Predicting Vulnerability of Fishes

Total Page:16

File Type:pdf, Size:1020Kb

Predicting Vulnerability of Fishes PREDICTING VULNERABILITY OF FISHES by Stacey Lee O’Malley A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Stacey O’Malley 2010 Predicting Vulnerability of Fishes Stacey Lee O’Malley Master of Science Department of Ecology and Evolutionary Biology University of Toronto 2010 Abstract Conservation biology would benefit from methods that identify species at risk in a proactive manner, rather than through post-hoc conservation assessments. This study examines the utility of four potential indices for predicting vulnerability in fishes: total body length; trophic level; intrinsic vulnerability score; and, resilience. Statistical analysis was done to determine if correlations existed between any of these four indices and known levels of risk in marine and freshwater Canadian fishes. Results show the success of two of these indices to predict risk: fished species over 78.33 centimeters total length, or with intrinsic vulnerability scores over 57.41 are more highly vulnerable to becoming at risk. Over 20% of Canadian fished species of unknown conservation status are therefore currently vulnerable, and possibly at risk of extinction. This study shows vulnerability indices allow a rapid prioritization of fishes at risk of extinction, and can thus help achieve proactive conservation even in the absence of population decline data. ii Acknowledgements Firstly, I would like to thank my supervisor Prof. Mart Gross for his support, guidance and assistance throughout the duration of my work at the University of Toronto, and for inspiring me to pursue graduate studies in conservation biology. Mart, more than anyone else you have expanded my thinking about conservation issues, and you have helped me to realize my potential to make a difference as a conservation biologist. Thank you. I thank the David Suzuki Foundation (DSF) for their partnership through the NSERC Industrial Postgraduate Scholarship program. I would like to thank Dr. Scott Wallace, Sustainable Fisheries Analyst at DSF for his supervisory support, as well as the Marine Conservation Team and the rest of the DSF staff for welcoming me into their office and community. My lab members have provided me the opportunity to discuss the work presented here, and I thank Blake Turner, Eric Davies, Dan Clarke, Sandra Neill, Kristen Hahn and Sarah Hasnain. Additionally, I thank my supervisory committee members Dr. Lisa Manne and Douglas Macdonald, PhD. who have assisted in focusing my research. I thank as well Dr. Don Jackson, Dr. Brian Shuter and Dr. Joe Repka for discussions on statistics and mathematics, as well as graduate students Brie Edwards, Monica Granados and Bronwyn Rayfield. Finally, I would like to extend appreciation to my friends and family for their support and encouragement. I particularly thank Amy Stevens Yee and Duane Petts for their editing assistance. iii Table of Contents List of Tables ................................................................................................................................. vi List of Figures............................................................................................................................... vii List of Appendices ....................................................................................................................... viii Predicting Vulnerability of Fishes .................................................................................................. 1 1 Introduction................................................................................................................................ 1 2 Materials and Methods............................................................................................................... 3 2.1 Overall analytical design..................................................................................................... 3 2.2 Data sources........................................................................................................................ 4 2.3 Vulnerability indices and categories................................................................................... 5 Body size (SIZE)................................................................................................................. 5 Trophic level (TROP) ......................................................................................................... 5 Intrinsic vulnerability score (IVUL) ................................................................................... 6 Resilience (RESL) .............................................................................................................. 6 2.4 Statistical analyses and comparisons .................................................................................. 7 3 Results........................................................................................................................................ 9 3.1 Comparative overview........................................................................................................ 9 3.2 Predictive capacity of indices ........................................................................................... 10 Predictive success ............................................................................................................. 10 3.3 Predictive capacity by cause of endangerment ................................................................. 11 Predictive success ............................................................................................................. 12 3.4 Misclassifications.............................................................................................................. 12 3.5 Predicting vulnerability of Canada’s fishes ...................................................................... 13 4 Discussion ................................................................................................................................ 13 iv 4.1 What makes an index successful?..................................................................................... 14 4.2 Why do indices work for some species and not others? ................................................... 17 4.3 Uncertainty and misclassification..................................................................................... 