physics Picture gallery “Jornada Riemann”, Barcelona, February 20082 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Mathematics, Physics and PDEs Outline 1 Mathematics, Physics and PDEs Origins of differential calculus XVIII century Modern times 2 G. F. B. Riemann 3 Riemmann, complex variables and 2-D fluids 4 Riemmann and Geometry 5 Riemmann and the PDEs of Physics Picture gallery “Jornada Riemann”, Barcelona, February 20083 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Mathematics, Physics and PDEs Origins of differential calculus Differential Equations. The Origins The Differential World, i.e, the world of derivatives, was invented / discovered in the XVII century, almost at the same time that Modern Science (then called Natural Philosophy), was born. We owe it to the great Founding Fathers, Galileo, Descartes, Leibnitz and Newton. Motivation came from the desire to understand Motion, Mechanics and Geometry. Newton formulated Mechanics in terms of ODEs, by concentrating on the movement of particles. The main magic formula is d2x dx m = F(t; x; ) dt2 dt though he would write dots and not derivatives Leibnitz style.
    [Show full text]
  • Turning Points in the Conception of Mathematics, by Detlef Laugwitz
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 37, Number 4, Pages 477{480 S 0273-0979(00)00876-4 Article electronically published on June 27, 2000 Bernhard Riemann, 1826{1866: Turning points in the conception of mathematics, by Detlef Laugwitz (translated by Abe Shenitzer), Birkh¨auser, Boston, 1999, xvi + 357 pp., $79.50, ISBN 0-8176-4040-1 1. Introduction The work of Riemann is a source of perennial fascination for mathematicians, physicists, and historians and philosophers of these subjects. He lived at a time when a considerable body of knowledge had been established, and his work changed forever the way mathematicians and physicists thought about their subjects. To tell this story and get it right, describing what came before Riemann, what came after, and the extent to which he was responsible for the difference between the two, is a task that the author rightly describes as both tempting and daunting. Fortunately he has succeeded admirably in this task, stating the technical details clearly and correctly while writing an engaging and readable account of Riemann's life and work. The word \engaging" is used very deliberately here. Any reader of this book with even a passing interest in the history or philosophy of mathematics is certain to become engaged in a mental conversation with the author, as the reviewer was. The temptation to join in the debate is so strong that it apparently also lured the translator, whose sensitive use of language has once again shown why he is much in demand as a translator of mathematical works.
    [Show full text]
  • Riemannian Reading: Using Manifolds to Calculate and Unfold
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 2017 Riemannian Reading: Using Manifolds to Calculate and Unfold Narrative Heather Lamb Eastern Illinois University This research is a product of the graduate program in English at Eastern Illinois University. Find out more about the program. Recommended Citation Lamb, Heather, "Riemannian Reading: Using Manifolds to Calculate and Unfold Narrative" (2017). Masters Theses. 2688. https://thekeep.eiu.edu/theses/2688 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. The Graduate School� EA<.TEH.NILLINOIS UNJVER.SITY" Thesis Maintenance and Reproduction Certificate FOR: Graduate Candidates Completing Theses in Partial Fulfillment of the Degree Graduate Faculty Advisors Directing the Theses RE: Preservation, Reproduction, and Distribution of Thesis Research Preserving, reproducing, and distributing thesis research is an important part of Booth Library's responsibility to provide access to scholarship. In order to further this goal, Booth Library makes all graduate theses completed as part of a degree program at Eastern Illinois University available for personal study, research, and other not-for-profit educational purposes. Under 17 U.S.C. § 108, the library may reproduce and distribute a copy without infringing on copyright; however, professional courtesy dictates that permission be requested from the author before doing so. Your signatures affirm the following: • The graduate candidate is the author of this thesis. • The graduate candidate retains the copyright and intellectual property rights associated with the original research, creative activity, and intellectual or artistic content of the thesis.
