Hitchcock & Silliman Correspondence with BH Notes.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Hitchcock & Silliman Correspondence with BH Notes.Pdf The Complete Correspondence of Edward Hitchcock and Benjamin Silliman, 1817-1863 The American journal of science and the rise of American Geology Transcribed and annotated by Robert L. Herbert, with an introductory essay Preface Part One: Geology and the first years of the American journal of science, 1817-1830 The American journal of science, 1817-1823 Hitchcock’s Sketch of the geology, 1823-1824 Hitchcock’s Utility of natural history, 1823 Buckland’s Reliquiae diluvianae Hitchcock at Amherst College Scrope and Cordier: the fiery earth, 1825-1829 Silliman and Hitchcock in 1830 Looking back from 1830 Part Two: Hitchcock’s prime decade, 1831-1841 Silliman in 1833 Hitchcock, 1831-1833 Hitchcock and Silliman, 1833-1835 1836: Hitchcock’s “Sandstone Bird” The Mosaic controversy, 1837-1839 Hitchcock’s geology, 1836-1839 Hitchcock’s growing renown, 1840 and 1841 Part Three: The final decades, 1842-1863 Silliman, 1842-1864 Hitchcock’s life, 1842-1864 Science and the Bible, 1842-1863 Rocky strata and drifting boulders, 1842-1863 Hitchcock’s controversy with James Deane, 1842-1845 Fossil sandstone impressions, 1844-1863 Appendix A: William Maclure Appendix B: Amos Eaton The letters Bibliography Hitchcock-Silliman letters 2 Preface I began this project in order to trace Edward Hitchcock’s apprenticeship to geology, but it soon turned in directions I hadn’t anticipated. Benjamin Silliman’s heirs had sent back to Amherst College most of the letters he had received from Hitchcock, so I was lucky to have access to both sides of their correspondence in the college’s Archives and Special Collections. I also located a few more letters from other archives.1 Because Silliman’s handwriting is difficult, I had to transcribe his letters just to be sure of their content. By then I was so intrigued by the back-and-forth between the two men that I decided it would be an interesting venture to transcribe and annotate the whole correspondence. It begins with the first years of Silliman’s American journal of science, the premier American scientific review; it’s constantly referred to in the two men’s letters. Their correspondence proves to be an ideal vehicle for studying American geology, then in its infancy; Hitchcock was one of Silliman’s steadiest reviewers. I learned a lot about the two men’s ideas, and also a great deal about the other contributors to Silliman’s journal. Two of his writers, William Maclure and Amos Eaton, both major figures of those years, unwittingly revealed themselves in their articles.2 Their foibles, indeed their flaws, are laid bare, so they deserve more than the occasional footnote I’ve given other contributors. I’ve therefore appended separate short accounts of what a close reading of Silliman’s journal tells about those two geologists. Comparisons with them are valuable ways of locating Hitchcock in the evolution of geology from 1817 to the 1830s. The Hitchcock-Silliman letters deal almost exclusively with professional concerns. Little is said about the two men’s private lives except indirectly, and very little about religion, aside from brief exchanges about the “Mosaic controversy,” the supposed opposition of new geology to the literal reading of Genesis. This controversy took on great importance in their publications as will be made clear. Of interest to mineralogists are the accounts of several minerals that Hitchcock first identified in Massachusetts, and of the specimens he sent to Silliman. Both men wrote frequently about the geological maps that Hitchcock was making of Massachusetts in 1818, 1822- 1823, 1830, and 1841. He located and described various strata and fossils, including sandstone animal tracks as well as fossil fish that he shipped to Silliman. For the economic historian, there is much to learn about shipping specimens and letters by water and land between Amherst and New Haven. Botanists will take an interest in Hitchcock’s identification of native plants. Historians of science and education will be intrigued and no little amused by the two men’s chemical laboratories, their supplies, arrangements, and apparatus. Galvanic electricity loomed large in the 1820s when Silliman’s classmate Robert Hare sent plans for his battery-run instruments, his “deflagrator” and his “calorimotor,” as well as for his oxy-hydrogen blowpipe. The letters tell about their uses and the accidents that both Silliman and Hitchcock suffered. The chief value of the letters and of this essay lies in the study of the rapid evolution of early modern geology in the United States. Hitchcock’s reviews of the latest European geological publications and the consequent growth of his own views chart the changes from the early 1820s to the early 1840s. The letters deal with the aftermath of the turn-of-century controversy between the geological concepts of the Scot James Hutton and the German Abraham Werner. Surprisingly, despite his