18 False positives................................................................................................................... 18 False negatives.................................................................................................................. 19 4.4 Data considerations........................................................................................................... 20 4.5 Predicting Vulnerability in Canada’s Fish Fauna ............................................................. 21 4.6 Conclusions....................................................................................................................... 22 References..................................................................................................................................... 24 Tables............................................................................................................................................ 29 Figures........................................................................................................................................... 39 Appendices.................................................................................................................................... 46 v List of Tables • Table 1. Vulnerability index values for Canadian fish species at risk and not at risk. • Table 2. Spearman correlations between vulnerability index values for assessed Canadian fish species (at risk and not at risk), n=166. • Table 3. Analysis of variance (ANOVA) examining effects of external variables on capacity for vulnerability indices to predict risk. • Table 4. Capacity for vulnerability indices to predict Canadian fish species at risk: cross- validated logistic regression output. • Table 5. Threshold values of body size (maximum length) and intrinsic vulnerability score in predicting Canadian fish species at risk and not at risk, as determined by cross-validated logistic analysis. • Table 6. Extrinsic threats to Canadian fishes. • Table 7. Capacity for vulnerability indices to predict Canadian fish species at risk under particular extrinsic threats. • Table 8. Cross-validated threshold values for species’ vulnerability to fishing related threats. • Table 9. Cross-validated threshold values for species’ vulnerability to overfishing and bycatch threats. • Table 10. Species misclassified by both body size and intrinsic vulnerability indices at probability cutoff point 0.5. vi List of Figures • Figure 1. Conservation-assessed Canadian fish species (n=166) that are at risk or not-at- risk of extinction, classified by fishing and environment type. • Figure 2. Classification success of vulnerability indices to predict risk, using cross- validated models in receiver-operating characteristic (ROC) space. • Figure 3. Classification success of vulnerability indices to predict under the threat of fishing in Canadian fish species, using cross-validated models in receiver-operating characteristic (ROC) space. • Figure 4. Frequency distribution and vulnerability of fished Canadian species of unknown risk status. vii List of Appendices • Appendix 1.
Recommended publications
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Appendix A: Common and Scientific Names for Fish and Wildlife Species Found in Idaho
    APPENDIX A: COMMON AND SCIENTIFIC NAMES FOR FISH AND WILDLIFE SPECIES FOUND IN IDAHO. How to Read the Lists. Within these lists, species are listed phylogenetically by class. In cases where phylogeny is incompletely understood, taxonomic units are arranged alphabetically. Listed below are definitions for interpreting NatureServe conservation status ranks (GRanks and SRanks). These ranks reflect an assessment of the condition of the species rangewide (GRank) and statewide (SRank). Rangewide ranks are assigned by NatureServe and statewide ranks are assigned by the Idaho Conservation Data Center. GX or SX Presumed extinct or extirpated: not located despite intensive searches and virtually no likelihood of rediscovery. GH or SH Possibly extinct or extirpated (historical): historically occurred, but may be rediscovered. Its presence may not have been verified in the past 20–40 years. A species could become SH without such a 20–40 year delay if the only known occurrences in the state were destroyed or if it had been extensively and unsuccessfully looked for. The SH rank is reserved for species for which some effort has been made to relocate occurrences, rather than simply using this status for all elements not known from verified extant occurrences. G1 or S1 Critically imperiled: at high risk because of extreme rarity (often 5 or fewer occurrences), rapidly declining numbers, or other factors that make it particularly vulnerable to rangewide extinction or extirpation. G2 or S2 Imperiled: at risk because of restricted range, few populations (often 20 or fewer), rapidly declining numbers, or other factors that make it vulnerable to rangewide extinction or extirpation. G3 or S3 Vulnerable: at moderate risk because of restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors that make it vulnerable to rangewide extinction or extirpation.
    [Show full text]
  • LATE MIOCENE FISHES of the CACHE VALLEY MEMBER, SALT LAKE FORMATION, UTAH and IDAHO By
    LATE MIOCENE FISHES OF THE CACHE VALLEY MEMBER, SALT LAKE FORMATION, UTAH AND IDAHO by PATRICK H. MCCLELLAN AND GERALD R. SMITH MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, 208 Ann Arbor, December 17, 2020 ISSN 0076-8405 P U B L I C A T I O N S O F T H E MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 208 GERALD SMITH, Editor The publications of the Museum of Zoology, The University of Michigan, consist primarily of two series—the Miscellaneous Publications and the Occasional Papers. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. Occasionally the Museum publishes contributions outside of these series. Beginning in 1990 these are titled Special Publications and Circulars and each is sequentially numbered. All submitted manuscripts to any of the Museum’s publications receive external peer review. The Occasional Papers, begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Miscellaneous Publications, initiated in 1916, include monographic studies, papers on field and museum techniques, and other contributions not within the scope of the Occasional Papers, and are published separately. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Mammals, Birds, Reptiles and Amphibians, Fishes, I nsects, Mollusks, and other topics is available.