    [Show full text]
  • GEORG FRIEDRICH BERNHARD RIEMANN (1826-1866)- Chronology
    GEORG FRIEDRICH BERNHARD RIEMANN (1826-1866)- Chronology 1826- born September 17, into the family of the pastor of Breselenz, kingdom of Hanover. There were four sisters, one brother. The family moved to nearby Quickborn when Riemann was an infant. 1840-1846- Gymnasium studies in Hanover (2 years) and Lüneburg- only six of the required ten years; home-schooled by his father before 1840. Schmalfuss, the Gymnasium director, recognized his talent and lent him books- Archimedes, Apollonius, Newton, Legendre’s Number Theory (returned with the comment `wonderful book, I know it by heart now.’) 1846-1851- University studies. 1846/47: Göttingen; by that time, Gauss taught only linear algebra, with emphasis on least squares. 1847/49: Berlin- took Dirichlet’s courses on number theory, integration and partial differential equations, Jacobi’s courses in analytical mechanics and algebra, Eisenstein’s on elliptic functions. 1849/51- doctoral work at Göttingen. 1851- Doctoral thesis, Foundations of a General Theory of Functions of One Complex Variable, nominally under Gauss. 1854-Habilitation thesis, On the Representation of a Function by a Trigonometric Series. Habilitation lecture, On the Hypotheses that Lie at the Foundation of Geometry. Appointed lecturer (Privatdozent) at Göttingen. 1855- beginning of friendship with Richard Dedekind (1831-1916), another Göttingen instructor. Dedekind had earned his doctorate in 1852 and habilitation in 1854, both also under Gauss. Riemann’s father died in 1855, and the sisters left Quickborn to join the older brother (a post office clerk) in Bremen. Dirichlet appointed Gauss’s successor at Göttingen. 1857-Paper Theory of Abelian Functions- the first to make Riemann internationally known.
    [Show full text]
  • AN OVERVIEW of RIEMANN's LIFE and WORK a Brief Biography
    AN OVERVIEW OF RIEMANN'S LIFE AND WORK ROSSANA TAZZIOLI Abstract. Riemann made fundamental contributions to math- ematics {number theory, differential geometry, real and complex analysis, Abelian functions, differential equations, and topology{ and also carried out research in physics and natural philosophy. The aim of this note is to show that his works can be interpreted as a unitary programme where mathematics, physics and natural philosophy are strictly connected with each other. A brief biography Bernhard Riemann was born in Breselenz {in the Kingdom of Hanover{ in 1826. He was of humble origin; his father was a Lutheran minister. From 1840 he attended the Gymnasium in Hanover, where he lived with his grandmother; in 1842, when his grandmother died, he moved to the Gymnasium of L¨uneburg,very close to Quickborn, where in the meantime his family had moved. He often went to school on foot and, at that time, had his first health problems {which eventually were to lead to his death from tuberculosis. In 1846, in agreement with his father's wishes, he began to study the Faculty of Philology and Theology of the University of G¨ottingen;how- ever, very soon he preferred to attend the Faculty of Philosophy, which also included mathematics. Among his teachers, I shall mention Carl Friedrich Gauss (1777-1855) and Johann Benedict Listing (1808-1882), who is well known for his contributions to topology. In 1847 Riemann moved to Berlin, where the teaching of mathematics was more stimulating, thanks to the presence of Carl Gustav Jacob Ja- cobi (1804-1851), Johann Peter Gustav Lejeune Dirichlet (1805-1859), Jakob Steiner (1796-1863), and Gotthold Eisenstein (1823-1852).
