The Hartree-Fock Method
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solving the Multi-Way Matching Problem by Permutation Synchronization
Solving the multi-way matching problem by permutation synchronization Deepti Pachauriy Risi Kondorx Vikas Singhy yUniversity of Wisconsin Madison xThe University of Chicago [email protected] [email protected] [email protected] http://pages.cs.wisc.edu/∼pachauri/perm-sync Abstract The problem of matching not just two, but m different sets of objects to each other arises in many contexts, including finding the correspondence between feature points across multiple images in computer vision. At present it is usually solved by matching the sets pairwise, in series. In contrast, we propose a new method, Permutation Synchronization, which finds all the matchings jointly, in one shot, via a relaxation to eigenvector decomposition. The resulting algorithm is both computationally efficient, and, as we demonstrate with theoretical arguments as well as experimental results, much more stable to noise than previous methods. 1 Introduction 0 Finding the correct bijection between two sets of objects X = fx1; x2; : : : ; xng and X = 0 0 0 fx1; x2; : : : ; xng is a fundametal problem in computer science, arising in a wide range of con- texts [1]. In this paper, we consider its generalization to matching not just two, but m different sets X1;X2;:::;Xm. Our primary motivation and running example is the classic problem of matching landmarks (feature points) across many images of the same object in computer vision, which is a key ingredient of image registration [2], recognition [3, 4], stereo [5], shape matching [6, 7], and structure from motion (SFM) [8, 9]. However, our approach is fully general and equally applicable to problems such as matching multiple graphs [10, 11]. -
Arxiv:1912.06217V3 [Math.NA] 27 Feb 2021
ROUNDING ERROR ANALYSIS OF MIXED PRECISION BLOCK HOUSEHOLDER QR ALGORITHMS∗ L. MINAH YANG† , ALYSON FOX‡, AND GEOFFREY SANDERS‡ Abstract. Although mixed precision arithmetic has recently garnered interest for training dense neural networks, many other applications could benefit from the speed-ups and lower storage cost if applied appropriately. The growing interest in employing mixed precision computations motivates the need for rounding error analysis that properly handles behavior from mixed precision arithmetic. We develop mixed precision variants of existing Householder QR algorithms and show error analyses supported by numerical experiments. 1. Introduction. The accuracy of a numerical algorithm depends on several factors, including numerical stability and well-conditionedness of the problem, both of which may be sensitive to rounding errors, the difference between exact and finite precision arithmetic. Low precision floats use fewer bits than high precision floats to represent the real numbers and naturally incur larger rounding errors. Therefore, error attributed to round-off may have a larger influence over the total error and some standard algorithms may yield insufficient accuracy when using low precision storage and arithmetic. However, many applications exist that would benefit from the use of low precision arithmetic and storage that are less sensitive to floating-point round-off error, such as training dense neural networks [20] or clustering or ranking graph algorithms [25]. As a step towards that goal, we investigate the use of mixed precision arithmetic for the QR factorization, a widely used linear algebra routine. Many computing applications today require solutions quickly and often under low size, weight, and power constraints, such as in sensor formation, where low precision computation offers the ability to solve many problems with improvement in all four parameters. -
An Introduction to Hartree-Fock Molecular Orbital Theory
An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental to much of electronic structure theory. It is the basis of molecular orbital (MO) theory, which posits that each electron's motion can be described by a single-particle function (orbital) which does not depend explicitly on the instantaneous motions of the other electrons. Many of you have probably learned about (and maybe even solved prob- lems with) HucÄ kel MO theory, which takes Hartree-Fock MO theory as an implicit foundation and throws away most of the terms to make it tractable for simple calculations. The ubiquity of orbital concepts in chemistry is a testimony to the predictive power and intuitive appeal of Hartree-Fock MO theory. However, it is important to remember that these orbitals are mathematical constructs which only approximate reality. Only for the hydrogen atom (or other one-electron systems, like He+) are orbitals exact eigenfunctions of the full electronic Hamiltonian. As long as we are content to consider molecules near their equilibrium geometry, Hartree-Fock theory often provides a good starting point for more elaborate theoretical methods which are better approximations to the elec- tronic SchrÄodinger equation (e.g., many-body perturbation theory, single-reference con¯guration interaction). So...how do we calculate molecular orbitals using Hartree-Fock theory? That is the subject of these notes; we will explain Hartree-Fock theory at an introductory level. 2 What Problem Are We Solving? It is always important to remember the context of a theory. -
