Mathematics, Physics and Philosophy in Riemann's Work and Beyond
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LOOKING BACKWARD: from EULER to RIEMANN 11 at the Age of 24
LOOKING BACKWARD: FROM EULER TO RIEMANN ATHANASE PAPADOPOULOS Il est des hommes auxquels on ne doit pas adresser d’´eloges, si l’on ne suppose pas qu’ils ont le goˆut assez peu d´elicat pour goˆuter les louanges qui viennent d’en bas. (Jules Tannery, [241] p. 102) Abstract. We survey the main ideas in the early history of the subjects on which Riemann worked and that led to some of his most important discoveries. The subjects discussed include the theory of functions of a complex variable, elliptic and Abelian integrals, the hypergeometric series, the zeta function, topology, differential geometry, integration, and the notion of space. We shall see that among Riemann’s predecessors in all these fields, one name occupies a prominent place, this is Leonhard Euler. The final version of this paper will appear in the book From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017. AMS Mathematics Subject Classification: 01-02, 01A55, 01A67, 26A42, 30- 03, 33C05, 00A30. Keywords: Bernhard Riemann, function of a complex variable, space, Rie- mannian geometry, trigonometric series, zeta function, differential geometry, elliptic integral, elliptic function, Abelian integral, Abelian function, hy- pergeometric function, topology, Riemann surface, Leonhard Euler, space, integration. Contents 1. Introduction 2 2. Functions 10 3. Elliptic integrals 21 arXiv:1710.03982v1 [math.HO] 11 Oct 2017 4. Abelian functions 30 5. Hypergeometric series 32 6. The zeta function 34 7. On space 41 8. Topology 47 9. Differential geometry 63 10. Trigonometric series 69 11. Integration 79 12. Conclusion 81 References 85 Date: October 12, 2017. -
Riemannian Geometry and the General Theory of Relativity
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1967 Riemannian geometry and the general theory of relativity Marie McBride Vanisko The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Vanisko, Marie McBride, "Riemannian geometry and the general theory of relativity" (1967). Graduate Student Theses, Dissertations, & Professional Papers. 8075. https://scholarworks.umt.edu/etd/8075 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. p m TH3 OmERAl THEORY OF RELATIVITY By Marie McBride Vanisko B.A., Carroll College, 1965 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MOKT/JTA 1967 Approved by: Chairman, Board of Examiners D e a ^ Graduante school V AUG 8 1967, Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. V W Number: EP38876 All rights reserved INFORMATION TO ALL USERS The quality of this reproduotion is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missir^ pages, these will be noted. Also, if matedal had to be removed, a note will indicate the deletion. UMT Oi*MMtion neiitNna UMi EP38876 Published ProQuest LLQ (2013). -
Riemannian Geometry Learning for Disease Progression Modelling Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman
Riemannian geometry learning for disease progression modelling Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman To cite this version: Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman. Riemannian geometry learning for disease progression modelling. 2019. hal-02079820v2 HAL Id: hal-02079820 https://hal.archives-ouvertes.fr/hal-02079820v2 Preprint submitted on 17 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Riemannian geometry learning for disease progression modelling Maxime Louis1;2, Rapha¨elCouronn´e1;2, Igor Koval1;2, Benjamin Charlier1;3, and Stanley Durrleman1;2 1 Sorbonne Universit´es,UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM) 2 Inria Paris, Aramis project-team, 75013, Paris, France 3 Institut Montpelli`erainAlexander Grothendieck, CNRS, Univ. Montpellier Abstract. The analysis of longitudinal trajectories is a longstanding problem in medical imaging which is often tackled in the context of Riemannian geometry: the set of observations is assumed to lie on an a priori known Riemannian manifold. When dealing with high-dimensional or complex data, it is in general not possible to design a Riemannian geometry of relevance. In this paper, we perform Riemannian manifold learning in association with the statistical task of longitudinal trajectory analysis. -