devotion to theology, Hitchcock proves to have been ahead of other American geologists, including Silliman, because he abandoned Werner’s ideas while he adapted European concepts to American geology. The correspondence is rich in news about or from scientific colleagues on the Hutton-Werner dispute and on many contemporary issues. Silliman’s cosmopolitan travels and his role as editor meant frequent and sometimes revealing references to foreign savants, including William Buckland, W. D. Conybeare, Gideon Mantell, Adam Sedgwick, and P. L. A. Cordier. Also appearing in the correspondence are many American scientists, among them Chester Dewey, Eaton, Maclure, John Torrey, and John White Webster, all of whom were known to both Silliman and Hitchcock. In effect, the forty-six years of their correspondence are a treasure-trove. In my introductory essay, Hitchcock takes a more prominent place than Silliman. For one thing, Silliman was far better known and studied, whereas Hitchcock long ago dropped out of the ranks of major geologists. George P. Merrill’s The first one hundred years of American geology of 1924 is the last broad history that gave Hitchcock a leading role. My essay and the letters therefore serve the remedial purpose of restoring the Amherst professor to the attention he deserves. As we shall see -- and it’s a considerable surprise -- he was much more an 1 I’m grateful for the generous response to my inquiries by colleagues at Amherst College’s Archives and Special Collections: Margaret R. Dakin, Daria D’Arienzo, former head, Michael Kelly, current head, Peter Nelson, Mariah Sakrejda-Leavitt, and Marian N. Walker. From the beginning of this project, Daria D’Arienzo has been an indispensable counsellor. My wife, Eugenia W. Herbert, has been a long-suffering helpmate and proofreader. 2 My annotations of the letters record biographical dates and biographical references for the persons named, which spares me the need to include the same information here, except when it seems important to the context. Hitchcock-Silliman letters 3 original thinker than Silliman. At the outset of their correspondence, Silliman was fifteen years older and had matured sooner than Hitchcock, so virtually a whole generation separated them. Silliman was a cosmopolitan New England patrician, well connected, widely traveled, author of well appreciated travel accounts. and familiar with leading American and European scientists whom he welcomed to the pages of his journal. By contrast, Hitchcock was a provincial from lower middle class origins with no college degree and a rank beginner in the sciences. I’ve taken the correspondence as an excuse to trace his intellectual development from parochial isolation to well- earned eminence in geology. He was also known as a leading theologian, and I’ll do justice to his dual career although I’ll favor science. This essay is divided into three chronological portions as a convenient way of coordinating the interchange of ideas within the successive periods. Abbreviations used throughout the introduction: AJS = American Journal of Science. Box = File location in EOH. BS = Benjamin Silliman. EH = Edward Hitchcock. EOH = Orra White and Edward Hitchcock Papers, Archives and Special Collections, Amherst College. Part One: Geology and the first years of the American journal of science, 1817-1830 Edward Hitchcock (1793-1864), a middle class provincial, is a decided contrast with Benjamin Silliman (1779-1864), son of an urbane patrician family. Hitchcock was born in Deerfield, Massachusetts, one of several children of an impecunious hatter. He studied at Deerfield Academy from 1804 to 1809, then, to make ends meet, he worked on an older brother’s farm while depending on the family home. He couldn’t afford college but independently studied botany, mineralogy, astronomy, and mathematics, the latter two subjects in collaboration with his mentor, his maternal uncle General Epaphras Hoyt (1765-1850). Hoyt, whose publications on military science included astronomy and mathematics, was well equipped to aid his studious nephew. Nephew and uncle studied astronomy together from 1811 to 1815, using Deerfield Academy’s instruments. Edward published a miscellany in 1813, lectured locally on science, and wrote on diverse subjects for local weeklies.3 In 1816 he was made principal of Deerfield Academy and taught there, but he had to leave at the end of 1818 when a depressed economy forced the school to close for a time. Like so many others of his generation he had to patch together several vocational and intellectual pursuits to form a career. When he began corresponding with Silliman in 1817 he was already engaged in extensive geological and botanical study of the Connecticut River Valley which would be the subject of his first contribution to the American journal of science. In contrast to Hitchcock, whose early life is only sketchily known, the youth and early maturity of Benjamin Silliman is well documented. In 1796, at age seventeen, he earned his bachelor’s degree at Yale College.
