Polling Models : from Theory to Traffic Intersections

Total Page:16

File Type:pdf, Size:1020Kb

Polling Models : from Theory to Traffic Intersections Polling models : from theory to traffic intersections Citation for published version (APA): Boon, M. A. A. (2011). Polling models : from theory to traffic intersections. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR702638 DOI: 10.6100/IR702638 Document status and date: Published: 01/01/2011 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 29. Sep. 2021 Polling Models From Theory to Traffic Intersections ii Polling Models From Theory to Traffic Intersections PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op maandag 4 april 2011 om 16.00 uur door Marcus Aloysius Antonius Boon geboren te Heerlen Dit proefschrift is goedgekeurd door de promotoren: prof.dr.ir. O.J. Boxma en prof.dr.ir. I.J.B.F. Adan A catalogue record is available from the Eindhoven University of Technology Library. ISBN: 978-90-386-2449-5 ACKNOWLEDGEMENTS Conducting the research that has led to this monograph, has been a great pleasure for me. Now that this phase is reaching its end, it is just as great a pleasure for me to express my gratitude to everybody who has helped to make this thesis possible. First and foremost, I am greatly indebted to my supervisors Onno Boxma and Ivo Adan for encouraging me to start writing a Ph.D. thesis. Their never-ending enthusiasm has given me all the motivation that was necessary to finish the thesis successfully. Onno, you have given me a great start by pushing me in the right direction, but you also had the patience to let me wander into different directions that I saw fit. I greatly admire the way that you always manage to reserve time for anybody needing it. Ivo, you are one of the most enthusiastic persons I know. After a session in front of your blackboard I always left your room full of spirit and ideas about how to tackle the problem. Secondly, I would like to thank the other members of my doctorate committee. I am thankful to the core committee members, Sem Borst, Rob van der Mei, and Richard Boucherie, for their valuable remarks, suggestions, and for the discussions at various occasions, including - or perhaps especially - those that were not related to research. Moreover, I am very honoured to have Uri Yechiali, a foremost expert in the field of polling systems, as a member of the doctorate committee. The last member of my doc- torate committee, Jacques Resing, deserves a special thanks for all the time he has spent explaining the ins and outs of branching-type service disciplines, and for the valuable discussions about the mixed gated/exhaustive service discipline during the ValueTools 2008 conference in Athens. Furthermore, I want to express my gratitude to the co-authors of the papers on which this thesis is based. In alphabetical order: Doug Down, Rob van der Mei, Sandra van Wijk, and Erik Winands. Although being mentioned last in this list, Erik Winands has been one of the most influential people on my research, and may certainly be considered as a third, unofficial, supervisor. Finally, I would like to thank all the people that contributed (directly or indirectly) to the realisation of this research: the board of the department of mathematics and computer science, for creating the possibility for me to be a Ph.D. student for three days per week; all of my colleagues who consequently had to take over some of my tasks; all of my colleagues at EURANDOM and the Stochastics section, for creating a pleasant atmosphere to work in; my family and friends, for making sure that I enjoy the time outside working hours at least as much as the time during working hours; and finally Nicole and Erik, for creating the loving atmosphere at home. Marko Boon February 2011 vi ACKNOWLEDGEMENTS CONTENTS Acknowledgementsv 1 Introduction1 1.1 Motivation.......................................1 1.2 Polling models.....................................2 1.3 Thesis overview....................................6 2 Literature review7 2.1 Applications of polling models...........................7 2.2 Analysis of polling models.............................. 19 I Customer behaviour 41 Introduction to Part I 43 3 Smart customers 45 3.1 Introduction...................................... 45 3.2 Model description and notation.......................... 47 3.3 Queue length distributions............................. 47 3.4 Waiting time distribution.............................. 52 3.5 Cycle times, visit times and intervisit times................... 56 3.6 Numerical examples................................. 58 4 Reneging at polling instants 63 4.1 Introduction...................................... 63 4.2 Model description and notation.......................... 65 4.3 Cycle times, (inter)visit times and waiting times................ 65 4.4 Queue length distributions............................. 69 4.5 Vacation system with exhaustive service..................... 