AFS – Advances in Food Sciences Continuation of CMTL Founded by F

Total Page:16

File Type:pdf, Size:1020Kb

AFS – Advances in Food Sciences Continuation of CMTL Founded by F AFS – Advances in Food Sciences Continuation of CMTL founded by F. Drawert Production by PSP – Parlar Scientific Publications, Angerstr. 12, 85354 Freising, Germany in cooperation with Lehrstuhl für Chemisch-Technische Analyse und Lebensmitteltechnologie, Technische Universität München, 85350 Freising - Weihenstephan, Germany Copyright © by PSP – Parlar Scientific Publications, Angerstr. 12, 85354 Freising, Germany. All rights are reserved, especially the right to translate into foreign language. No part of the journal may be reproduced in any form- through photocopying, microfilming or other processes- or converted to a machine language, especially for data processing equipment- without the written permission of the publisher. The rights of reproduction by lecture, radio and television transmission, magnetic sound recording or similar means are also reserved. Printed in GERMANY – ISSN 14311431----77377737 © by PSP Volume 24 – No 4. 2002 Advances in Food Sciences 1 © by PSP Volume 24 – No 4. 2002 Advances in Food Sciences AFSAFS---- Editorial Board Chief Editors: Prof. Dr. H. Parlar Institut für Lebensmitteltechnologie und Analytische Chemie, TU München - 85350 Freising-Weihenstephan, Germany - E-mail: [email protected] Dr. G. Leupold Institut für Lebensmitteltechnologie und Analytische Chemie, TU München - 85350 Freising-Weihenstephan, Germany - E-mail: [email protected] CoCo----Editor:Editor: Prof. Dr. R. G. Berger Zentrum Angewandte Chemie, Institut für Lebensmittelchemie, Universität Hannover Wunstorfer Straße 14, 30453 Hannover - E-mail: [email protected] AFSAFS- Advisory Board E. Anklam, I M. Bahadir, D F. Coulston, USA J.M. de Man, CAN N. Fischer, D S. Gäb, D A. Görg, D U. Gill, CAN D. Hainzl, P W.P. Hammes, D D. Kotzias, I F. Korte, D M.G. Lindhauer, D B. Luckas, D S. Nitz, D A.M Raichlmayr-Lais, D M. Spiteller, D H. Steinhart, D R.F. Vogel, D R.P. Wallnöfer, D P. Werkhoff, D Editorial ChiefChief----Officer:Officer: Selma Parlar PSP- Parlar Scientific Publications - Angerstr.12, 85354 Freising, Germany E-Mail: [email protected] - www.psp-parlar.de Marketing Chief Manager: Max-Josef Kirchmaier MASELL-Agency for Marketing & Communication, Public-Relations Angerstr.12, 85354 Freising, Germany E-Mail: [email protected] - www.masell.com 2 © by PSP Volume 24 – No 4. 2002 Advances in Food Sciences CONTENTS ORIGINAL PAPERS DEVELOPING FUNCTIONAL FOODS USING RED PALM OLEIN. 138 I. PAN BREAD AND SUGAR-SNAP COOKIES S. N. Al-Hooti, J. S. Sidhu, J. M. Al-Saqer, H. A. Al-Amiri, A. Al-Othman, I. B. Mansour, and M. Johari THERMAL RESISTANCE OF Bacillus coagulans 144 IN PHOSPHATE BUFFER AND TOMATO JUICE A. H. Dinçer and A. Ünlütürk A COMPARATIVE STUDY OF THE MICROBIOLOGICAL QUALITY AND 148 CONSUMER ACCEPTABILITY OF SOYCHEESE AND MILK-BASED CHEESE O. O. Aboaba and M. S. Adeleye MÖGLICHKEITEN UND GRENZEN DES EINSATZES VON GASSENSOR-ARRAYS 154 ZUR QUALITÄTSBEURTEILUNG VON LEBENSMITTELN S. Nitz und D. Hanrieder SHORT COMMUNICATIONS CONSTITUENTS OF ESSENTIAL OIL OF 170 Echinophora tenuifolia L. subsp. sibthorpiana (Guss.) Tutin. H. Ç. Özen and Z. Toker FATTY ACID COMPOSITIONS OF Hypericum triquetrifolium TURRA 173 H. Ç. Özen and M. Başhan PRESS RELEASE Fraunhofer Institute for Process Engineering and Packaging IVV: 175 Conference on Packaging Food and Pharmaceuticals – Science for Compliance (May 27 and 28, 2003, Erding – GERMANY) INDEX 176 SUBJECT INDEX for Advances in Food Sciences 2002 177 AUTHOR INDEX for Advances in Food Sciences 2002 179 137 © by PSP Volume 24 – No 4. 