BASIC ELECTRICITY 1St Edition CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Hybrid Energy Cell for Self-Powered Water Splitting†
Energy & Environmental Science View Article Online COMMUNICATION View Journal | View Issue A hybrid energy cell for self-powered water splitting† a a a a a a Cite this: Energy Environ. Sci., 2013, 6, Ya Yang, Hulin Zhang, Zong-Hong Lin, Yan Liu, Jun Chen, Ziyin Lin, a a ab 2429 Yu Sheng Zhou, Ching Ping Wong and Zhong Lin Wang* Received 30th April 2013 Accepted 30th May 2013 DOI: 10.1039/c3ee41485j www.rsc.org/ees Production of hydrogen (H2) by splitting water using the electrolysis effect is a potential source of clean and renewable energy. However, Broader context it usually requires an external power source to drive the oxidation or We fabricated a hybrid energy cell that consists of a triboelectric nano- reduction reactions of H2O molecules, which largely limits the generator, a thermoelectric cell, and a solar cell, which can be used to development of this technology. Here, we fabricated a hybrid energy simultaneously or individually harvest the mechanical, thermal, and solar cell that is an integration of a triboelectric nanogenerator, a ther- energies. Instead of using an external power source, the hybrid energy cell can be directly used for self-powered water splitting to generate hydrogen. moelectric cell, and a solar cell, which can be used to simultaneously/ The volume of the produced H2 has a linear relationship with the splitting À À individually harvest mechanical, thermal, and/or solar energies. The time at a production speed of 4 Â 10 4 mL s 1. Moreover, the produced power output of the hybrid energy cell can be directly used for energies can be stored in a Li-ion battery for water splitting and other uses. -
High Performance Triboelectric Nanogenerator and Its Applications
HIGH PERFORMANCE TRIBOELECTRIC NANOGENERATOR AND ITS APPLICATIONS A Dissertation Presented to The Academic Faculty by Changsheng Wu In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in the SCHOOL OF MATERIALS SCIENCE AND ENGINEERING Georgia Institute of Technology AUGUST 2019 COPYRIGHT © 2019 BY CHANGSHENG WU HIGH PERFORMANCE TRIBOELECTRIC NANOGENERATOR AND ITS APPLICATIONS Approved by: Dr. Zhong Lin Wang, Advisor Dr. C. P. Wong School of Materials Science and School of Materials Science and Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Meilin Liu Dr. Younan Xia School of Materials Science and Department of Biomedical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. David L. McDowell School of Materials Science and Engineering Georgia Institute of Technology Date Approved: [April 25, 2019] To my family and friends ACKNOWLEDGEMENTS Firstly, I would like to express my sincere gratidue to my advisor Prof. Zhong Lin Wang for his continuous support and invaluable guidance in my research. As an exceptional researcher, he is my role model for his thorough knowledge in physics and nanotechnology, indefatigable diligence, and overwhelming passion for scientific innovation. It is my great fortune and honor in having him as my advisor and learning from him in the past four years. I would also like to thank the rest of my committee members, Prof. Liu, Prof. McDowell, Prof. Wong, and Prof. Xia for their insightful advice on my doctoral research and dissertation. My sincere thanks also go to my fellow lab mates for their strong support and help. In particular, I would not be able to start my research so smoothly without the mentorship of Dr. -
Triboelectric Nanogenerators for Energy Harvesting in Ocean: a Review on Application and Hybridization
energies Review Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization Ali Matin Nazar 1, King-James Idala Egbe 1 , Azam Abdollahi 2 and Mohammad Amin Hariri-Ardebili 3,4,* 1 Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China; [email protected] (A.M.N.); [email protected] (K.