    [Show full text]
  • Bernhard Riemann 1826-1866 BERNHARD RIEMANN (1826~1866) Detlef Laugwitz
    Bernhard Riemann 1826-1866 BERNHARD RIEMANN (1826~1866) Detlef Laugwitz Bernhard Riemann 1826-1866 Turning Points in the Conception of Mathematics Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer The German-language edition, edited by Emil A. Fellman, appears in the Birkhauser Vita Mathematica series Springer Science+Business Media, LLC Detlef Laugwitz Abe Shenitzer (Translator) Department of Mathematics Department of Mathematics & Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario Germany Canada M3J 1P3 Library of Congress Cataloging-in-Publication Data Laugwitz, Detlef. [Bernhard Riemann. 1826-1866. English] Bernhard Riemann, 1826-1866 : turning points in the conception of mathematics / Detlef Laugwitz : translated by Abe Shenitzer with the editorial assistance of the author, Hardy Grant, and Sarah Shenitzer. p. cm. Includes bibliographical references and index, paper) 1. Bernhard Riemann, 1826-1866. 2. Mathematicians—Germany— Biography. 3. Mathematics—Germany—History—19th century. I. Title. QA29.R425L3813 1999 510' .92 [B]—DC21 98-1783CIP 4 AMS Subject Classifications: 01Axx, 00A30, 03A05, 51-03, 14C40 Printed on acid-free paper. © 1999 Springer Science+Business Media New York Originally published by Birkhäuser Boston in 1999 Softcover reprint of the hardcover 1st edition 1999 © 1996 Birkhäuser Verlag (original book in German) All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
    [Show full text]
  • Bernhard Riemann's Habilitation Lecture, His Debt to Carl Friedrich
    Historical Background Lecture 2 Bernhard Riemann’s Habilitation Lecture, his Debt to Carl Friedrich Gauss and his Gift to Albert Einstein Abstract We review Carl Friedrich Gauss’ contributions to classical differential geometry, astronomy and physics and his influence on his “student” Bernhard Riemann. Riemann’s public lecture, his “Habilitation”, is discussed as an extension of Gauss’ most important contribution to differential geometry, the fact that a surface’s curvature is an intrinsic property, to n-dimensional manifolds. Riemann and Gauss foresaw that geometry of space time belonged to the arena of physics and experiment, and their works laid the foundation for Einstein’s formulation of general relativity. This lecture supplements material in the textbook: Special Relativity, Electrodynamics and General Relativity: From Newton to Einstein (ISBN: 978-0-12-813720-8). The term “textbook” in these Supplemental Lectures will refer to that work. Keywords: differential geometry, Gaussian curvature, Riemannian geometry, curvature tensor. Curved space time, gravitation Gauss, Geometry and Physics Carl Friedrich Gauss (1777-1855) was one of the greatest and most influential mathematicians of all time. After being recognized as a prodigy in Brunswick, Germany, Gauss studied at the University of G ttingen from 1795 to 1798 where he did seminal work on constructive geometry and number̈ theory. After his stint at G ttingen, he returned to Brunswick and continued his studies, assisted by support from the Duke of̈ Brunswick. In 1801 Gauss’ life changed decisively. In 1801 the dwarf “planet” Ceres had been observed briefly and several points on its trajectory, which headed toward the sun, were recorded by the Italian astronomer Giuseppe Piazzi.
    [Show full text]
  • Georg Friedrich Bernhard Riemann
    Georg Friedrich Bernhard Riemann Born: 17 Sept 1826 in Breselenz, Hanover (now Germany) Died: 20 July 1866 in Selasca, Italy Click the picture above to see three larger pictures Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index Version for printing Bernhard Riemann's father, Friedrich Bernhard Riemann, was a Lutheran minister. Friedrich Riemann married Charlotte Ebell when he was in his middle age. Bernhard was the second of their six children, two boys and four girls. Friedrich Riemann acted as teacher to his children and he taught Bernhard until he was ten years old. At this time a teacher from a local school named Schulz assisted in Bernhard's education. In 1840 Bernhard entered directly into the third class at the Lyceum in Hannover. While at the Lyceum he lived with his grandmother but, in 1842, his grandmother died and Bernhard moved to the Johanneum Gymnasium in Lüneburg. Bernhard seems to have been a good, but not outstanding, pupil who worked hard at the classical subjects such as Hebrew and theology. He showed a particular interest in mathematics and the director of the Gymnasium allowed Bernhard to study mathematics texts from his own library. On one occasion he lent Bernhard Legendre's book on the theory of numbers and Bernhard read the 900 page book in six days. In the spring of 1846 Riemann enrolled at the University of Göttingen. His father had encouraged him to study theology and so he entered the theology faculty. However he attended some mathematics lectures and asked his father if he could transfer to the faculty of philosophy so that he could study mathematics.
    [Show full text]