70 4.6 Numerical examples................................. 73 II System behaviour 79 Introduction to Part II 81 viii CONTENTS 5 Multiple priority levels 83 5.1 Introduction...................................... 83 5.2 Model description and notation.......................... 84 5.3 Joint queue length distribution at polling epochs................ 84 5.4 Marginal queue lengths and waiting times.................... 85 5.5 Numerical examples................................. 93 6 Priority based mixed gated/exhaustive service 99 6.1 Introduction...................................... 99 6.2 Model description and notation.......................... 100 6.3 Joint queue length distribution at polling epochs................ 101 6.4 Cycle times, visit times and intervisit times................... 102 6.5 Waiting times and marginal queue lengths.................... 103 6.6 Moments........................................ 105 6.7 Numerical examples................................. 106 III Signalised intersections 113 Introduction to Part III 115 7 Closed-form waiting time approximations 117 7.1 Introduction...................................... 117 7.2 Model description and main result......................... 118 7.3 Derivation of the approximation.......................... 120 7.4 Numerical study.................................... 126 8 Signalised intersections with exhaustive traffic control 135 8.1 Introduction...................................... 135 8.2 Model description and notation.......................... 137 8.3 Heavy traffic...................................... 139 8.4 Light traffic....................................... 145 8.5 Interpolations..................................... 151 8.6 Numerical examples................................. 153 8.A Input settings for Example 2............................ 161 9 Signalised intersections with conflicts 163 9.1 Introduction...................................... 163 9.2 Model description and notation.......................... 163 9.3 Heavy traffic...................................... 164 9.4 Light traffic....................................... 167 9.5 Interpolations..................................... 169 9.6 Numerical example.................................. 170 Bibliography 173 Summary 189 Curriculum Vitae 191 1 INTRODUCTION 1.1 Motivation Waiting in a queue is an unavoidable nuisance in everyday life. Queues may be visible, like people in supermarkets, cars stuck in a traffic jam, patients waiting in a hospital, or invisible, like data packets in computer networks or jobs in a printer queue. Neverthe- less, they are always a source of annoyance, impatience and loss of valuable time and money. For these obvious reasons it is of much practical relevance to gain insight into the processes that cause queues to develop and disappear again. Driven by a rapidly growing
Recommended publications
  • Italic Entries Indicatefigures. 319-320,320
    Index A Analytic hierarchy process, 16-24, role of ORIMS, 29-30 17-18 Availability,31 A * algorithm, 1 absolute, relative measurement Averch-lohnson hypothesis, 31 Acceptance sampling, 1 structural information, 17 Accounting prices. 1 absolute measurement, 23t, 23-24, Accreditation, 1 24 B Active constraint, 1 applications in industry, Active set methods, 1 government, 24 Backward chaining, 33 Activity, 1 comments on costlbenefit analysis, Backward Kolmogorov equations, 33 Activity-analysis problem, 1 17-19 Backward-recurrence time, 33 Activity level, 1 decomposition of problem into Balance equations, 33 Acyclic network, 1 hierarchy, 21 Balking, 33 Adjacency requirements formulation, eigenvector solution for weights, Banking, 33-36 facilities layout, 210 consistency, 19-20, 20t banking, 33-36 Adjacent, 1 employee evaluation hierarchy, 24 portfolio diversification, 35-36 Adjacent extreme points, 1 examples, 21-24 portfolio immunization, 34-35 Advertising, 1-2, 1-3 fundamental scale, 17, 18, 18t pricing contingent cash flows, competition, 3 hierarchic synthesis, rank, 20-21 33-34 optimal advertising policy, 2-3 pairwise comparison matrix for BarChart, 37 sales-advertising relationship, 2 levell, 21t, 22 Barrier, distance functions, 37-39 Affiliated values bidding model, 4 random consistency index, 20t modified barrier functions, 37-38 Affine-scaling algorithm, 4 ranking alternatives, 23t modified interior distance Affine transformation, 4 ranking intensities, 23t functions, 38-39 Agency theory, 4 relative measurement, 21, 21-22t, Basic feasible solution, 40 Agriculture 21-24 Basic solution, 40 crop production problems at farm structural difference between Basic vector, 40, 41 level,429 linear, nonlinear network, 18 Basis,40 food industry and, 4-6 structuring hierarchy, 20 Basis inverse, 40 natural resources, 428-429 synthesis, 23t Batch shops, 41 regional planning problems, 429 three level hierarchy, 17 Battle modeling, 41-44 AHP, 7 Animation, 24 attrition laws, 42-43 AI, 7.