Recommended publications
  • University of Oklahoma Graduate College
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE SCIENCE IN THE AMERICAN STYLE, 1700 – 1800 A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By ROBYN DAVIS M CMILLIN Norman, Oklahoma 2009 SCIENCE IN THE AMERICAN STYLE, 1700 – 1800 A DISSERTATION APPROVED FOR THE DEPARTMENT OF HISTORY BY ________________________ Prof. Paul A. Gilje, Chair ________________________ Prof. Catherine E. Kelly ________________________ Prof. Judith S. Lewis ________________________ Prof. Joshua A. Piker ________________________ Prof. R. Richard Hamerla © Copyright by ROBYN DAVIS M CMILLIN 2009 All Rights Reserved. To my excellent and generous teacher, Paul A. Gilje. Thank you. Acknowledgements The only thing greater than the many obligations I incurred during the research and writing of this work is the pleasure that I take in acknowledging those debts. It would have been impossible for me to undertake, much less complete, this project without the support of the institutions and people who helped me along the way. Archival research is the sine qua non of history; mine was funded by numerous grants supporting work in repositories from California to Massachusetts. A Friends Fellowship from the McNeil Center for Early American Studies supported my first year of research in the Philadelphia archives and also immersed me in the intellectual ferment and camaraderie for which the Center is justly renowned. A Dissertation Fellowship from the Gilder Lehrman Institute for American History provided months of support to work in the daunting Manuscript Division of the New York Public Library. The Chandis Securities Fellowship from the Huntington Library, Art Collections, and Botanical Gardens brought me to San Marino and gave me entrée to an unequaled library of primary and secondary sources, in one of the most beautiful spots on Earth.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italics refer to Tables or Figures Acasta gneiss 137, 138 Chladni, Ernst 94, 97 Adam, Robert 8, 11 chlorite 70, 71 agriculture, Hutton on 177 chloritoid stability 70 Albritton, Claude C. 100 Clerk Jnr, John 3 alumina (A1203), reaction in metamorphism 67-71 Clerk of Odin, John 5, 6, 7, 10, 11 andalusite stability 67 Clerk-Maxwell, George 10 anthropic principle 79-80 climate change 142 Apex basalt 140 Lyell on 97-8 Archean cratons (archons) 28, 31-2 coal as Earth heat source 176 Arizona Crater 98-9 coesite stability 65 Arran, Isle of 170 Columbia River basalts 32 asthenosphere 22 comets 89-90, 147-8 astrobleme 101 short v. long period 92 atmospheric composition 83-6 as source of life 148-9 Austral Volcanic Chain 24 continental flood basalt (CFB) 20, 23, 32 cordierite stability 67 craters, impact Bacon, Francis 21 Chixulub 109, 110, 143 Baldwin, Ralph 102 early ideas on 90, 98 Banks, Sir Joseph 96 modern occurrences 91, 98-101 Barringer, Daniel Moreau 99 Morokweng 142 Barringer Crater 99, 102, 103 modern research 102-3 basalt periodicity of 111-12 described by Hall 40-1 creation, Hutton's views on 76 mid-ocean ridge (MORB) 16-17, 20-1, 22, 23, 30-1 Creech, William 5 modern experiments on 44-7 Cretaceous-Tertiary impacts 141 ocean island (OIB) 20, 23 crust formation 17 see also flood basalt cryptoexplosion structures 101 Benares (India) meteorite shower 96 cryptovolcanic structures 100-1 Biot, Jean-Baptiste 97 Black, Joseph 4, 9, 10, 11, 42, 171 Boon, John D.