-J.I.E.) 2 Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan 45845, Iran; [email protected] 3 Department of Civil Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA 4 College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA * Correspondence: [email protected]; Tel.: +1-303-990-2451 Abstract: With recent advancements in technology, energy storage for gadgets and sensors has become a challenging task. Among several alternatives, the triboelectric nanogenerators (TENG) have been recognized as one of the most reliable methods to cure conventional battery innovation’s inadequacies. A TENG transfers mechanical energy from the surrounding environment into power. Natural energy resources can empower TENGs to create a clean and conveyed energy network, which can finally facilitate the development of different remote gadgets. In this review paper, TENGs targeting various environmental energy resources are systematically summarized. First, a brief introduction is given to the ocean waves’ principles, as well as the conventional energy harvesting Citation: Matin Nazar, A.; Idala devices. Next, different TENG systems are discussed in details. Furthermore, hybridization of Egbe, K.-J.; Abdollahi, A.; TENGs with other energy innovations such as solar cells, electromagnetic generators, piezoelectric Hariri-Ardebili, M.A. -
Review of Ground Fault Protection Methods for Grounded, Ungrounded, and Compensated Distribution Systems
REVIEW OF GROUND FAULT PROTECTION METHODS FOR GROUNDED, UNGROUNDED, AND COMPENSATED DISTRIBUTION SYSTEMS Jeff Roberts, Dr. Hector J. Altuve, and Dr. Daqing Hou Schweitzer Engineering Laboratories, Inc. Pullman, WA USA ABSTRACT This paper reviews ground fault protection and detection methods for distribution systems. First, we review and compare medium-voltage distribution-system grounding methods. Next, we describe directional elements suitable to provide ground fault protection in solidly- and low- impedance grounded distribution systems. We then analyze the behavior of ungrounded systems under ground fault conditions and introduce a new ground directional element for these systems. Then we examine the behavior of compensated systems during ground faults and describe traditional fault detection methods. We conclude by introducing new ground fault detection methods for compensated systems. INTRODUCTION Ground fault current magnitudes depend on the system grounding method. Solidly- and low- impedance grounded systems may have high levels of ground fault currents. These high levels typically require line tripping to remove the fault from the system. Ground overcurrent and directional overcurrent relays are the typical ground fault protection solution for such systems. However, high-impedance ground fault detection is difficult in multigrounded four-wire systems, in which the relay measures the ground fault current combined with the unbalance current generated by line phasing and configuration and load unbalance. Ungrounded systems have no intentional ground. For a single-line-to-ground fault on these systems, the only path for ground current to flow is through the distributed line-to-ground capacitance of the surrounding system and of the two remaining unfaulted phases of the faulted circuit. -
Advanced Power Transformer Diagnostics – Detection of Core-Ground Issues
CIGRE-346 2020 CIGRE Canada Conference Toronto, Ontario, October 19-22, 2020 Advanced Power Transformer Diagnostics – Detection of Core-Ground Issues ALI NADERIAN JAHROMI1, PRANAV PATTABI1, JAFAR MOHAMMADI1, MOHSEN TANGSIRI2 1METSCO Energy Solutions, Canada 2MS Hydro Power Plant, Iran SUMMARY The typical construction of a power transformer results in a high potential being induced in the core, due to the electromagnetic coupling that exists between the core and winding assembly. The transformer core is normally grounded at a single point, to safely divert this induced voltage to the local ground. The core-ground connection also provides a low- resistance path under a short circuit scenario between the transformer winding and core. This allows for the reliable operation of the associated transformer protection relay unit. The isolation of core from ground forms an integral part of the transformer’s insulation system. The core-ground connection must be accessible and further removable for testing. Any issue with the transformer core-ground connection can result in improper grounding, the presence of multiple ground paths, unintentional core-grounds, and a floated core. Multiple core-grounds are created when the core comes into direct contact with the grounded internal metallic structure of a power transformer. Based on the value of the core-to-ground resistance, sustained heating effects can be caused by circulating currents that can eventually result in the melting of the transformer core. This paper outlines the use of diagnostic procedures such as Dissolved Gas Analysis (DGA) and Duval’s Pentagon, Dielectric Frequency Response (DFR) testing, and core-to-ground resistance testing for identifying core-ground defects in power transformers. -