    [Show full text]
  • Investigations in Fish Control
    INVESTIGATIONS IN FISH CONTROL 82. Investigations in Fish Control: Index to Numbers 1-72,1964-76 UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE Investigations in Fish Control, published by the Fish and Wildlife Service, include reports on the results of work at the Service's Fish Control Laboratories at La Crosse, Wis., and Warm Springs, Ga., and reports of other studies related to that work. Though each report is regarded as a separate publication, several may be issued under a single cover, for economy. [See Investigations in Fish Control 47-50 (in one cover) for list of issues published prior to 1970.] (Reports 41 through 43 are in one cover.) 41. Identification of MS-222 Residues in Selected Fish Tissues by Thin Layer Chromatog- raphy, by John L. Alien, Charles W. Luhning, and Paul D. Harman. 1970. 7 pp. 42. Dynamics of MS-222 in the Blood and Brain of Freshwater Fishes During Anesthesia, by Joseph B. Hunn. 1970.8 pp. 43. Effect of MS-222 on Electrolyte and Water Content in the Brain of Rainbow Trout, by Wayne A. Willford. 1970. 7 pp. 44. A Review of Literature on TFM (3-trifluormethyl-4-nitrophenol) as a Lamprey Larvi- cide, by Rosalie A. Schnick. 1972.31 pp. (Reports 45 and 46 are in one cover.) 45. Residues of MS-222 in Northern Pike, Muskellunge, and Walleye, by John L. Alien, Charles W. Luhning, and Paul D. Harman. 1972. 8 pp. 46. Methods of Estimating the Half-Life of Biological Activity of Toxic Chemicals in Water, by Leif L.
    [Show full text]
  • Invertebrates
    State Wildlife Action Plan Update Appendix A-5 Species of Greatest Conservation Need Fact Sheets INVERTEBRATES Conservation Status and Concern Biology and Life History Distribution and Abundance Habitat Needs Stressors Conservation Actions Needed Washington Department of Fish and Wildlife 2015 Appendix A-5 SGCN Invertebrates – Fact Sheets Table of Contents What is Included in Appendix A-5 1 MILLIPEDE 2 LESCHI’S MILLIPEDE (Leschius mcallisteri)........................................................................................................... 2 MAYFLIES 4 MAYFLIES (Ephemeroptera) ................................................................................................................................ 4 [unnamed] (Cinygmula gartrelli) .................................................................................................................... 4 [unnamed] (Paraleptophlebia falcula) ............................................................................................................ 4 [unnamed] (Paraleptophlebia jenseni) ............................................................................................................ 4 [unnamed] (Siphlonurus autumnalis) .............................................................................................................. 4 [unnamed] (Cinygmula gartrelli) .................................................................................................................... 4 [unnamed] (Paraleptophlebia falcula) ...........................................................................................................
    [Show full text]
  • Speckled Dace, Rhinichthys Osculus, in Canada, Prepared Under Contract with Environment and Climate Change Canada
    COSEWIC Assessment and Status Report on the Speckled Dace Rhinichthys osculus in Canada ENDANGERED 2016 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2016. COSEWIC assessment and status report on the Speckled Dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 51 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Previous report(s): COSEWIC 2006. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 27 pp. (www.sararegistry.gc.ca/status/status_e.cfm). COSEWIC 2002. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 36 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Peden, A. 2002. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada, in COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-36 pp. Peden, A.E. 1980. COSEWIC status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. 1-13 pp. Production note: COSEWIC would like to acknowledge Andrea Smith (Hutchinson Environmental Sciences Ltd.) for writing the status report on the Speckled Dace, Rhinichthys osculus, in Canada, prepared under contract with Environment and Climate Change Canada.