An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity
An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity Leonor Godinho and Jos´eNat´ario Lisbon, 2004 Contents Chapter 1. Differentiable Manifolds 3 1. Topological Manifolds 3 2. Differentiable Manifolds 9 3. Differentiable Maps 13 4. Tangent Space 15 5. Immersions and Embeddings 22 6. Vector Fields 26 7. Lie Groups 33 8. Orientability 45 9. Manifolds with Boundary 48 10. Notes on Chapter 1 51 Chapter 2. Differential Forms 57 1. Tensors 57 2. Tensor Fields 64 3. Differential Forms 66 4. Integration on Manifolds 72 5. Stokes Theorem 75 6. Orientation and Volume Forms 78 7. Notes on Chapter 2 80 Chapter 3. Riemannian Manifolds 87 1. Riemannian Manifolds 87 2. Affine Connections 94 3. Levi-Civita Connection 98 4. Minimizing Properties of Geodesics 104 5. Hopf-Rinow Theorem 111 6. Notes on Chapter 3 114 Chapter 4. Curvature 115 1. Curvature 115 2. Cartan’s Structure Equations 122 3. Gauss-Bonnet Theorem 131 4. Manifolds of Constant Curvature 137 5. Isometric Immersions 144 6. Notes on Chapter 4 150 1 2 CONTENTS Chapter 5. Geometric Mechanics 151 1. Mechanical Systems 151 2. Holonomic Constraints 160 3. Rigid Body 164 4. Non-Holonomic Constraints 177 5. Lagrangian Mechanics 186 6. Hamiltonian Mechanics 194 7. Completely Integrable Systems 203 8. Notes on Chapter 5 209 Chapter 6. Relativity 211 1. Galileo Spacetime 211 2. Special Relativity 213 3. The Cartan Connection 223 4. General Relativity 224 5. The Schwarzschild Solution 229 6. Cosmology 240 7. Causality 245 8. Singularity Theorem 253 9. Notes on Chapter 6 263 Bibliography 265 Index 267 CHAPTER 1 Differentiable Manifolds This chapter introduces the basic notions of differential geometry. -
Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md
International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 157 ISSN 2229-5518 Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md. Abdul Halim Sajal Saha Md Shafiqul Islam Abstract-In the paper some aspects of Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields are focused. The purpose of this paper is to develop the theory of manifolds equipped with Riemannian metric. I have developed some theorems on torsion and Riemannian curvature tensors using affine connection. A Theorem 1.20 named “Fundamental Theorem of Pseudo-Riemannian Geometry” has been established on Riemannian geometry using tensors with metric. The main tools used in the theorem of pseudo Riemannian are tensors fields defined on a Riemannian manifold. Keywords: Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields. —————————— —————————— I. Introduction (c) { } is a family of open sets which covers , that is, 푖 = . Riemannian manifold is a pair ( , g) consisting of smooth 푈 푀 manifold and Riemannian metric g. A manifold may carry a (d) ⋃ is푈 푖푖 a homeomorphism푀 from onto an open subset of 푀 ′ further structure if it is endowed with a metric tensor, which is a 푖 . 푖 푖 휑 푈 푈 natural generation푀 of the inner product between two vectors in 푛 ℝ to an arbitrary manifold. Riemannian metrics, affine (e) Given and such that , the map = connections,푛 parallel transport, curvature tensors, torsion tensors, ( ( ) killingℝ vector fields and conformal killing vector fields play from푖 푗 ) to 푖 푗 is infinitely푖푗 −1 푈 푈 푈 ∩ 푈 ≠ ∅ 휓 important role to develop the theorem of Riemannian manifolds. -
Bernhard Riemann 1826-1866
Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden. -
Geometric GSI’19 Science of Information Toulouse, 27Th - 29Th August 2019