2002 Advances in Food Sciences DEVELOPING FUNCTIONAL FOODS USING RED PALM OLEIN. I. PAN BREAD AND SUGAR-SNAP COOKIES Suad N. Al-Hooti, Jiwan S. Sidhu, Jameela M. Al-Saqer, Hanan A. Al-Amiri, Amani Al-Othman,1 Isa B. Mansour,2 and Minal Johari2 Biotechnology Dept. 1Systems Development Dept., Kuwait Institute for Scientific Research, Safat, Kuwait, 2Malaysian Palm Oil Board, Malaysia SUMMARY Red palm olein (RPOL) is a specially prepared vege- level in the blood responds to increasing dietary intake. table oil rich in two important antioxidants, β-carotenes The carotenoid profile of palm oil is rich in α-carotenes and vitamin E. Two functional foods, pan bread and (30 to 40%) and β-carotenes (50 to 60%). Apart from sugar-snap cookies, were prepared by replacing normal their functions as precursors of vitamin A [6], these caro- bakery shortening with red palm shortening (RPS) and tenoids can quench singlet oxygen and serve as antioxi- RPOL. Replacement of up to 100% RPS and RPOL in dants in tissues, particularly under conditions of low oxy- sugar-snap cookies had no adverse effect on their quality gen tension. They can stimulate the immune response and when compared with control bakery shortening. However, protect against some types of induced cancers [7]. Palm 100% replacement with RPOL in the bread formulations oil is also the largest potential source of vitamin E, which had a negative effect on the baking characteristics of test has been advocated for the prevention of heart attacks [8]. breads, when compared with control breads. A sensory The vitamin E content in palm oil is unique, represented evaluation of these functional foods revealed that all of mainly as tocotrienols (70%) rather than as tocopherols the products were well-accepted by the consumers. The (30%). α-Tocopherol and γ-tocotrienol account for the research data presented in this paper lends strong support major portions of the total tocopherols and tocotrienols. to the view that good quality, acceptable bread and sugar- Natural tocopherol, especially α-tocopherol, is a superior snap cookies, rich in natural antioxidant vitamins (vitamin radical chain-breaking antioxidant compared with synthetic E and β-carotene) can be prepared successfully using ones. The presence of this natural vitamin E in palm oil RPOL and RPS, thus providing healthy choices of nutri- ensures a longer shelf-life for palm-based food products. tionally superior functional foods to the consumers. Recent research shows a significant and adverse ef- fect of trans fatty acids (TFA) on LDL cholesterol levels, with each 1% increase in dietary energy from TFA lead- KEYWORDS: Functional foods, pan bread, cookies, vitamin E, ing to a 0.028-mmpl/L increase in LDL [9]. Main sources β-carotenes, nutritive value, sensory quality, red palm olein. of TFA in the human diet are deep-fried foods, spreads, margarine, cookies, cakes and bread. Palm oil needs very little or no hydrogenation and is being used extensively in the manufacture of hardened fats like vanaspati in India, Nepal, Pakistan and the Middle East [1-2]. One advantage INTRODUCTION of palm olein is that it can be used without hydrogenation, thereby, excluding the possible adverse effects of dietary Crude palm oil is the richest natural plant source of trans fatty acids. carotenoids, containing between 500 and 700 ppm carote- noids [1-2]. Refined palm oil contains no carotenoids as Currently, there is a growing belief that healthy eating is they are removed or destroyed during processing. Red a better way to manage illness than medication. The cross- palm olein (RPOL), a product of palm oil, is refined by a over effect from dietary supplements to foods is increasing mild, specially designed process so as to retain most of the demand for fortified, functional and medical foods [10]. the natural carotenes [3-5]. RPOL is edible oil and is the There is an immense interest in the nutritional benefits of richest natural plant source of carotenoids as well as vi- vitamin E due to its preventive and therapeutic potentials tamin E. During digestion in the human alimentary canal, against free-radical-mediated degenerative diseases such as β-carotene is absorbed through the intestinal wall and its arteriosclerosis and certain types of cancer [11]. 