Arxiv:1709.00765V4 [Cond-Mat.Stat-Mech] 14 Oct 2019
Number of hidden states needed to physically implement a given conditional distribution Jeremy A. Owen,1 Artemy Kolchinsky,2 and David H. Wolpert2, 3, 4, ∗ 1Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Tech Square, Cambridge, MA 02139. 2Santa Fe Institute 3Arizona State University 4http://davidwolpert.weebly.com† (Dated: October 15, 2019) We consider the problem of how to construct a physical process over a finite state space X that applies some desired conditional distribution P to initial states to produce final states. This problem arises often in the thermodynamics of computation and nonequilibrium statistical physics more generally (e.g., when designing processes to implement some desired computation, feedback controller, or Maxwell demon). It was previously known that some conditional distributions cannot be implemented using any master equation that involves just the states in X. However, here we show that any conditional distribution P can in fact be implemented—if additional “hidden” states not in X are available. Moreover, we show that is always possible to implement P in a thermodynamically reversible manner. We then investigate a novel cost of the physical resources needed to implement a given distribution P : the minimal number of hidden states needed to do so. We calculate this cost exactly for the special case where P represents a single-valued function, and provide an upper bound for the general case, in terms of the nonnegative rank of P . These results show that having access to one extra binary degree of freedom, thus doubling the total number of states, is sufficient to implement any P with a master equation in a thermodynamically reversible way, if there are no constraints on the allowed form of the master equation. -
On the Asymptotic Existence of Partial Complex Hadamard Matrices And
Discrete Applied Mathematics 102 (2000) 37–45 View metadata, citation and similar papers at core.ac.uk brought to you by CORE On the asymptotic existence of partial complex Hadamard provided by Elsevier - Publisher Connector matrices and related combinatorial objects Warwick de Launey Center for Communications Research, 4320 Westerra Court, San Diego, California, CA 92121, USA Received 1 September 1998; accepted 30 April 1999 Abstract A proof of an asymptotic form of the original Goldbach conjecture for odd integers was published in 1937. In 1990, a theorem reÿning that result was published. In this paper, we describe some implications of that theorem in combinatorial design theory. In particular, we show that the existence of Paley’s conference matrices implies that for any suciently large integer k there is (at least) about one third of a complex Hadamard matrix of order 2k. This implies that, for any ¿0, the well known bounds for (a) the number of codewords in moderately high distance binary block codes, (b) the number of constraints of two-level orthogonal arrays of strengths 2 and 3 and (c) the number of mutually orthogonal F-squares with certain parameters are asymptotically correct to within a factor of 1 (1 − ) for cases (a) and (b) and to within a 3 factor of 1 (1 − ) for case (c). The methods yield constructive algorithms which are polynomial 9 in the size of the object constructed. An ecient heuristic is described for constructing (for any speciÿed order) about one half of a Hadamard matrix. ? 2000 Elsevier Science B.V. All rights reserved. -
Triangular Factorization
Chapter 1 Triangular Factorization This chapter deals with the factorization of arbitrary matrices into products of triangular matrices. Since the solution of a linear n n system can be easily obtained once the matrix is factored into the product× of triangular matrices, we will concentrate on the factorization of square matrices. Specifically, we will show that an arbitrary n n matrix A has the factorization P A = LU where P is an n n permutation matrix,× L is an n n unit lower triangular matrix, and U is an n ×n upper triangular matrix. In connection× with this factorization we will discuss pivoting,× i.e., row interchange, strategies. We will also explore circumstances for which A may be factored in the forms A = LU or A = LLT . Our results for a square system will be given for a matrix with real elements but can easily be generalized for complex matrices. The corresponding results for a general m n matrix will be accumulated in Section 1.4. In the general case an arbitrary m× n matrix A has the factorization P A = LU where P is an m m permutation× matrix, L is an m m unit lower triangular matrix, and U is an×m n matrix having row echelon structure.× × 1.1 Permutation matrices and Gauss transformations We begin by defining permutation matrices and examining the effect of premulti- plying or postmultiplying a given matrix by such matrices. We then define Gauss transformations and show how they can be used to introduce zeros into a vector. Definition 1.1 An m m permutation matrix is a matrix whose columns con- sist of a rearrangement of× the m unit vectors e(j), j = 1,...,m, in RI m, i.e., a rearrangement of the columns (or rows) of the m m identity matrix. -