    [Show full text]
  • 6 Bull. Hist. Chem. 2
    6 ll. t. Ch. 2 (88 di scienze naturali ed economiche. Palermo, 86 ( Aprl, , OLD CHEMISTRIES 4. Krnr thn rn n Stnl Cnnzzr lbrtr n lr. I h t thn rfr nll ln f th Mystery Editors of Early American Chemistry Texts Unvrt f lr fr ndn phtp f th Itln rtl. Wll . Wll, rdn Unvrt . G. Krnr, Ueber die Bestimmung des chemischen Ortes bei den aromatischen Substanzen, d. G. rn nd . nztt American chemistry, like its culture and commerce, was (Ostwalds Klassiker der exakten Wissenschaften, . 4, pz, dominated by European influence until the latter half of the 0, p. 19th century. More than half of the chemistry books published 4. r xpl, b A. r, Annalen der Chemie, 80, 155, in America prior to 1850 were American editions of European 282, 2 b C. Shrlr, J. Chem. Soc., 8, 24, 4n. b W. works (1). The most widely used European works included Kn, Ber. Deutsch. Chem. Ges., 8, /2, 4 nd b r, Chaptal's Elnt f Chtr (1796 to 1813), Henry's rl n 86 ( lttr pblhd hr. Svrl nr Ept f Chtr nd Elnt fExprntl Chtr ntprr r rt tht Krnr nt "rv ttthlnn" (1802 to 1831), Marcet's Cnvrtn n Chtr (1806 t frnd rfrn fr ttn. to 1850), Brande's Mnl f Chtr (1821 to 1839), . r, "On th Oxdtn rdt f ln,"r. Roy. Turner's Elnt f Chtr (1830 to 1874) and Fowne's Soc. Edinburgh, 82 (rd n 6 n 80, , 2 bd., Trans. Mnl f Elntr Chtr (1845 to 1878). Even so- Roy.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Feature of the Month – January 2016 Galilaei
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2016 GALILAEI Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA October 26, 2015 03:32-03:58 UT, 15 cm refl, 170x, seeing 8-9/10 I sketched this crater and vicinity on the evening of Oct. 25/26, 2015 after the moon hid ZC 109. This was about 32 hours before full. Galilaei is a modest but very crisp crater in far western Oceanus Procellarum. It appears very symmetrical, but there is a faint strip of shadow protruding from its southern end. Galilaei A is the very similar but smaller crater north of Galilaei. The bright spot to the south is labeled Galilaei D on the Lunar Quadrant map. A tiny bit of shadow was glimpsed in this spot indicating a craterlet. Two more moderately bright spots are east of Galilaei. The western one of this pair showed a bit of shadow, much like Galilaei D, but the other one did not. Galilaei B is the shadow-filled crater to the west. This shadowing gave this crater a ring shape. This ring was thicker on its west side. Galilaei H is the small pit just west of B. A wide, low ridge extends to the southwest from Galilaei B, and a crisper peak is south of H. Galilaei B must be more recent than its attendant ridge since the crater's exterior shadow falls upon the ridge.
    [Show full text]
  • Brongniart, 1800) in the Paris Natural History Museum
    Zootaxa 4138 (2): 381–391 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4138.2.10 http://zoobank.org/urn:lsid:zoobank.org:pub:683BD945-FE55-4616-B18A-33F05B2FDD30 Rediscovery of the 220-year-old holotype of the Banded Iguana, Brachylophus fasciatus (Brongniart, 1800) in the Paris Natural History Museum IVAN INEICH1 & ROBERT N. FISHER2 1Muséum national d’Histoire naturelle, Sorbonne Universités, UMR 7205 (CNRS, EPHE, MNHN, UPMC; ISyEB: Institut de Systéma- tique, Évolution et Biodiversité), CP 30 (Reptiles), 25 rue Cuvier, F-75005 Paris, France. E-mail: [email protected] 2U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, 4165 Spruance Road, Suite 200, San Diego, CA 92101-0812, U.S.A. E-mail: [email protected] Abstract The Paris Natural History Museum herpetological collection (MNHN-RA) has seven historical specimens of Brachylo- phus spp. collected late in the 18th and early in the 19th centuries. Brachylophus fasciatus was described in 1800 by Brongniart but its type was subsequently considered as lost and never present in MNHN-RA collections. We found that 220 year old holotype among existing collections, registered without any data, and we show that it was donated to MNHN- RA from Brongniart’s private collection after his death in 1847. It was registered in the catalogue of 1851 but without any data or reference to its type status. According to the coloration (uncommon midbody saddle-like dorsal banding pattern) and morphometric data given in its original description and in the subsequent examination of the type in 1802 by Daudin and in 1805 by Brongniart we found that lost holotype in the collections.