    [Show full text]
  • Field Key to the Freshwater Fishes of British Columbia
    FIELD KEY TO THE FRESHWATER FISHES OF BRITISH COLUMBIA J.D. McPhail and R. Carveth Fish Museum, Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, B.C., Canada, V6T 1Z4 (604) 822-4803 Fax (604) 822-2416 © The Province of British Columbia Published by the Resources Inventory Committee Canadian Cataloguing in Publication Data McPhail, J. D. (John Donald) Field key to the freshwater, fishes of British Columbia Also available through the Internet. Previously issued: Field key to the freshwater fishes of British Columbia. Draft for 1994 field testing, 1994. Includes bibliographical references: p. ISBN 0-7726-3830-6 (Field guide) ISBN 0-7726-3844-6 (Computer file) 1. Freshwater fishes - British Columbia - Identification. I. Carveth, R. II. Resources Inventory Committee (Canada) III. Title. QL626.5.B7M36 1999 597.176'09711 C99-960109-1 Additional Copies of this publication can be purchased from: Government Publications Centre Phone: (250) 387-3309 or Toll free: 1 -800-663-6105 Fax: (250) 387-0388 www.publications.gov.bc.ca Digital Copies are available on the Internet at: http://www.for.gov. bc.ca/ric Text copyright © 1993 J.D. McPhail Illustrations copyright © 1993 D.L. McPhail All rights reserved. Design and layout by D.L. McPhail "Admitted that some degree of obscurity is inseparable from both theology and ichthyology, it is not inconsistent with profound respect for the professors of both sciences to observe that a great deal of it has been created by themselves." Sir Herbert Maxwell TABLE OF CONTENTS Introduction · i Region 1 - Vancouver Island 1 Region 2 - Fraser 27 Region 3 - Columbia 63 Region 4 - MacKenzie 89 Region 5 - Yukon 115 Region 6 - North Coast 127 Region 7 - Queen Charlotte Islands 151 Region 8 - Central Coast 167 Appendix 193 Acknowledgements .
    [Show full text]
  • Xerces Society's
    Conserving the Gems of Our Waters Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black CONSERVING THE GEMS OF OUR WATERS Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins Laura McMullen Sarina Jepsen Michele Blackburn Aimée Code Scott Hoffman Black The Xerces Society for Invertebrate Conservation www.xerces.org The Xerces® Society for Invertebrate Conservation is a nonprot organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citizens to implement conservation programs worldwide. The Society uses advocacy, education, and applied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional oces from coast to coast. The Xerces Society is an equal opportunity employer and provider. Xerces® is a trademark registered in the U.S. Patent and Trademark Oce © 2018 by The Xerces Society for Invertebrate Conservation Primary Authors and Contributors The Xerces Society for Invertebrate Conservation: Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black. Acknowledgements Funding for this report was provided by the Oregon Watershed Enhancement Board, The Nature Conservancy and Portland General Electric Salmon Habitat Fund, the Charlotte Martin Foundation, Meyer Memorial Trust, and Xerces Society members and supporters.
    [Show full text]
  • Some Life History Characteristics of Cyprinids in the Hanford Reach
    BobertH. Gray, RH G ray & Assoclates,2867 Troon Ct.. Rich and Washington99352 E mail rhgray@ixnetcom com ano DennisO. Dauble, Pacific Northu/esi Nationa Laboratory P O Box999 Richand. Wash nqton 99352 SomeLife HistoryCharacteristics of Cyprinidsin the HanfordReach, Mid-ColumbiaRiver Abstract Cvprinids arc thc non abundanl nonsalmonidfamily of fishes in the Hanford Reach of the Columbia Ri\,er and collectivelv conrprise> 50tZ ofthe fish communil!. The nonhern pikeminnow (P4chot:heilusoregon,n \irl. ruil!iLle\hiner LRt(rrrrdrorl"r ,ar.drrrr). peamouth(MJ kx:heilustaurinusl.and chisclmouth(Acr.r.l.,i/rr a/aracrrrs)are common. aDdcommon carp (Ctpr.t r.! cd,?i.r. scveral speciesof dacc (Rlilii.lth\: tdtarudae, R. fulcdtur, R. r,.u/rr). rench (nr.a rin..r). and goldfish (Cd,"drrrllr drld!.is) also occur.Cyprinid spawningis concentratedin lale spring and early summerat water tempcraturesranging fron 10 to l6'C. Of thc mosl abuDdantcyprinids. northernpikeminnow, atuiD the largestsizc at maruriry and rcdside shiner rhe smallest. Although allspecics areomDivorousfor at lcasl paft oftheir lifecycle. northernpikeminnow is piscivorousat sizes> 250 mm fbrk leDgth\!hile chisclmc'ulhiDgest mainly pcdph]ton. Introduction repeatedbecause of reductionsi[ water use de- velopmentandrecent restrictions on samplinggear The Hanfbrd Reach remains unique as the last imposedby environmentalregulations such as the unimpounded,though regulated, sfetch ofthe Co- EndangeredSpecies Act. lumbia River in the United Statesupsteam of BonnevilleDam. The area supports impodant sport This paper describesthe biology of the Cy fisheries for steelhead(a),?.orft) nchus m)-kiss), prinidac. the most abundantand diverse tamily smallmouth bass (Micropterus tblomieu), and, offishes in the Hanford Reach(Gray and Dauble white sturgeon(A c ip e n s e r tansmont dnus), a\d.
