Spaceflight Mechanics 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanisms for Space Applications
Mechanisms for space applications M. Meftah a,* , A. Irbah a, R. Le Letty b, M. Barr´ ec, S. Pasquarella d, M. Bokaie e, A. Bataille b, and G. Poiet a a CNRS/INSU, LATMOS-IPSL, Universit´ e Versailles St-Quentin, Guyancourt, France b Cedrat Technologies SA, 15 Ch. de Malacher, 38246 Meylan, France c Thales Avionics Electrical Motors, 78700 Conflans Sainte-Honorine, France d Vincent Associates, 803 Linden Ave., Rochester, NY 14625,United States e TiNi Aerospace, 2505 Kerner Blvd., San Rafael, CA 94901, United States ABSTRACT All space instruments contain mechanisms or moving mechanical assemblies that must move (sliding, rolling, rotating, or spinning) and their successful operati on is usually mission-critical. Generally, mechanisms are not redundant and therefore represent potential single point failure modes. Several space missions have suered anomalies or failures due to problems in applying space mechanisms technology. Mechanisms require a specific qualification through a dedicated test campaign. This paper covers the design, development, testing, production, and in-flight experience of the PICARD/SODISM mechanisms. PICARD is a space mission dedicated to the study of the Sun. The PICARD Satellite was successfully launched, on June 15, 2010 on a DNEPR launcher from Dombarovskiy Cosmodrome, near Yasny (Russia). SODISM (SOlar Diameter Imager and Surface Mapper) is a 11 cm Ritchey-Chretien imaging telescope, taking solar images at five wavelengths. SODISM uses several mechanisms (a system to unlock the door at the entrance of the instrument, a system to open/closed the door using a stepper motor, two filters wheels usingastepper motor, and a mechanical shutter). For the fine pointing, SODISM uses three piezoelectric devices acting on th e primary mirror of the telescope. -
Bolden Testimony
HOLD FOR RELEASE UNTIL PRESENTED BY WITNESS November 17, 2011 Statement of The Honorable Charles F. Bolden, Jr. Administrator National Aeronautics and Space Administration before the Subcommittee on Science and Space Committee on Commerce, Science and Transportation U. S. Senate Mr. Chairman and Members of the Subcommittee, thank you for the opportunity to appear before you today to discuss the outlook for NASA’s human space flight program. This has been a remarkable year, as we have completed assembling and outfitting of the U.S. On-orbit Segment (USOS) of the International Space Station (ISS), allowing us to focus on full utilization of the Station’s research capabilities; taken key steps in moving forward into the future of exploration beyond Low-Earth Orbit (LEO); celebrated the 50 th anniversary of human spaceflight; and witnessed the successful conclusion of the historic Space Shuttle Program. We are also pleased with the progress our industry partners have made in developing an American capability to transport cargo and eventually astronauts to the ISS, and end the outsourcing of this work to foreign governments. More importantly, this will add a critical level of redundancy for transporting cargo and crew to the ISS. A robust transportation architecture is important to ensuring full utilization of this amazing research facility. Enabling commercial crew and cargo transportation systems in LEO allows NASA to focus on developing its own systems for sending astronauts on missions of exploration beyond LEO. This split between commercial and Government systems allows for a cost effective approach to promote a broad base for human exploration by the United States. -
Solar Radius Determined from PICARD/SODISM Observations and Extremely Weak Wavelength Dependence in the Visible and the Near-Infrared