ALEAE GEOMETRIA Geometric GSI’19 Science of Information Toulouse, 27th - 29th August 2019 // Program // GSI’19 Geometric Science of Information On behalf of both the organizing and the scientific committees, it is // Welcome message our great pleasure to welcome all delegates, representatives and participants from around the world to the fourth International SEE from GSI’19 chairmen conference on “Geometric Science of Information” (GSI’19), hosted at ENAC in Toulouse, 27th to 29th August 2019. GSI’19 benefits from scientific sponsor and financial sponsors. The 3-day conference is also organized in the frame of the relations set up between SEE and scientific institutions or academic laboratories: ENAC, Institut Mathématique de Bordeaux, Ecole Polytechnique, Ecole des Mines ParisTech, INRIA, CentraleSupélec, Institut Mathématique de Bordeaux, Sony Computer Science Laboratories. We would like to express all our thanks to the local organizers (ENAC, IMT and CIMI Labex) for hosting this event at the interface between Geometry, Probability and Information Geometry. The GSI conference cycle has been initiated by the Brillouin Seminar Team as soon as 2009. The GSI’19 event has been motivated in the continuity of first initiatives launched in 2013 at Mines PatisTech, consolidated in 2015 at Ecole Polytechnique and opened to new communities in 2017 at Mines ParisTech. We mention that in 2011, we // Frank Nielsen, co-chair Ecole Polytechnique, Palaiseau, France organized an indo-french workshop on “Matrix Information Geometry” Sony Computer Science Laboratories, that yielded an edited book in 2013, and in 2017, collaborate to CIRM Tokyo, Japan seminar in Luminy TGSI’17 “Topoplogical & Geometrical Structures of Information”. -
Simply-Riemann-1588263529. Print
Simply Riemann Simply Riemann JEREMY GRAY SIMPLY CHARLY NEW YORK Copyright © 2020 by Jeremy Gray Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-21-6 Brought to you by http://simplycharly.com Contents Praise for Simply Riemann vii Other Great Lives x Series Editor's Foreword xi Preface xii Introduction 1 1. Riemann's life and times 7 2. Geometry 41 3. Complex functions 64 4. Primes and the zeta function 87 5. Minimal surfaces 97 6. Real functions 108 7. And another thing . 124 8. Riemann's Legacy 126 References 143 Suggested Reading 150 About the Author 152 A Word from the Publisher 153 Praise for Simply Riemann “Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity.Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures “Very few mathematicians have exercised an influence on the later development of their science comparable to Riemann’s whose work reshaped whole fields and created new ones. -
Riemann's Contribution to Differential Geometry
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematics 9 (1982) l-18 RIEMANN'S CONTRIBUTION TO DIFFERENTIAL GEOMETRY BY ESTHER PORTNOY UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801 SUMMARIES In order to make a reasonable assessment of the significance of Riemann's role in the history of dif- ferential geometry, not unduly influenced by his rep- utation as a great mathematician, we must examine the contents of his geometric writings and consider the response of other mathematicians in the years immedi- ately following their publication. Pour juger adkquatement le role de Riemann dans le developpement de la geometric differentielle sans etre influence outre mesure par sa reputation de trks grand mathematicien, nous devons &udier le contenu de ses travaux en geometric et prendre en consideration les reactions des autres mathematiciens au tours de trois an&es qui suivirent leur publication. Urn Riemann's Einfluss auf die Entwicklung der Differentialgeometrie richtig einzuschZtzen, ohne sich von seinem Ruf als bedeutender Mathematiker iiberm;issig beeindrucken zu lassen, ist es notwendig den Inhalt seiner geometrischen Schriften und die Haltung zeitgen&sischer Mathematiker unmittelbar nach ihrer Verijffentlichung zu untersuchen. On June 10, 1854, Georg Friedrich Bernhard Riemann read his probationary lecture, "iber die Hypothesen welche der Geometrie zu Grunde liegen," before the Philosophical Faculty at Gdttingen ill. His biographer, Dedekind [1892, 5491, reported that Riemann had worked hard to make the lecture understandable to nonmathematicians in the audience, and that the result was a masterpiece of presentation, in which the ideas were set forth clearly without the aid of analytic techniques. -
Riemann and Partial Differential Equations. a Road to Geometry and Physics