Density Functional Theory
Density Functional Theory Fundamentals Video V.i Density Functional Theory: New Developments Donald G. Truhlar Department of Chemistry, University of Minnesota Support: AFOSR, NSF, EMSL Why is electronic structure theory important? Most of the information we want to know about chemistry is in the electron density and electronic energy. dipole moment, Born-Oppenheimer charge distribution, approximation 1927 ... potential energy surface molecular geometry barrier heights bond energies spectra How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Theoretical Musings! ● Ψ is complicated. ● Difficult to interpret. ● Can we simplify things? 1/2 ● Ψ has strange units: (prob. density) , ● Can we not use a physical observable? ● What particular physical observable is useful? ● Physical observable that allows us to construct the Hamiltonian a priori. How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Pierre Hohenberg and Walter Kohn 1964 — density functional theory All the information is contained in the density, a simple function of 3 coordinates. Electronic structure (continued) Erwin Schrödinger -
Chapter 18 the Single Slater Determinant Wavefunction (Properly Spin and Symmetry Adapted) Is the Starting Point of the Most Common Mean Field Potential
Chapter 18 The single Slater determinant wavefunction (properly spin and symmetry adapted) is the starting point of the most common mean field potential. It is also the origin of the molecular orbital concept. I. Optimization of the Energy for a Multiconfiguration Wavefunction A. The Energy Expression The most straightforward way to introduce the concept of optimal molecular orbitals is to consider a trial wavefunction of the form which was introduced earlier in Chapter 9.II. The expectation value of the Hamiltonian for a wavefunction of the multiconfigurational form Y = S I CIF I , where F I is a space- and spin-adapted CSF which consists of determinental wavefunctions |f I1f I2f I3...fIN| , can be written as: E =S I,J = 1, M CICJ < F I | H | F J > . The spin- and space-symmetry of the F I determine the symmetry of the state Y whose energy is to be optimized. In this form, it is clear that E is a quadratic function of the CI amplitudes CJ ; it is a quartic functional of the spin-orbitals because the Slater-Condon rules express each < F I | H | F J > CI matrix element in terms of one- and two-electron integrals < f i | f | f j > and < f if j | g | f kf l > over these spin-orbitals. B. Application of the Variational Method The variational method can be used to optimize the above expectation value expression for the electronic energy (i.e., to make the functional stationary) as a function of the CI coefficients CJ and the LCAO-MO coefficients {Cn,i} that characterize the spin- orbitals. -
Arxiv:1902.07690V2 [Cond-Mat.Str-El] 12 Apr 2019
Symmetry Projected Jastrow Mean-field Wavefunction in Variational Monte Carlo Ankit Mahajan1, ∗ and Sandeep Sharma1, y 1Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80302, USA We extend our low-scaling variational Monte Carlo (VMC) algorithm to optimize the symmetry projected Jastrow mean field (SJMF) wavefunctions. These wavefunctions consist of a symmetry- projected product of a Jastrow and a general broken-symmetry mean field reference. Examples include Jastrow antisymmetrized geminal power (JAGP), Jastrow-Pfaffians, and resonating valence bond (RVB) states among others, all of which can be treated with our algorithm. We will demon- strate using benchmark systems including the nitrogen molecule, a chain of hydrogen atoms, and 2-D Hubbard model that a significant amount of correlation can be obtained by optimizing the energy of the SJMF wavefunction. This can be achieved at a relatively small cost when multiple symmetries including spin, particle number, and complex conjugation are simultaneously broken and projected. We also show that reduced density matrices can be calculated using the optimized wavefunctions, which allows us to calculate other observables such as correlation functions and will enable us to embed the VMC algorithm in a complete active space self-consistent field (CASSCF) calculation. 1. INTRODUCTION Recently, we have demonstrated that this cost discrep- ancy can be removed by introducing three algorithmic 16 Variational Monte Carlo (VMC) is one of the most ver- improvements . The most significant of these allowed us satile methods available for obtaining the wavefunction to efficiently screen the two-electron integrals which are and energy of a system.1{7 Compared to deterministic obtained by projecting the ab-initio Hamiltonian onto variational methods, VMC allows much greater flexibil- a finite orbital basis. -
“Band Structure” for Electronic Structure Description