A&A 616, A64 (2018) https://doi.org/10.1051/0004-6361/201832159 Astronomy c ESO 2018 & Astrophysics Solar radius determined from PICARD/SODISM observations and extremely weak wavelength dependence in the visible and the near-infrared M. Meftah1, T. Corbard2, A. Hauchecorne1, F. Morand2, R. Ikhlef2, B. Chauvineau2, C. Renaud2, A. Sarkissian1, and L. Damé1 1 Université Paris Saclay, Sorbonne Université, UVSQ, CNRS, LATMOS, 11 Boulevard d’Alembert, 78280 Guyancourt, France e-mail: [email protected] 2 Université de la Côte d’Azur, Observatoire de la Côte d’Azur (OCA), CNRS, Boulevard de l’Observatoire, 06304 Nice, France Received 23 October 2017 / Accepted 9 May 2018 ABSTRACT Context. In 2015, the International Astronomical Union (IAU) passed Resolution B3, which defined a set of nominal conversion constants for stellar and planetary astronomy. Resolution B3 defined a new value of the nominal solar radius (RN = 695 700 km) that is different from the canonical value used until now (695 990 km). The nominal solar radius is consistent with helioseismic estimates. Recent results obtained from ground-based instruments, balloon flights, or space-based instruments highlight solar radius values that are significantly different. These results are related to the direct measurements of the photospheric solar radius, which are mainly based on the inflection point position methods. The discrepancy between the seismic radius and the photospheric solar radius can be explained by the difference between the height at disk center and the inflection point of the intensity profile on the solar limb. At 535.7 nm (photosphere), there may be a difference of 330 km between the two definitions of the solar radius. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
Short-Term Variability and Mass Loss in Be Stars I
A&A 588, A56 (2016) Astronomy DOI: 10.1051/0004-6361/201528026 & c ESO 2016 Astrophysics Short-term variability and mass loss in Be stars I. BRITE satellite photometry of η and μ Centauri D. Baade1, Th. Rivinius2, A. Pigulski3,A.C.Carciofi4, Ch. Martayan2,A.F.J.Moffat5,G.A.Wade6,W.W.Weiss7, J. Grunhut1, G. Handler8,R.Kuschnig9,7,A.Mehner2,H.Pablo5,A.Popowicz10,S.Rucinski11, and G. Whittaker11 1 European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching, Germany e-mail: [email protected] 2 European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Casilla 19001, Santiago 19, Chile 3 Astronomical Institute, Wrocław University, Kopernika 11, 51-622 Wrocław, Poland 4 Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, 05508-900 São Paulo, SP, Brazil 5 Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, CP 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada 6 Department of Physics, Royal Military College of Canada, PO Box 17000, Stn Forces, Kingston, Ontario K7K 7B4, Canada 7 Institute of Astronomy, University of Vienna, Universitätsring 1, 1010 Vienna, Austria 8 Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland 9 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T1Z1, Canada 10 Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland 11 Department of Astronomy & Astrophysics, University of Toronto, 50 St. George St, Toronto, Ontario, M5S 3H4, Canada Received 21 December 2015 / Accepted 1 February 2016 ABSTRACT Context. -
Moriba Kemessia Jah, Ph.D. August 2020 THE
Moriba Kemessia Jah, Ph.D. August 2020 THE UNIVERSITY OF TEXAS AT AUSTIN Cockrell School of Engineering Resume FULL NAME: Moriba Kemessia Jah TITLE: Associate Professor DEPARTMENT: Aerospace Engineering and Engineering Mechanics EDUCATION: Embry-Riddle Aeronautical University Aerospace Engineering B.S. 1999 University of Colorado (Boulder) Aerospace Engineering Sci M.S. 2001 University of Colorado (Boulder) Aerospace Engineering Sci Ph.D. 2005 PROFESSIONAL REGISTRATION: Not Registered CURRENT AND PREVIOUS ACADEMIC POSITIONS: Associate Professor (with Tenure), The University of Texas at Austin, • Department of Aerospace Engineering and Engineering Mechanics, February 2020 – present Affiliate Faculty, The University of Texas at Austin • Environmental Sciences Institute, October 2019 – present Visiting Professor, Australian National University • Research School of Aerospace, Mechanical, and Environmental Engineering (RSAMEE), July 2019 – present Core Faculty, The University of Texas at Austin, • Oden Institute for Computational Engineering and Sciences, August 2018 – present Director, The University of Texas at Austin, • Oden Institute Computational Astronautical Sciences and Technologies Group, August 2018 - present Associate Professor (Tenure-Track), The University of Texas at Austin, • Department of Aerospace Engineering and Engineering Mechanics, April 2017 – February 2020 • Statistics and Data Science Department (Courtesy), October 2017 – present Program Lead and Distinguished Scholar, The University of Texas at Austin, • Robert Strauss -