    [Show full text]
  • EUROPEAN CONFERENCE on QUEUEING THEORY 2016 Urtzi Ayesta, Marko Boon, Balakrishna Prabhu, Rhonda Righter, Maaike Verloop
    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016 Urtzi Ayesta, Marko Boon, Balakrishna Prabhu, Rhonda Righter, Maaike Verloop To cite this version: Urtzi Ayesta, Marko Boon, Balakrishna Prabhu, Rhonda Righter, Maaike Verloop. EUROPEAN CONFERENCE ON QUEUEING THEORY 2016. Jul 2016, Toulouse, France. 72p, 2016. hal- 01368218 HAL Id: hal-01368218 https://hal.archives-ouvertes.fr/hal-01368218 Submitted on 19 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EUROPEAN CONFERENCE ON QUEUEING THEORY 2016 Toulouse July 18 – 20, 2016 Booklet edited by Urtzi Ayesta LAAS-CNRS, France Marko Boon Eindhoven University of Technology, The Netherlands‘ Balakrishna Prabhu LAAS-CNRS, France Rhonda Righter UC Berkeley, USA Maaike Verloop IRIT-CNRS, France 2 Contents 1 Welcome Address 4 2 Organization 5 3 Sponsors 7 4 Program at a Glance 8 5 Plenaries 11 6 Takács Award 13 7 Social Events 15 8 Sessions 16 9 Abstracts 24 10 Author Index 71 3 1 Welcome Address Dear Participant, It is our pleasure to welcome you to the second edition of the European Conference on Queueing Theory (ECQT) to be held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT in Toulouse.
    [Show full text]
  • Delay Models in Data Networks
    3 Delay Models in Data Networks 3.1 INTRODUCTION One of the most important perfonnance measures of a data network is the average delay required to deliver a packet from origin to destination. Furthennore, delay considerations strongly influence the choice and perfonnance of network algorithms, such as routing and flow control. For these reasons, it is important to understand the nature and mechanism of delay, and the manner in which it depends on the characteristics of the network. Queueing theory is the primary methodological framework for analyzing network delay. Its use often requires simplifying assumptions since, unfortunately, more real- istic assumptions make meaningful analysis extremely difficult. For this reason, it is sometimes impossible to obtain accurate quantitative delay predictions on the basis of queueing models. Nevertheless, these models often provide a basis for adequate delay approximations, as well as valuable qualitative results and worthwhile insights. In what follows, we will mostly focus on packet delay within the communication subnet (i.e., the network layer). This delay is the sum of delays on each subnet link traversed by the packet. Each link delay in tum consists of four components. 149 150 Delay Models in Data Networks Chap. 3 1. The processinR delay between the time the packet is correctly received at the head node of the link and the time the packet is assigned to an outgoing link queue for transmission. (In some systems, we must add to this delay some additional processing time at the DLC and physical layers.) 2. The queueinR delay between the time the packet is assigned to a queue for trans- mission and the time it starts being transmitted.
    [Show full text]
  • Optimal Surplus Capacity Utilization in Polling Systems Via Fluid Models
    Optimal Surplus Capacity Utilization in Polling Systems via Fluid Models Ayush Rawal, Veeraruna Kavitha and Manu K. Gupta Industrial Engineering and Operations Research, IIT Bombay, Powai, Mumbai - 400076, India E-mail: ayush.rawal, vkavitha, manu.gupta @iitb.ac.in Abstract—We discuss the idea of differential fairness in polling while maintaining the QoS requirements of primary customers. systems. One such example scenario is: primary customers One can model this scenario with polling systems, when it demand certain Quality of Service (QoS) and the idea is to takes non-zero time to switch the services between the two utilize the surplus server capacity to serve a secondary class of customers. We use achievable region approach for this. Towards classes of customers. Another example scenario is that of data this, we consider a two queue polling system and study its and voice users utilizing the same wireless network. In this ‘approximate achievable region’ using a new class of delay case, the network needs to maintain the drop probability of priority kind of schedulers. We obtain this approximate region, the impatient voice customers (who drop calls if not picked-up via a limit polling system with fluid queues. The approximation is within a negligible waiting times) below an acceptable level. accurate in the limit when the arrival rates and the service rates converge towards infinity while maintaining the load factor and Alongside, it also needs to optimize the expected sojourn times the ratio of arrival rates fixed. We show that the set of proposed of the data calls. schedulers and the exhaustive schedulers form a complete class: Polling systems can be categorized on the basis of different every point in the region is achieved by one of those schedulers.