138 © by PSP Volume 24 – No 4. 2002 Advances in Food Sciences Considering the importance of β-carotenes and vitamin sodium bicarbonate, 2.75 g of ammonium bicarbonate, 7 g E, this study was carried out to utilize the nutritionally supe- of nonfat dry milk, 2.25 g of dextrose and 1.25 g of SSL. rior RPOL and RPS in the development of two important Initial trials were conducted by replacing bakery shorten- functional foods, viz., pan bread and cookies. The results of ing (Wesson, USA) with RPOL or RPS at 0, 25, 50, 75, the initial laboratory studies using RPS and RPOL in bread and 100% levels. and sugar-snap cookies are presented in this paper. Physical Measurements for Bread A proofed dough was weighed just before loading MATERIALS AND METHODS into the baking oven and then immediately after removal from the oven at the end of baking. Weight loss in baked Raw Materials bread was divided by the proofed dough weight and mul- tiplied by 100, and then expressed as the percentage bak- RPS and RPOL were provided free of charge by the ing loss. The specific loaf volume of the bread was deter- Carotino Company of Malaysia. White flour, whole- mined by the rapeseed displacement method [12]. wheat flour, and fine bran were obtained from the Kuwait Flour Mills and Bakeries Co., Kuwait. Fine granulated Physical Measurements for Cookies sugar, common salt, bakery shortening (Wesson brand, USA), instant dry yeast and nonfat dry milk were pro- The mean diameter of a cookie was measured by cured from the local market. Diacetyl tartaric acid esters placing six cookies side by side, measuring their length, of monoglycerides (DATEM) and sodium stearoyl-2- then rotating each cookie 90° and measuring their total lactylate (SSL) emulsifiers were procured from the length again, and then taking the average of the two read- American Ingredients Co., Kansas City, USA. All other ings. The six cookies were then stacked one on top of the chemicals were of analytical grade. other, the height was measured, and the average thickness of one cookie was calculated. The cookie spread ratio was Pan Bread Formulation then calculated by dividing the average diameter by the For bread-making, whole-wheat flour, fine bran (20% average height of the cookie.
Recommended publications
  • Consolidated Version of the Sanpin 2.3.2.1078-01 on Food, Raw Material, and Foodstuff
    Registered with the Ministry of Justice of the RF, March 22, 2002 No. 3326 MINISTRY OF HEALTH OF THE RUSSIAN FEDERATION CHIEF STATE SANITARY INSPECTOR OF THE RUSSIAN FEDERATION RESOLUTION No. 36 November 14, 2001 ON ENACTMENT OF SANITARY RULES (as amended by Amendments No.1, approved by Resolution No. 27 of Chief State Sanitary Inspector of the RF dated 20.08.2002, Amendments and Additions No. 2, approved by Resolution No. 41 of Chief State Sanitary Inspector of the RF dated15.04.2003, No. 5, approved by Resolution No. 42 of Chief State Sanitary Inspector of the RF dated 25.06.2007, No. 6, approved by Resolution No. 13 of Chief State Sanitary Inspector of the RF dated 18.02.2008, No. 7, approved by Resolution No. 17 of Chief State Sanitary Inspector of the RF dated 05.03.2008, No. 8, approved by Resolution No. 26 of Chief State Sanitary Inspector of the RF dated 21.04.2008, No. 9, approved by Resolution No. 30 of Chief State Sanitary Inspector of the RF dated 23.05.2008, No. 10, approved by Resolution No. 43 of Chief State Sanitary Inspector of the RF dated 16.07.2008, Amendments No.11, approved by Resolution No. 56 of Chief State Sanitary Inspector of the RF dated 01.10.2008, No. 12, approved by Resolution No. 58 of Chief State Sanitary Inspector of the RF dated 10.10.2008, Amendment No. 13, approved by Resolution No. 69 of Chief State Sanitary Inspector of the RF dated 11.12.2008, Amendments No.14, approved by Resolution No.