The History Problem: the Politics of War
History / Sociology SAITO … CONTINUED FROM FRONT FLAP … HIRO SAITO “Hiro Saito offers a timely and well-researched analysis of East Asia’s never-ending cycle of blame and denial, distortion and obfuscation concerning the region’s shared history of violence and destruction during the first half of the twentieth SEVENTY YEARS is practiced as a collective endeavor by both century. In The History Problem Saito smartly introduces the have passed since the end perpetrators and victims, Saito argues, a res- central ‘us-versus-them’ issues and confronts readers with the of the Asia-Pacific War, yet Japan remains olution of the history problem—and eventual multiple layers that bind the East Asian countries involved embroiled in controversy with its neighbors reconciliation—will finally become possible. to show how these problems are mutually constituted across over the war’s commemoration. Among the THE HISTORY PROBLEM THE HISTORY The History Problem examines a vast borders and generations. He argues that the inextricable many points of contention between Japan, knots that constrain these problems could be less like a hang- corpus of historical material in both English China, and South Korea are interpretations man’s noose and more of a supportive web if there were the and Japanese, offering provocative findings political will to determine the virtues of peaceful coexistence. of the Tokyo War Crimes Trial, apologies and that challenge orthodox explanations. Written Anything less, he explains, follows an increasingly perilous compensation for foreign victims of Japanese in clear and accessible prose, this uniquely path forward on which nationalist impulses are encouraged aggression, prime ministerial visits to the interdisciplinary book will appeal to sociol- to derail cosmopolitan efforts at engagement. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket......................................... -
Deep Space Atomic Clock
National Aeronautics and Space Administration Deep Space Atomic Clock tion and radio science. Here are some examples of how one-way deep-space tracking with DSAC can improve navigation and radio science that is not supported by current two-way tracking. Ground-based 1. Simultaneously track two spacecraft on a atomic clocks are downlink with the Deep Space Network (DSN) the cornerstone of at destinations such as Mars, and nearly dou- spacecraft navigation ble a space mission’s tracking data because it for most deep-space missions because of their use no longer has to “time-share” an antenna. in generating precision two-way tracking measure- ments. These typically include range (the distance 2. Improve tracking data precision by an order of between two objects) and Doppler (a measure of magnitude using the DSN’s Ka-band downlink the relative speed between them). A two-way link (a tracking capability. signal that originates and ends at the ground track- ing antenna) is required because today’s spacecraft 3. Mitigate Ka-band’s weather sensitivity (as clocks introduce too much error for the equivalent compared to two-way X-band) by being able one-way measurements to be useful. Ground atom- to switch from a weather-impacted receiving ic clocks, while providing extremely stable frequen- antenna to one in a different location with no cy and time references, are too large for hosting on tracking outages. a spacecraft and cannot survive the harshness of space. New technology is on the horizon that will 4. Track longer by using a ground antenna’s en- change this paradigm. -
Mission Model (Aggregate)
Mission Models (Graphical Depiction) IOAG-14, Nov. 2-4, 2010 Update/s after IOAG-14 Meeting: (1) IOAG Secretariat / 2011-Jan.