    [Show full text]
  • Applications of Markov Decision Processes in Communication Networks: a Survey
    Applications of Markov Decision Processes in Communication Networks: a Survey Eitan Altman∗ Abstract We present in this Chapter a survey on applications of MDPs to com- munication networks. We survey both the different applications areas in communication networks as well as the theoretical tools that have been developed to model and to solve the resulting control problems. 1 Introduction Various traditional communication networks have long coexisted providing dis- joint specific services: telephony, data networks and cable TV. Their operation has involved decision making that can be modelled within the stochastic control framework. Their decisions include the choice of routes (for example, if a direct route is not available then a decision has to be taken which alternative route can be taken) and call admission control; if a direct route is not available, it might be wise at some situations not to admit a call even if some alternative route exists. In contrast to these traditional networks, dedicated to a single application, today’s networks are designed to integrate heterogeneous traffic types (voice, video, data) into one single network. As a result, new challenging control prob- lems arise, such as congestion and flow control and dynamic bandwidth alloca- tion. Moreover, control problems that had already appeared in traditional net- works reappear here with a higher complexity. For example, calls corresponding to different applications require typically different amount of network resources (e.g., bandwidth) and different performance bounds (delays, loss probabilities, throughputs). Admission control then becomes much more complex than it was in telephony, in which all calls required the same performance characteristics and the same type of resources (same throughput, bounds on loss rates and on delay variation).
    [Show full text]
  • Polling Systems and Their Application to Telecommunication Networks
    mathematics Article Polling Systems and Their Application to Telecommunication Networks Vladimir Vishnevsky *,† and Olga Semenova † Institute of Control Sciences of Russian Academy of Sciences, 117997 Moscow, Russia; [email protected] * Correspondence: [email protected] † The authors contributed equally to this work. Abstract: The paper presents a review of papers on stochastic polling systems published in 2007–2020. Due to the applicability of stochastic polling models, the researchers face new and more complicated polling models. Stochastic polling models are effectively used for performance evaluation, design and optimization of telecommunication systems and networks, transport systems and road management systems, traffic, production systems and inventory management systems. In the review, we separately discuss the results for two-queue systems as a special case of polling systems. Then we discuss new and already known methods for polling system analysis including the mean value analysis and its application to systems with heavy load to approximate the performance characteristics. We also present the results concerning the specifics in polling models: a polling order, service disciplines, methods to queue or to group arriving customers, and a feedback in polling systems. The new direction in the polling system models is an investigation of how the customer service order within a queue affects the performance characteristics. The results on polling systems with correlated arrivals (MAP, BMAP, and the group Poisson arrivals simultaneously to all queues) are also considered. We briefly discuss the results on multi-server, non-discrete polling systems and application of polling models in various fields. Keywords: polling systems; polling order; queue service discipline; mean value analysis; probability- generating function method; broadband wireless network Citation: Vishnevsky, V.; Semenova, O.
    [Show full text]
  • Switch Kenji Yoshigoe University of South Florida
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 8-9-2004 Design and Evaluation of the Combined Input and Crossbar Queued (CICQ) Switch Kenji Yoshigoe University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Yoshigoe, Kenji, "Design and Evaluation of the Combined Input and Crossbar Queued (CICQ) Switch" (2004). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1313 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Design and Evaluation of the Combined Input and Crossbar Queued (CICQ) Switch by Kenji Yoshigoe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science and Engineering Department of Computer Science and Engineering College of Engineering University of South Florida Major Professor: Kenneth J. Christensen, Ph.D. Tapas K. Das, Ph.D. Miguel A. Labrador, Ph.D. Rafael A. Perez, Ph.D. Stephen W. Suen, Ph.D. Date of Approval: August 9, 2004 Keywords: Performance Evaluation, Packet switches, Variable-length packets, Stability, Scalability © Copyright 2004, Kenji Yoshigoe Acknowledgements I would like to express my gratitude to my advisor Dr. Kenneth J. Christensen for providing me tremendous opportunities and support. He has opened the door for me to pursue an academic career, and has mentored me to a great extent.
    [Show full text]
  • Applications of Polling Systems
    Applications of polling systems M.A.A. Boon∗ R.D. van der Mei y z E.M.M. Winands y [email protected] [email protected] [email protected] February, 2011 Abstract Since the first paper on polling systems, written by Mack in 1957, a huge number of papers on this topic has been written. A typical polling system consists of a number of queues, attended by a single server. In several surveys, the most notable ones written by Takagi, detailed and comprehensive descriptions of the mathematical analysis of polling systems are provided. The goal of the present survey paper is to complement these papers by putting the emphasis on applications of polling models. We discuss not only the capabilities, but also the limitations of polling models in representing various applications. The present survey is directed at both academicians and practitioners. Keywords: Polling systems, applications, survey 1 Introduction A typical polling system consists of a number of queues, attended by a single server in a fixed order. There is a huge body of literature on polling systems that has developed since the late 1950s, when the papers of Mack et al. [117, 118] concerning a patrolling repairman model for the British cotton industry were published. The term \polling" originates from the so- called polling data link control scheme, in which a central computer (server) interrogates each terminal (queue) on a communication line to find whether it has any information (customers) to transmit. The addressed terminal transmits information and the computer then switches to the next terminal to check whether that terminal has any information to transmit.