ESD) • Styrofoam Cups Safety Guidelines 3
common materials, often found in business and laboratory environments, are all sources of static electricity: • common plastic bags • common types of mending and packing tape • paperwork • common untreated plastic materials Electrostatic Discharge (ESD) • styrofoam cups Safety Guidelines 3. Types of ESD Damage Copyright © 2007 Dialogic Corporation. All rights reserved. Static damage to components can take the form of upset failures or catastrophic failures. 1. Introduction Upset Failure Electrostatic Discharge, or ESD, is defined as the transfer of charge between bodies at different electrical potentials. Upset failures occur when an electrostatic discharge has caused a current flow that is not significant enough to cause total failure, but in use may intermittently If you scuff your feet as you walk across a carpet, electrons move from the result in gate leakage causing software malfunction or incorrect storage of carpet to you, leaving you with excess electrons. Touch a door knob and ZAP! information. The electrons move from you to the knob. You get a shock, at a minimum of 3,000 volts (the threshold of human feeling)! Catastrophic Failure The kind of ESD shock you feel may also be responsible for damaging electronic components in many computers and telecommunications systems. Catastrophic failures can be direct or latent. While it takes an electrostatic discharge of 3,000 volts for you to feel a shock, Direct catastrophic failures occur when a component is damaged to the point much smaller charges, well below the threshold of human sensation, can and where it no longer functions correctly. This is the easiest type of ESD damage often do damage semiconductor devices. -
Interlocking Coils Shall Be Wired up to Terminal Blocks in Mechanism Box Through G.I
SECTION: V TECHNICAL SPECIFICATION For 5MW Floating Solar PV Power Plant at STPS of WBPDCL interlocking coils shall be wired up to terminal blocks in mechanism box through G.I. Conduits. v) The earthing blades shall be required to carry peak current and rated short time current as the main blades of the isolator and shall withstand dynamic stresses. vi) Each earth switch shall be provided with flexible copper braids for connection to the ground mat. These braids shall have same short time current carrying capacity as the earth blades. Assembly i) The disconnecting switch along with its base frame and operating mechanism shall be completely assembled and checked for correct alignment and operation at manufacturer's works prior to despatch. ii) All parts and accessories shall have appropriate benchmarks and part numbers for identifications at site. Grounding i) Each equipment shall be provided with two ground pads for connection to station ground. ii) The ground pad shall comprise buffed metal surface with two tapped holes, M10 G.I. bolts and spring washers for connection to G.S. flat of approved size. iii) Each disconnecting/earth switch-operating rod shall be separately grounded at a point above the mechanism box. This is done by flexible copper braid of adequate section but in no case less than 70 mm². Painting i) Base frame, operating rod and all hardwares shall be hot-dip galvanised. ii) Mechanism box will be finished with two coats of aluminium paints after surface treatment, involving chemical cleaning, phosphating and application of under coats. iii) Sufficient quantity of touch-up paints shall be furnished for application at site. -
Dissipative Etfe Dielectric Polymer Helps Control Electrostatic Discharge in Wires and Cables