    [Show full text]
  • WO 2013/116261 A2 8 August 2013 (08.08.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/116261 A2 8 August 2013 (08.08.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every CUD 3/386 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US2013/023728 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 30 January 2013 (30.01 .2013) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (30) Priority Data: ZM, ZW. 12000745.5 3 February 2012 (03.02.2012) EP 12001034.3 16 February 2012 (16.02.2012) EP (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: THE PROCTER & GAMBLE COMPANY GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, [US/US]; One Procter & Gamble Plaza, Cincinnati, Ohio UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 45202 (US).
    [Show full text]
  • Super Greens
    SUPER GREENS SUPPLEMENT FACTS Serving Size: 1 Scoop (10 g) Servings Per Container: 30 Amount Per Serving % Daily Value Calories 25 Total Carbohydrate 6 g 2%* Dietary Fiber 3 g 12%* Sugars 1 g † Protein <1 g <2%* Organic Super Greens, Sprouts & Prebiotic Fiber Blend: 3.5 g Wheat grass, barley grass, spirulina (blue green algae), green pea fiber, oat fiber, flaxseed, blue agave inulin, plum, orange peel, apple fiber, lemon peel, kale, broccoli, spinach, parsley, green cabbage, alfalfa grass, chlorella, green tea, tomato, sweet potato, pumpkin, dandelion root, collard greens, dulse, adzuki sprout, amaranth sprout, buckwheat sprout, chia sprout, flax sprout, garbanzo bean sprout, lentil bean sprout, millet sprout, pumpkin sprout, quinoa sprout, sesame sprout, sunflower sprout Organic Super Foods & Fruits Blend: 3.5 g Beet root, carrot, Organic Berry Blend [acai berry (Euterpe oleracea), apple, banana, bilberry, black currant, blueberry, cherry, elderberry, goji berry (Lycium barbarum), grape, maqui berry (Aristotelia chilensis), papaya, pineapple, pomegranate, raspberry, strawberry], apple, shitake mushroom, reishi mushroom, maitake mushroom, blueberry, raspberry, strawberry, peach, blackberry, lemon, pear, cranberry, grape, pomegranate, cherry, orange Probiotic Blend: 500 million CFU Bacillus coagulans, Lactobacillus rhamnosus, Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus casei, Streptococcus thermophilus * Percent Daily Values are based on a 2,000 calorie diet. † Daily value not established. Other ingredients: Organic tapioca starch, organic guar gum, citric acid, organic natural berry flavor and organic rebaudioside A. .
    [Show full text]
  • Public Health Impact a Suitable Test for L-Citrulline—
    1 Winter 2016 Public Health Impact A Suitable Test for L-citrulline— How Validated Test Methods May New Dietary Supplements Impact Public Health Reference Standards In the U.S., most newborn babies are screened for rare inborn errors of Below is a list of newly released metabolism (IEM)—a group of genetic disorders caused by a defect in a reference standards: metabolic pathway. Left untreated, these disorders can lead to a host of Botanicals medical and developmental consequences ranging from intellectual 1 disability to severe cognitive impairment and even death. • 2,3,5,4’-Tetrahydroxystilbebe-2- Some of these metabolic errors require the use of amino acids to avoid O-Beta-D-Glucoside the buildup of ammonia in the body. L-citrulline is one such amino acid, • Emodin and it is used for IEM as a medical food, which is regulated by the U.S. Food and Drug Administration (FDA) under the Orphan Drug Act. Medical • Polygonum multiflorum Root Dry foods are distinct within the broader category of foods and need to be Extract administered under the supervision of a healthcare professional • Lonicera japonica Flower Dry specifically to help manage a disease or condition associated with Extract distinctive nutritional requirements. In addition to being marketed as a medical food for IEM, L-citrulline is marketed as a dietary supplement for • Secoxyloganin other purposes. • Lonicera macranthoides Flower Sometimes, the quality control testing done to authenticate ingredients is Dry Extract insufficient to guarantee their quality. That was the case with L-citrulline in Luteolin-7-O-glucoside 2014. • One of the primary suppliers of the ingredient for use as a medical food voluntarily recalled several batches of the product after the FDA warned Non-Botanicals that the product being sold had no L-citrulline present.