    [Show full text]
  • Polling: Past, Present and Perspective
    Polling: Past, Present and Perspective S.C. Borst∗y O.J. Boxma∗ [email protected] [email protected] September 11, 2018 Abstract This is a survey on polling systems, focussing on the basic single-server multi-queue polling system in which the server visits the queues in cyclic order. The main goals of the paper are: (i) to discuss a number of the key methodologies in analyzing polling models; (ii) to give an overview of recent polling developments; and (iii) to present a number of challenging open problems. Note: Invited paper, to appear in TOP. 1 Introduction This paper is devoted to polling systems. The basic polling system is a queueing model in which customers arrive at n queues according to independent Poisson processes, and in which a single server visits those n queues in cyclic order to serve the customers. When n = 1, this system reduces to the classical M=G=1 queue. For general n, the basic polling system may be viewed as an M=G=1 queue with n customer classes and dynamically changing priority { in contrast to queueing models with multiple customer classes which have fixed priority levels. In many applications, the switchover times of the server, when moving from one queue to another, are nonnegligible and should be included in the model. Applications of polling systems abound, because a service facility that can serve the needs of n different types of customers is such a natural setting in every-day life. Indeed, polling systems have been used to model a plethora of congestion situations, like (i) a patrolling repairman with n types of repair jobs, (ii) a machine producing n types of products on demand, (iii) protocols in computer-communication systems, allocating resources to n stations, job types or traffic sources, and (iv) a signalized road traffic intersection with n different traffic streams.
    [Show full text]
  • Layered Queueing Networks – Performance Modelling, Analysis and Optimisation
    Layered queueing networks : performance modelling, analysis and optimisation Citation for published version (APA): Dorsman, J. L. (2015). Layered queueing networks : performance modelling, analysis and optimisation. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR784295 DOI: 10.6100/IR784295 Document status and date: Published: 01/01/2015 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • An Application of Matrix Analytic Methods to Queueing Models with Polling
    An Application of Matrix Analytic Methods to Queueing Models with Polling by Kevin Granville A thesis presented to the University of Waterloo in fulfilment of the Doctor of Philosophy in Statistics Waterloo, Ontario, Canada, 2019 c Kevin Granville 2019 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Exam- ining Committee is by majority vote. External Examiner Dr. Yiqiang Zhao Associate Dean (Research and Graduate Studies), Faculty of Science, Carleton University Supervisor Dr. Steve Drekic Professor, Statistics and Actuarial Science Internal Members Dr. Gordon Willmot Professor, Statistics and Actuarial Science Dr. Yi Shen Assistant Professor, Statistics and Actuarial Science Internal-external Member Dr. Qi-Ming He Professor, Management Sciences ii Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract We review what it means to model a queueing system, and highlight several components of interest which govern the behaviour of customers, as well as the server(s) who tend to them. Our primary focus is on polling systems, which involve one or more servers who must serve multiple queues of customers according to their service policy, which is made up of an overall polling order, and a service discipline defined at each queue. The most common polling orders and service disciplines are discussed, and some examples are given to demonstrate their use. Classic matrix analytic method theory is built up and illustrated on models of increasing complexity, to provide context for the analyses of later chapters.
    [Show full text]
  • Applied Probability in Operations Research: a Retrospective
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228903251 Applied Probability in Operations Research: A Retrospective Article · December 2001 CITATION READS 1 113 1 author: Shaler Stidham Jr University of North Carolina at Chapel Hill 98 PUBLICATIONS 3,462 CITATIONS SEE PROFILE All content following this page was uploaded by Shaler Stidham Jr on 20 June 2015. The user has requested enhancement of the downloaded file. Applied Probability in Operations Research: A Retrospective∗ Shaler Stidham, Jr. Department of Operations Research CB #3180, Smith Building University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3180 [email protected] November 16, 2001 (revised, March 5, 2002) ∗This paper is an earlier, unabridged version of the paper “Analysis, Design, and Control of Queueing Sys- tems”, which appears in the 50th Anniversary Issue of Operations Research. 0 1 Introduction As the reader will quickly discover, this article is a joint effort, unlike most of the articles in this special issue. It covers a very broad topic – applied probability – and I could not have attempted to do it justice without the help of many of my colleagues. It might have been more appropriate, in fact, to list the author as the Applied Probability Society of INFORMS.I solicited the help of the members of the Society, as a group and in some cases individually, and I am grateful for the help I received. In some cases, this help took the form of reminiscences – about the origins of applied probability as a recognized discipline, about the founding of several journals devoted to applied probability, and about the origins of what is now the Applied Probability Society.
    [Show full text]