    [Show full text]
  • Scolex Morphology of Monozoic Tapeworms (Caryophyllidea) from the Nearctic Region: Taxonomic and Evolutionary Implications
    Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2020, 67: 003 doi: 10.14411/fp.2020.003 http://folia.paru.cas.cz Research Article Scolex morphology of monozoic tapeworms (Caryophyllidea) from the Nearctic Region: taxonomic and evolutionary implications Mikuláš Oros1, Dalibor Uhrovič1, Anindo Choudhury2, John S. Mackiewicz3 and Tomáš Scholz4 1 Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia; 2 Division of Natural Sciences, St. Norbert College, De Pere, Wisconsin, USA; 3 Biological Sciences, State University of New York at Albany, New York, USA; 4 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic Abstract: A comparative study of the scoleces of monozoic tapeworms (Cestoda: Caryophyllidea), parasites of catostomid and cyprinid fishes (Teleostei: Cypriniformes) in the Nearctic Region, was carried out using light and scanning electron microscopy. Scoleces of 22 genera of North American caryophyllideans were characterised and their importance for taxonomy, classification and phylogenetic studies was critically reviewed. Nearctic genera exhibit a much higher variation in the shape and form of scoleces compared with taxa in other biogeographical regions. The following basic scolex types can be recognised in Nearctic caryophyllideans: monobothriate (Pro- monobothrium Mackiewicz, 1968), loculotruncate (Promonobothrium, Dieffluvium Williams, 1978), bothrioloculodiscate (Archigetes Leuckart, 1878, Janiszewskella Mackiewicz et Deutsch, 1976, Penarchigetes
    [Show full text]
  • Appendix A: Equipment & Supplies
    National Rivers and Streams Assessment 2018/19 Field Operations Manual Version 1.1 April 2018 Appendix A: Equipment & Supplies T & SUPPLIES & T APPENDIX A: EQUIPMEN A: APPENDIX A-1 National Rivers and Streams Assessment 2018/19 Field Operations Manual Version 1.1 April 2018 T & SUPPLIES & T APPENDIX A: EQUIPMEN A: APPENDIX A-2 National Rivers and Streams Assessment 2018/19 Field Operations Manual Version 1.1 April 2018 Base Kit A Base Kit will be provided to the field crews for all sampling sites that they will go to. Some items are sent in the base kit as extra supplies to be used as needed. Base Kit Item Quantity Protocol Antibiotic Salve 1 Fish Plug Aspirator bulb 1 Fish Plug Beaker (3 L, Nalgene) 1 Water Chemistry Centrifuge tube stand 1 Chlorophyll A Centrifuge tubes (sterile, green screw-top, 50-mL) (10/pack) 1 pack Chlorophyll A Periphyton Chlorophyll bottle (2 L, brown) 1 Chlorophyll A Clinometer† 1 Physical Habitat Compass† 1 Physical Habitat Delimiter – 12 cm2 area 1 Periphyton Densiometer - Convex spherical (modified with taped V)† 1 Physical Habitat D-frame Kick Net (500 µm mesh, 52” handle) † 1 Benthics Dry ice label (Class 9)* 5 Shipping Electrical tape - roll* 1 General FedEx labels, 5 sets of each in file folder (T1, T2, T3, T5)* 1 Shipping Filtration chamber adapter 3 Enterococci, Chlorophyll A, Periphyton Filtration flask 1 Enterococci, Chlorophyll A, Periphyton Filtration flask stopper (silicone, blue) 2 Enterococci, Chlorophyll A, Periphyton Filtration unit (sterile 250 ml funnel, cap and filter holder) - spares 5 Enterococci,
    [Show full text]
  • Speckled Dace Rhinichthys Osculus
    COSEWIC Assessment and Update Status Report on the Speckled Dace Rhinichthys osculus in Canada ENDANGERED 2006 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2006. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 27 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous reports: COSEWIC 2002. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 36 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Peden, A. 2002. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada, in COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-36 pp. Peden, A.E. 1980. COSEWIC status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. 1-13 pp. Production note: COSEWIC would like to acknowledge Juanita Ptolemy for writing the update status report on the speckled dace Rhinichthys osculus in Canada, prepared under contract with Environment Canada, overseen and edited by Robert Campbell, Co-chair, COSEWIC Freshwater Fishes Species Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Évaluation et Rapport de situation du COSEPAC sur le naseux moucheté (Rhinichthys osculus) au Canada – Mise à jour.
    [Show full text]