DISSIPATIVE ETFE DIELECTRIC POLYMER HELPS CONTROL ELECTROSTATIC DISCHARGE IN WIRES AND CABLES. by: Chris Yun, Principal Engineer of Aerospace, Defense and Marine, TE Connectivity Recent tests by NASA's Jet Propulsion Laboratory (JPL) and when electrically dissimilar materials rub together. But in wires and Goddard Space Flight Center show that new nano-carbon cross- cables used in spacecraFt, a static charge can be created by the linked ethylene tetrafluoroethylene (ETFE) helps controls impact of charged particles on the material. Space is filled with electrostatic discharge (ESD) in wires and cables used on charged particles that can induce a charge in materials. Satellites spacecraft. in geosynchronous orbits and deep space missions are particularly susceptible because oF higher charge density in GEO and deep Controlling static electricity in electrical interconnection systems is space. essential in spacecraft where ESD events can damage electronics and scuttle the mission. The use of high resistivity dielectric materials and electrically separated surFaces in conjunction with the connected conducting In fact, it has been reported that 54% of spacecraft surFaces oF the spacecraFt Frame promote various forms of anomalies/Failures are caused by electrostatic discharging and spacecraFt charging.3 When the charge builds up in wire and cable charging. 1 For example in April 2010, the Galaxy 15 of electrical interconnection systems, a sudden discharge can telecommunications satellite wandered from its geosynchronous damage connected logic circuits, electronic instruments, and orbit. Reports in space technology literature suggested that computer chips. spacecraFt charging caused the anomaly. Fortunately, a workaround allowed the mission to continue. Worse oFF was the Discharge voltage levels vary widely. -
IEEE/PES Transformers Committee Fall 2017 Meeting Minutes
Transformers Committee Chair: Stephen Antosz Vice Chair: Sue McNelly Secretary: Bruce Forsyth Treasurer: Greg Anderson Awards Chair/Past Chair: Don Platts Standards Coordinator: Jim Graham IEEE/PES Transformers Committee Fall 2017 Meeting Minutes Louisville, KY October 30 – November 2, 2017 Unapproved (These minutes are on the agenda to be approved at the next meeting in Spring 2018) TABLE OF CONTENTS GENERAL ADMINISTRATIVE ITEMS 1.0 Agenda 2.0 Attendance OPENING SESSION – MONDAY OCTOBER 30, 2017 3.0 Approval of Agenda and Previous Minutes – Stephen Antosz 4.0 Chair’s Remarks & Report – Stephen Antosz 5.0 Vice Chair’s Report – Susan McNelly 6.0 Secretary’s Report – Bruce Forsyth 7.0 Treasurer’s Report – Gregory Anderson 8.0 Awards Report – Don Platts 9.0 Administrative SC Meeting Report – Stephen Antosz 10.0 Standards Report – Jim Graham 11.0 Liaison Reports 11.1. CIGRE – Raj Ahuja 11.2. IEC TC14 – Phil Hopkinson 11.3. Standards Coordinating Committee, SCC No. 18 (NFPA/NEC) – David Brender 11.4. Standards Coordinating Committee, SCC No. 4 (Electrical Insulation) – Paulette Payne Powell 12.0 Hot Topics for the Upcoming – Subcommittee Chairs 13.0 Opening Session Adjournment CLOSING SESSION – THURSDAY NOVEMBER 2, 2017 14.0 Chair’s Remarks and Announcements – Stephen Antosz 15.0 Meetings Planning SC Minutes & Report – Gregory Anderson 16.0 Reports from Technical Subcommittees (decisions made during the week) 17.0 Report from Standards Subcommittee (issues from the week) 18.0 New Business 19.0 Closing Session Adjournment APPENDIXES – ADDITIONAL DOCUMENTATION Appendix 1 – Meeting Schedule Appendix 2 – Semi-Annual Standards Report Appendix 3 – IEC TC14 Liaison Report Appendix 4 – CIGRE Report Page 2 of 55 ANNEXES – UNAPPROVED MINUTES OF TECHNICAL SUBCOMMITTEES NOTE: The Annexes included in these minutes are unapproved by the respective subcommittees and are accurate as of the date the Transformers Committee meeting minutes were published. -
IEEE Grounding Transformers
Grounding Transformers John S. Levine, P.E. Levine Lectronics and Lectric, Inc. [email protected] 1 • It is used to provide a ground path on either an ungrounded Wye or a Delta connected system • The relatively low impedance path to ground maintains the system neutral at ground potential • On Ungrounded systems you can have overvoltages of 6 to 8 times normal with arcing faults Arcing Ground Faults Intermittent or Re-strike •Plot of transient over-voltage for an arcing ground fault Arcing Ground Faults Intermittent or Re-strike •Intermittent ground fault: A re-striking ground fault can create a high frequency oscillator (RLC circuit), independent of L and C values, causing high transient over- voltages. – i.e. re-striking due to ac voltage waveform or loose wire caused by vibration 480V Delta Source 3Ø Load Rfe V V Cb Cb S fa THE HIGH RESISTANCE GROUNDED POWER SYSTEM CONTROL OF TRANSIENT OVERVOLTAGE • It supports the voltage