    [Show full text]
  • Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life
    Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life Item Type text; Electronic Dissertation Authors Pasek, Matthew Adam Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 06:16:37 Link to Item http://hdl.handle.net/10150/194288 PHOSPHORUS AND SULFUR COSMOCHEMISTRY: IMPLICATIONS FOR THE ORIGINS OF LIFE by Matthew Adam Pasek ________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College UNIVERSITY OF ARIZONA 2 0 0 6 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Matthew Adam Pasek entitled Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 04/11/2006 Dante Lauretta _______________________________________________________________________ Date: 04/11/2006 Timothy Swindle _______________________________________________________________________ Date: 04/11/2006
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]
  • Planetary Science : a Lunar Perspective
    APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim.
    [Show full text]
  • From Geology to Art History: Ceramist Alexandre Brongniart’S Overlooked Contribution to the Developing Science of Art History in the Early Nineteenth Century
    University of Kentucky UKnowledge Theses and Dissertations--Art & Visual Studies Art & Visual Studies 2014 FROM GEOLOGY TO ART HISTORY: CERAMIST ALEXANDRE BRONGNIART’S OVERLOOKED CONTRIBUTION TO THE DEVELOPING SCIENCE OF ART HISTORY IN THE EARLY NINETEENTH CENTURY Julia A. Carr-Trebelhorn University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Carr-Trebelhorn, Julia A., "FROM GEOLOGY TO ART HISTORY: CERAMIST ALEXANDRE BRONGNIART’S OVERLOOKED CONTRIBUTION TO THE DEVELOPING SCIENCE OF ART HISTORY IN THE EARLY NINETEENTH CENTURY" (2014). Theses and Dissertations--Art & Visual Studies. 4. https://uknowledge.uky.edu/art_etds/4 This Master's Thesis is brought to you for free and open access by the Art & Visual Studies at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Art & Visual Studies by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • The Following Four Pages Are the Professional Genealogy Of
    The following four pages are the professional genealogy of Professor Steven H. Strauss, Department of Chemistry, Colorado State University, Fort Collins, CO 80523 1982 2002 • Professor of Inorganic and Analytical Chemistry (CSU) • Studied iron hydroporphyrins, Steven H. Strauss fluorinated superweak anions, nonclassical metal carbonyls, PhD Northwestern 1979 halofullerenes, and detection & extraction of aqueous anions • CSU Research Foundation • Professor of Inorganic Chemistry Researcher of the Year 2002 (NorthwesternU) • Author of Manipulation of Air-Sensitive Compounds Duward F. Shriver • Co-author of textbook PhD Michigan 1962 Inorganic Chemistry • ACS Award for Distinguished Service in Inorg. Chem.1987 • Professor of Inorganic Chemistry (UMich and UUtah) Robert W. Parry • ACS Award for Distinguished Service in Inorg. Chem. 1965 PhD Illinois 1947 • ACS Award in Chemical Education 1977 • ACS Priestley Medal 1993 • Professor of Inorg. Chem. (UIll.) • The "Father" of American coordination chemistry • ACS President 1957 John C. Bailar • ACS Award in Chem. Educ. 1961 PhD Michigan 1928 • ACS Award for Distinguished Service in Inorg. Chem. 1972 • ACS Priestley Medal 1964 • Professor of Chemistry (UMich) • Synthesis of CPh4 in Meyer's lab • First isolation of an organic free Moses Gomberg radical (CPh3•) in Meyer's lab PhD Michigan 1894 • The "Father" of organic free radical chemistry • Developed the first satisfactory • Professor of Organic Chemistry antifreeze and Pharmacy (UMich) • Founded qualitative org. analysis • Studied alkaloid toxicology (esp. Alfred B. Prescott alkaloidal periodides) and the MD Michigan 1864 structure of caffeine • Developed the first assay for opium • Established chemistry lab at UMich (Houghton's assistant) • Took over Houghton's chemistry Silas H. Douglass duties in 1845 MD Maryland 1842 • Co-authored (with A.
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]