    [Show full text]
  • Dietary Supplements Compendium Volume 1
    2015 Dietary Supplements Compendium DSC Volume 1 General Notices and Requirements USP–NF General Chapters USP–NF Dietary Supplement Monographs USP–NF Excipient Monographs FCC General Provisions FCC Monographs FCC Identity Standards FCC Appendices Reagents, Indicators, and Solutions Reference Tables DSC217M_DSCVol1_Title_2015-01_V3.indd 1 2/2/15 12:18 PM 2 Notice and Warning Concerning U.S. Patent or Trademark Rights The inclusion in the USP Dietary Supplements Compendium of a monograph on any dietary supplement in respect to which patent or trademark rights may exist shall not be deemed, and is not intended as, a grant of, or authority to exercise, any right or privilege protected by such patent or trademark. All such rights and privileges are vested in the patent or trademark owner, and no other person may exercise the same without express permission, authority, or license secured from such patent or trademark owner. Concerning Use of the USP Dietary Supplements Compendium Attention is called to the fact that USP Dietary Supplements Compendium text is fully copyrighted. Authors and others wishing to use portions of the text should request permission to do so from the Legal Department of the United States Pharmacopeial Convention. Copyright © 2015 The United States Pharmacopeial Convention ISBN: 978-1-936424-41-2 12601 Twinbrook Parkway, Rockville, MD 20852 All rights reserved. DSC Contents iii Contents USP Dietary Supplements Compendium Volume 1 Volume 2 Members . v. Preface . v Mission and Preface . 1 Dietary Supplements Admission Evaluations . 1. General Notices and Requirements . 9 USP Dietary Supplement Verification Program . .205 USP–NF General Chapters . 25 Dietary Supplements Regulatory USP–NF Dietary Supplement Monographs .
    [Show full text]
  • Potential Use of Bacillus Coagulans in the Food Industry
    foods Review Potential Use of Bacillus coagulans in the Food Industry Gözde Konuray * ID and Zerrin Erginkaya ID Department of Food Engineering, Cukurova University, Adana 01330, Turkey; [email protected] * Correspondence: [email protected]; Tel.: +90-322-338-60-84 Received: 1 May 2018; Accepted: 11 June 2018; Published: 13 June 2018 Abstract: Probiotic microorganisms are generally considered to beneficially affect host health when used in adequate amounts. Although generally used in dairy products, they are also widely used in various commercial food products such as fermented meats, cereals, baby foods, fruit juices, and ice creams. Among lactic acid bacteria, Lactobacillus and Bifidobacterium are the most commonly used bacteria in probiotic foods, but they are not resistant to heat treatment. Probiotic food diversity is expected to be greater with the use of probiotics, which are resistant to heat treatment and gastrointestinal system conditions. Bacillus coagulans (B. coagulans) has recently attracted the attention of researchers and food manufacturers, as it exhibits characteristics of both the Bacillus and Lactobacillus genera. B. coagulans is a spore-forming bacterium which is resistant to high temperatures with its probiotic activity. In addition, a large number of studies have been carried out on the low-cost microbial production of industrially valuable products such as lactic acid and various enzymes of B. coagulans which have been used in food production. In this review, the importance of B. coagulans in food industry is discussed. Moreover, some studies on B. coagulans products and the use of B. coagulans as a probiotic in food products are summarized. Keywords: Bacillus coagulans; probiotic; microbial enzyme 1.