www.fhi-berlin.mpg.de Fundamentals of heterogeneous catalysis The very basics of “band structure” for electronic structure description R. Schlögl www.fhi-berlin.mpg.de 1 Disclaimer www.fhi-berlin.mpg.de • This lecture is a qualitative introduction into the concept of electronic structure descriptions different from “chemical bonds”. • No mathematics, unfortunately not rigorous. • For real understanding read texts on solid state physics. • Hellwege, Marfunin, Ibach+Lüth • The intention is to give an impression about concepts of electronic structure theory of solids. 2 Electronic structure www.fhi-berlin.mpg.de • For chemists well described by Lewis formalism. • “chemical bonds”. • Theorists derive chemical bonding from interaction of atoms with all their electrons. • Quantum chemistry with fundamentally different approaches: – DFT (density functional theory), see introduction in this series – Wavefunction-based (many variants). • All solve the Schrödinger equation. • Arrive at description of energetics and geometry of atomic arrangements; “molecules” or unit cells. 3 Catalysis and energy structure www.fhi-berlin.mpg.de • The surface of a solid is traditionally not described by electronic structure theory: • No periodicity with the bulk: cluster or slab models. • Bulk structure infinite periodically and defect-free. • Surface electronic structure theory independent field of research with similar basics. • Never assume to explain reactivity with bulk electronic structure: accuracy, model assumptions, termination issue. • But: electronic -
Hartree-Fock Approach
The Wave equation The Hamiltonian The Hamiltonian Atomic units The hydrogen atom The chemical connection Hartree-Fock theory The Born-Oppenheimer approximation The independent electron approximation The Hartree wavefunction The Pauli principle The Hartree-Fock wavefunction The L#AO approximation An example The HF theory The HF energy The variational principle The self-consistent $eld method Electron spin &estricted and unrestricted HF theory &HF versus UHF Pros and cons !er ormance( HF equilibrium bond lengths Hartree-Fock calculations systematically underestimate equilibrium bond lengths !er ormance( HF atomization energy Hartree-Fock calculations systematically underestimate atomization energies. !er ormance( HF reaction enthalpies Hartree-Fock method fails when reaction is far from isodesmic. Lack of electron correlations!! Electron correlation In the Hartree-Fock model, the repulsion energy between two electrons is calculated between an electron and the a!erage electron density for the other electron. What is unphysical about this is that it doesn't take into account the fact that the electron will push away the other electrons as it mo!es around. This tendency for the electrons to stay apart diminishes the repulsion energy. If one is on one side of the molecule, the other electron is likely to be on the other side. Their positions are correlated, an effect not included in a Hartree-Fock calculation. While the absolute energies calculated by the Hartree-Fock method are too high, relative energies may still be useful. Basis sets Minimal basis sets Minimal basis sets Split valence basis sets Example( Car)on 6-3/G basis set !olarized basis sets 1iffuse functions Mix and match %2ective core potentials #ounting basis functions Accuracy Basis set superposition error Calculations of interaction energies are susceptible to basis set superposition error (BSSE) if they use finite basis sets. -
Arxiv:1912.01335V4 [Physics.Atom-Ph] 14 Feb 2020
Fast apparent oscillations of fundamental constants Dionysios Antypas Helmholtz Institute Mainz, Johannes Gutenberg University, 55128 Mainz, Germany Dmitry Budker Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany and Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA Victor V. Flambaum School of Physics, University of New South Wales, Sydney 2052, Australia and Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany Mikhail G. Kozlov Petersburg Nuclear Physics Institute of NRC “Kurchatov Institute”, Gatchina 188300, Russia and St. Petersburg Electrotechnical University “LETI”, Prof. Popov Str. 5, 197376 St. Petersburg Gilad Perez Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel 7610001 Jun Ye JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA (Dated: May 2019) Precision spectroscopy of atoms and molecules allows one to search for and to put stringent limits on the variation of fundamental constants. These experiments are typically interpreted in terms of variations of the fine structure constant α and the electron to proton mass ratio µ = me/mp. Atomic spectroscopy is usually less sensitive to other fundamental constants, unless the hyperfine structure of atomic levels is studied. However, the number of possible dimensionless constants increases when we allow for fast variations of the constants, where “fast” is determined by the time scale of the response of the studied species or experimental apparatus used. In this case, the relevant dimensionless quantity is, for example, the ratio me/hmei and hmei is the time average. In this sense, one may say that the experimental signal depends on the variation of dimensionful constants (me in this example).