-14: Incorporated 2010-12-15 ESA update Earth Missions (1) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 COSMO –SM1 COSMO –SM2 ASI COSMO –SM3 COSMO –SM4 AGI MIOSAT PRISMA SPOT HELIOS 2010 TELECOM-2 Legend Green – In operation JASON Light green – Potential extension Blue – In development DEMETER TARANIS Light Blue – Potential extension Yellow – Proposed ESSAIM MICROSCOPE Light Yellow – Proposed extension CNES PARASOL MERLIN Note: Color fade to white indicates End Date unknown CALIPSO COROT CERES SMOS CSO-MUSIS (terminate 2028, potentially extend to 2030) PICARD MICROCARB (*) No dates provided Earth Missions (2) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 BIR DEOS Legend Green – In operation GR1/ GR2 ENMAP Light green – Potential extension Blue – In development SB1/SB2 Light Blue – Potential extension Yellow – Proposed DLR TerraSAR-X H2SAT* Light Yellow – Proposed extension TET Asteroiden Finder* Note: Color fade to white indicates End Date unknown TanDEM-X PRISMA 2010 (*) No dates provided Earth Missions (3) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 ERS 2 ADM-AEOLUS ENVISAT Sentinel 1B Extends to Oct. 2026 CRYOSAT 2 Sentinel 2B Extends to Jun. 2027 GOCE Earth Case Swarm Sentinel 1A Sentinel 2A Sentinel 3A ESA 2010 Sentinel 3B Extends to Aug. 2027 MSG MSG METOP METOP ARTEMIS GALILEO Legend Green – In operation -
ASTRIA Ontology: Open, Standards-Based, Data-Aggregated Representation of Space Objects
Space Traffic Management Conference 2019 Progress through Collaboration Feb 26th, 2:00 PM ASTRIA Ontology: Open, Standards-based, Data-aggregated Representation of Space Objects Jennie Wolfgang The University of Texas at Austin, [email protected] Kathleen Krysher The University of Texas at Austin, [email protected] Michael Slovenski The University of Texas at Austin, [email protected] Unmil P. Karadkar The University of Texas at Austin, [email protected] Shiva Iyer The University of Texas at Austin, [email protected] See next page for additional authors Follow this and additional works at: https://commons.erau.edu/stm Part of the Cataloging and Metadata Commons, Databases and Information Systems Commons, and the Space Vehicles Commons Wolfgang, Jennie; Krysher, Kathleen; Slovenski, Michael; Karadkar, Unmil P.; Iyer, Shiva; and Jah, Moriba K., "ASTRIA Ontology: Open, Standards-based, Data-aggregated Representation of Space Objects" (2019). Space Traffic Management Conference. 2. https://commons.erau.edu/stm/2019/presentations/2 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in Space Traffic Management Conference by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Presenter Information Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, and Moriba K. Jah This event is available at Scholarly Commons: https://commons.erau.edu/stm/2019/presentations/2 -
Distributed Or Monolithic? a Computational Architecture
TO APPEAR IN IEEE SYSTEMS JOURNAL, DOI: 10.1109/JSYST.2016.2594290 1 Distributed or Monolithic? A Computational Architecture Decision Framework Mohsen Mosleh, Kia Dalili, and Babak Heydari Abstract—Distributed architectures have become ubiquitous in Distributed architecture is a common approach to increase many complex technical and socio-technical systems because of system flexibility and responsiveness. In a distributed architec- their role in improving uncertainty management, accommodating ture, subsystems are often physically separated and exchange multiple stakeholders, and increasing scalability and evolvability. This departure from monolithic architectures provides a system resources through standard interfaces. Advances in networking with more flexibility and robustness in response to uncertainties technology, together with increasing system flexibility require- that it may confront during its lifetime. Distributed architecture ments, has made distributed architecture a ubiquitous theme does not provide benefits only, as it can increase cost and in many complex technical systems. Examples can be seen complexity of the system and result in potential instabilities. in many engineering systems: Distributed Generation, which The mechanisms behind this trade-off, however, are analogous to those of the widely-studied transition from integrated to modular is an approach to employ numerous small-scale decentralized architectures. In this paper, we use a conceptual decision frame- technologies to produce electricity close to the end users of work that unifies modularity and distributed architecture on a power, as opposed to the use of few large-scale monolithic five-stage systems architecture spectrum. We add an extensive and centralized power plants [2]; Wireless Sensor Networks, computational layer to the framework and explain how this can in which spatially distributed autonomous sensors collect data enhance decision making about the level of modularity of the architecture.