    [Show full text]
  • Isolation and Characterization of Probiotic Bacillus Subtilis MKHJ 1-1 Possessing L-Asparaginase Activity
    applied sciences Article Isolation and Characterization of Probiotic Bacillus subtilis MKHJ 1-1 Possessing L-Asparaginase Activity Hyeji Lim 1 , Sujin Oh 1 , Sungryul Yu 2 and Misook Kim 1,* 1 Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea; [email protected] (H.L.); [email protected] (S.O.) 2 Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-41-550-3494 Abstract: The purpose of this study was to isolate functional Bacillus strains from Korean fermented soybeans and to evaluate their potential as probiotics. The L-asparaginase activity of MKHJ 1-1 was the highest among 162 Bacillus strains. This strain showed nonhemolysis and did not produce β-glucuronidase. Among the nine target bacteria, MKHJ 1-1 inhibited the growth of Escherichia coli, Pseudomonas aeruginosa, Shigella sonnei, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus cereus. 16S rRNA gene sequence analysis resulted in MKHJ 1-1 identified as Bacillus subtilis subsp. stercoris D7XPN1. As a result of measuring the survival rate in 0.1% pepsin solution (pH 2.5) and 0.3% bile salt solution for 3 h, MKHJ 1-1 exhibited high acid resistance and was able to grow in the presence of bile salt. MKHJ 1-1 showed outstanding autoaggregation ability after 24 h. In addition, its coaggregation with pathogens was strong. Therefore, MKHJ 1-1 is a potential probiotic with L-asparaginase activity and without L-glutaminase activity, suggesting that it could be a new resource for use in the food and pharmaceutical industry.
    [Show full text]
  • BIOMEFX RECOMMENDATIONS 2 Dysbiosis Ratios
    REPORT RECOMMENDATIONS 02....................................... ALPHA AND BETADIVERSITY RESISTOME DYSBIOSIS RATIOS Firmicutes: Bacteroidetes, Proteobacteria:Actinobacteria, Prevotella:Bacteroides Ratio 04....................................... PATHOGENS Clostridium dicile, Helicobacter pylori, Campylobacter species: C. concisus, C. showae, C. hominis, C. ureolyticu, Escherichia coli, Salmonella enterica, Yersinia enterocolitica, Klebsiella pneumoniae (opportunistic), Citrobacter freundii, Hafnia alvei (opportunistic), Raoultella ornithinolytica, Bilophila wadsworthia, Vibrio cholerae, Candida species, Geotrichum spp, Microsporidia spp, Rhodotorula spp, Giardia lamblia, Cyclospora cayetanensis, Blastocystis hominis, Cryptosporidium, Entamoeba histolytica, Adenovirus, Cytomegalovirus, Epstein Barr virus 12 ....................................... FUNCTIONS Saccharolytic Fermentation, Butyrate production, Propionate production, Acetate Production, Lactate production, Proteolytic fermentation, Polyamine production, P-cresol production, Ammonia production, Hydrogen Sulfide production, Methane Production, GABA Production, Glutathione production, Indole production, Estrobolome (estrogen recycling), Vitamin Production, Vit B1 Thiamin, Vit B2 Riboflavin, Vit B5 - Pantothenic acid, Vit B6 - Pyridoxine, Vit B7 - Biotin, Vit B9 - Folate, Vit B12 - Cobalamin, Vitamin K2 23....................................... KEYSTONE SPECIES Akkermansia muciniphila, Faecalibacterium prausnitzii, Butyricicoccus pullicaecorum, Ruminococcus bromii, Ruminococcus flavefaciens,
    [Show full text]
  • Deliciously Frozen Probiotics—Ice Cream and Beyond
    [Frozen/Refrigerated Foods] Vol. 20 No. 8 August 2010 ww Deliciously Frozen Probiotics—Ice Cream and Beyond By Cindy Hazen, Contributing Editor Given a choice between cultured buttermilk or a bowl of ice cream, most Americans would choose the latter. Buttermilk may be a healthier option, because it feeds us friendly bacteria that fortify our digestive system, but ice cream is infinitely more satisfying—even if we perceive it to offer us mostly flavor and calories. Adding probiotic bacteria to ice cream and frozen desserts Sweet Sales removes potential guilt and gives us reason to enjoy our The U.S. ice cream and frozen-dessert favorite scoop. But for the manufacturer, adding these market reached $24.6 billion in 2009, microscopic organisms requires a little know-how. notes a Jan. 2010 report published by Packaged Facts, “Ice Cream and Probiotics: It’s alive Frozen Desserts in the U.S.: Markets and Opportunities in Retail and Foodservice, 6th edition." Sales are National Yogurt Association, McLean, VA, notes that projected to reach $26.5 billion by probiotics are living microorganisms, which upon ingestion 2014. Frozen yogurt represents an 8% in sufficient number, exert health benefits beyond basic share of U.S. frozen-dessert sales. Ice nutrition. “Probiotics need to be viable in order to have any cream, on the other hand, comprises nutritional value, and thus must be incorporated post- 59% of sales. Frozen novelties make up 30% of sales. Further, the report pasteurization," says Peggy Pellichero, senior food notes, “the trend has taken a turn in technologist—dairy team leader, David Michael & Co., that it now focuses primarily on Philadelphia.