Riemann and Partial Differential Equations. A road to Geometry and Physics Juan Luis Vazquez´ Departamento de Matematicas´ Universidad Autonoma´ de Madrid “Jornada Riemann”, Barcelona, February 2008 “Jornada Riemann”, Barcelona, February 20081 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Outline 1 Mathematics, Physics and PDEs Origins of differential calculus XVIII century Modern times 2 G. F. B. Riemann 3 Riemmann, complex variables and 2-D fluids 4 Riemmann and Geometry 5 Riemmann and the PDEs of Physics Picture gallery “Jornada Riemann”, Barcelona, February 20082 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Mathematics, Physics and PDEs Outline 1 Mathematics, Physics and PDEs Origins of differential calculus XVIII century Modern times 2 G. F. B. Riemann 3 Riemmann, complex variables and 2-D fluids 4 Riemmann and Geometry 5 Riemmann and the PDEs of Physics Picture gallery “Jornada Riemann”, Barcelona, February 20083 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Mathematics, Physics and PDEs Origins of differential calculus Differential Equations. The Origins The Differential World, i.e, the world of derivatives, was invented / discovered in the XVII century, almost at the same time that Modern Science (then called Natural Philosophy), was born. We owe it to the great Founding Fathers, Galileo, Descartes, Leibnitz and Newton. Motivation came from the desire to understand Motion, Mechanics and Geometry. Newton formulated Mechanics in terms of ODEs, by concentrating on the movement of particles. The main magic formula is d2x dx m = F(t; x; ) dt2 dt though he would write dots and not derivatives Leibnitz style. -
Turning Points in the Conception of Mathematics, by Detlef Laugwitz
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 37, Number 4, Pages 477{480 S 0273-0979(00)00876-4 Article electronically published on June 27, 2000 Bernhard Riemann, 1826{1866: Turning points in the conception of mathematics, by Detlef Laugwitz (translated by Abe Shenitzer), Birkh¨auser, Boston, 1999, xvi + 357 pp., $79.50, ISBN 0-8176-4040-1 1. Introduction The work of Riemann is a source of perennial fascination for mathematicians, physicists, and historians and philosophers of these subjects. He lived at a time when a considerable body of knowledge had been established, and his work changed forever the way mathematicians and physicists thought about their subjects. To tell this story and get it right, describing what came before Riemann, what came after, and the extent to which he was responsible for the difference between the two, is a task that the author rightly describes as both tempting and daunting. Fortunately he has succeeded admirably in this task, stating the technical details clearly and correctly while writing an engaging and readable account of Riemann's life and work. The word \engaging" is used very deliberately here. Any reader of this book with even a passing interest in the history or philosophy of mathematics is certain to become engaged in a mental conversation with the author, as the reviewer was. The temptation to join in the debate is so strong that it apparently also lured the translator, whose sensitive use of language has once again shown why he is much in demand as a translator of mathematical works. -
A SPACETIME GEOMETRODYNAMIC MODEL (GDM) of the PHYSICAL REALITY Shlomo Barak
A SPACETIME GEOMETRODYNAMIC MODEL (GDM) OF THE PHYSICAL REALITY Shlomo Barak To cite this version: Shlomo Barak. A SPACETIME GEOMETRODYNAMIC MODEL (GDM) OF THE PHYSICAL REALITY. 2018. hal-01935260 HAL Id: hal-01935260 https://hal.archives-ouvertes.fr/hal-01935260 Preprint submitted on 14 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A SPACETIME GEOMETRODYNAMIC MODEL (GDM) Shlomo Barak Shlomo Barak OF THE PHYSICAL REALITY Shlomo Barak II The Book of the GDM A Realization of Einstein’s Vision Dr. Shlomo Barak Editor: Roger M. Kaye A collection of 18 papers published Nov 2016 to Nov 2018. III A. Einstein (1933) …. the axiomatic basis of theoretical physics cannot be extracted from experience but must be freely invented… Copyright © 2018 Shlomo Barak The right of Shlomo Barak to be identified as the author of this work has been asserted by him. All rights reserved. No part of this book may be reproduced or copied in any form or by any means, graphic, electronic or mechanical, or otherwise, including photocopying, recording, or information retrieval systems - without written permission. ISBN 978-965-90727-1-2 IV This GDM book is a collection of 18 papers published from November 2016 to November 2018.