on a faulted phase – If a single line-to-ground fault occurs on an ungrounded or isolated system, no return path exists and no current flows – The system will continue to operate but the other two un- faulted lines will rise in in voltage by the square root of 3, possibly overstressing the transformer insulation, and other components, by 173% UNGROUNDED SYSTEM NORMAL CONDITIONS UNGROUNDED SYSTEM GROUND FAULT ON PHASE A • Provides a metering point to measure faults A typical example is a Wind Farm. They utilize grounding transformers for fault protection on ungrounded lines When a ground fault occurs on a collector cable causes the substation circuit breaker to open, the wind turbine string becomes isolated Turbines do not always detect the fault and the generators continue to energize the cable. -
Lead-Acid Starter Batteries in Systems Usage Information
Batteries Association ZVEI information leaflet No. 28e Edition October 2017 Lead-acid starter batteries in systems Usage information Preliminary note: This information leaflet aims to help to choose batteries and develop design solutions and operating manuals by providing general information on the usage of lead-acid batteries in vehicles, which extend beyond the relevant standard specifications. This information serves as a recommendation only, and not as a substitute for the battery user’s responsibility to make appropriate decisions. By pooling all gained experience to date, however, it should make the decision easier. Contents 1. General .............................................................................................................................................. 2 2. Mechanical loads.............................................................................................................................. 2 2.1. Battery installation................................................................................................................. 2 2.2. Vibration stress...................................................................................................................... 3 3. Thermal stress..................................................................................................................................3 3.1. Battery temperatures............................................................................................................. 4 3.2. Possible measures regarding thermal loading -
Self-Powered Multifunctional Motion Sensor Enabled by Magnetic
Article Cite This: ACS Nano XXXX, XXX, XXX−XXX www.acsnano.org Self-Powered Multifunctional Motion Sensor Enabled by Magnetic-Regulated Triboelectric Nanogenerator † ‡ ⊥ † ⊥ † ⊥ † † † † Zhiyi Wu, , , Wenbo Ding, , Yejing Dai, , Kai Dong, Changsheng Wu, Lei Zhang, Zhiming Lin, † † § Jia Cheng, and Zhong Lin Wang*, , † School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States ‡ Engineering Research Center for Mechanical Testing Technology and Equipment of Ministry of Education, Chongqing University of Technology, Chongqing 400054, China § Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China *S Supporting Information ABSTRACT: With the fast development of the Internet of Things, the requirements of system miniaturization and integration have accelerated research on multifunctional sensors. Based on the triboelectric nanogenerator, a self-powered multifunctional motion sensor (MFMS) is proposed in this work, which is capable of detecting the motion parameters, including direction, speed, and acceleration of linear and rotary motions, simultaneously. The MFMS consists of a triboelectric nanogenerator (TENG) module, a magnetic regulation module, and an acrylic shell. The TENG module is formed by placing a free-standing magnetic disk (MD) on a polytetrafluorethylene (PTFE) plate with six copper electrodes. The movement of the MFMS causes the MD to slide on the PTFE plate and hence excites the electrodes to produce a voltage output. The carefully designed six copper electrodes (an inner circle electrode, an outer circle electrode, and four arc electrodes between them) can distinguish eight directions of movement with the acceleration and determine the rotational speed and direction as well. Besides, the magnetic regulation module is applied here by fixing a magnetic cylinder (MC) in the shell, right under the center of the PTFE plate.