    [Show full text]
  • Characterization of Commercial Probiotics: Antibiotic Resistance
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research in Food Food Science and Technology Department Science and Technology 8-2014 Characterization of Commercial Probiotics: Antibiotic Resistance, Acid and Bile Resistance, and Prebiotic Utilization Carmen Lucia Cano Roca University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/foodscidiss Part of the Food Microbiology Commons Cano Roca, Carmen Lucia, "Characterization of Commercial Probiotics: Antibiotic Resistance, Acid and Bile Resistance, and Prebiotic Utilization" (2014). Dissertations, Theses, & Student Research in Food Science and Technology. 46. http://digitalcommons.unl.edu/foodscidiss/46 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. i Characterization of Commercial Probiotics: Antibiotic Resistance, Acid and Bile Resistance, and Prebiotic Utilization by Carmen Lucia Cano Roca A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Food Science and Technology Under the Supervision of Professor Jayne E. Stratton Lincoln, Nebraska August, 2014 ii Characterization of Commercial Probiotics: Antibiotic Resistance, Acid and Bile Resistance, and Prebiotic Utilization Carmen Lucia Cano Roca, M.S. University of Nebraska, 2014 Adviser: Jayne Stratton Probiotics, live microorganisms that beneficially affect the health of their host, must undergo extensive research to ensure they are safe for consumption and possess certain functional properties.
    [Show full text]
  • Engineered Cells for Production of Indole-Derivatives
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Engineered cells for production of indole-derivatives Kell, Douglas; Yang, Lei; Malla, Sailesh Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Kell, D., Yang, L., & Malla, S. (2020). Engineered cells for production of indole-derivatives. (Patent No. WO2020187739). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. ) ( 2 (51) International Patent Classification: C07K 14/715 (2006.01) (21) International Application Number: PCT/EP2020/056828 (22) International Filing Date: 13 March 2020 (13.03.2020) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 19163 184.5 15 March 2019 (15.03.2019) EP (71) Applicant: DANMARKS TEKNISKE UNIVERSITET [DK/DK]; Anker Engelunds Vej 101 A, 2800 Kgs. Lyngby (DK). (72) Inventors: KELL, Douglas, Bruce; Chirk Manor, Trevor Rd, Chirk, Wrexham LL14 5HD (GB).
    [Show full text]
  • Dshm-Fall-2020-Newsletter.Pdf
    Update to The Supplement Newsletter Products & Services Note that we did not publish an edition of The Supplement in Summer 2020. We've been busy behind the scenes preparing for upcoming improvements to this newsletter and to the USP New Dietary Supplements Dietary Supplements & Herbal Medicines website. Stay tuned for exciting new changes to keep Reference Standards you better informed in 2021 and beyond! Herbal Medicines/ Botanical Dietary Supplements Dietary Supplements Compendium Online Ginsenoside Rb1 Isorhamnetin-3-O- Rutinoside Sophora japonica Flower Dry Extract Spinosin Synephrine Ziziphus jujuba spinosa Seed Dry Extract Reference Standards in The DS staff is busy assembling the next edition of the USP Dietary Supplements Compendium development: (DSC) Online to become available in summer 2021; the second annual update of this Botanicals exceptional resource. A number of under-the hood enhancements will be implemented to improve the user experience, bringing this edition one step closer to the way it was envisioned Aegle marmelos Fruit Dry when we switched from the print edition. As always, we invite you, our ultimate arbiters, to Extract provide feedback and help us prioritize the work for the upcoming and the subsequent DSC Angelica sinensis Root Online editions. Please direct your comments to Anton Bzhelyansky ([email protected]). DSC Powder Online continues to provide in-depth, comprehensive information for all phases of development Azadirachta indica Seed and manufacturing of quality dietary supplements including quality control, quality assurance, Oil and regulatory/compendial affairs. We will provide more details on the update in the upcoming Azadirachta indica Leaf DSC Newsletters. Dry Extract For more information or to order the online DSC please click here.
    [Show full text]