Stochastic Vs. Deterministic Modeling of Intracellular Viral Kinetics R

Total Page:16

File Type:pdf, Size:1020Kb

Stochastic Vs. Deterministic Modeling of Intracellular Viral Kinetics R J. theor. Biol. (2002) 218, 309–321 doi:10.1006/yjtbi.3078, available online at http://www.idealibrary.com on Stochastic vs. Deterministic Modeling of Intracellular Viral Kinetics R. Srivastavawz,L.Youw,J.Summersy and J.Yinnw wDepartment of Chemical Engineering, University of Wisconsin, 3633 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706, U.S.A., zMcArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, WI 53706, U.S.A. and yDepartment of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, U.S.A. (Received on 5 February 2002, Accepted in revised form on 3 May 2002) Within its host cell, a complex coupling of transcription, translation, genome replication, assembly, and virus release processes determines the growth rate of a virus. Mathematical models that account for these processes can provide insights into the understanding as to how the overall growth cycle depends on its constituent reactions. Deterministic models based on ordinary differential equations can capture essential relationships among virus constituents. However, an infection may be initiated by a single virus particle that delivers its genome, a single molecule of DNA or RNA, to its host cell. Under such conditions, a stochastic model that allows for inherent fluctuations in the levels of viral constituents may yield qualitatively different behavior. To compare modeling approaches, we developed a simple model of the intracellular kinetics of a generic virus, which could be implemented deterministically or stochastically. The model accounted for reactions that synthesized and depleted viral nucleic acids and structural proteins. Linear stability analysis of the deterministic model showed the existence of two nodes, one stable and one unstable. Individual stochastic simulation runs could access and remain at the unstable node. In addition, deterministic and averaged stochastic simulations yielded different transient kinetics and different steady-state levels of viral components, particularly for low multiplicities of infection (MOI), where few virus particles initiate the infection. Furthermore, a bimodal population distribution of viral components was observed for low MOI stochastic simulations. The existence of a low-level infected subpopulation of cells, which could act as a viral reservoir, suggested a potential mechanism of viral persistence. r 2002 Elsevier Science Ltd. All rights reserved. Introduction well-characterized. We have developed models Viruses are ideal systems for probing how the for the intracellular growth of bacteriophage T7 staticlinear information encodedby a genome (Endy et al., 1997; You & Yin, 2001) and HIV-1 defines a dynamicnonlinear processof growth (Reddy & Yin, 1999), which have enabled us to and development. Their genomes are small, suggest novel anti-viral strategies (Endy & Yin, ranging in size from 3 to 300 kilobases, and 2000), visualize dynamicpatterns of genetic in many cases their encoded functions regulatory elements (You & Yin, 2000), and are genetically, biochemically, and structurally probe how virus growth depends on genome organization (Endy et al., 2000) and host resources (You et al., 2002). To date, we have formulated our viral models as coupled ordinary nCorresponding author. Tel.: +1-608-265-3779; fax: +1-608-262-5434. differential equations and algebraicexpressions E-mail address: [email protected] (J. Yin). that employ parameters from the literature and 0022-5193/02/$35.00/0 r 2002 Elsevier Science Ltd. All rights reserved. 310 R. SRIVASTAVA ET AL. are numerically integrated to reveal dynamic may be established, suggesting a potential behavior. mechanism for viral persistence. Here, we seek to better understand what differences may result from stochastic and Model Development deterministickineticapproachesto modeling viral kinetics. A virus infection may be initiated A simple network of a model virus, shown by a single virus particle that delivers its genome, in Fig. 1, was developed to explore differences a single molecule of DNA or RNA, to its host between stochastic and deterministic model cell (Jilbert et al., 1996). Under such conditions, implementations. The components studied were the inherently stochastic nature of the ensuing the viral nucleic acids and a viral structural processes may give rise to dynamics that differ protein (struct). The viral nucleic acids were significantly from those predicted by determinis- classified as genomic (gen) or template (tem). The ticmodels. There are many examples of stochas- genome, whether it is DNA, positive-strand ticbiologicalmodels in the literature (Chin & RNA, negative-strand RNA, or some other Willsky, 1989; McAdams & Arkin, 1997; Arkin variant, is the vehicle by which viral genetic et al., 1998; Goss & Peccoud, 1998; Srivastava information is transported. The genome can et al., 2001), as well as examples comparing undergo one of the two fates. The first possibility deterministic and stochastic kinetics of simple is that it may be modified, whether through biochemical systems (Erdi! & Toth,! 1988), and integration into the host genome or some other linear and nonlinear chemical systems (Kurtz, type of processing (reverse transcription, etc.), 1972; Zheng & Ross, 1991). A nonlinear model to form a template; the template refers to the of the intracellular kinetics of a generic non-lytic form of the nucleic acid that is transcribed and virus was developed. For a non-lyticvirus, the involved in catalytically synthesizing every viral level of intracellular viral components must be component. The second possibility for the regulated in some manner to avoid destroying genome is that it may be packaged within the cell simply via excess propagation. The structural proteins to form progeny virus; question of how the levels of components, structural proteins may be capsid proteins or particularly the ones existing at low levels, are envelope proteins. regulated in the face of stochastic fluctuations is The standard sequence of viral replication an intriguing one. The current computational events involves the amplification of the viral study showed differences in stochastic and template after the infection, followed by produc- deterministicimplementations of the viral mod- tion of progeny virus. DNA viruses, for example, el. It also showed how a low-level viral reservoir initially make low levels of non-structural virus k4 degradation or secretion genome (gen) structural k6 k3 k1 protein (struct) template k5 (tem) degradation k2 Fig. 1. Model of viral replication cycle. The model tracks template (tem), genome (gen), and structural protein (struct). The tem is only used catalytically in the synthesis of gen and struct. The catalytic reactions are represented by (- ----)lines. STOCHASTIC VS. DETERMINISTIC VIRAL KINETICS 311 proteins that catalytically amplify the number of (ODE) was extracted: template molecules. Once the number of tem- d½tem plate molecules is sufficiently high, structural ¼ k1½genÀk2½tem; proteins are synthesized for incorporation into dt progeny particles. The timing of replication d½gen events may be tied to external factors, as ¼ k3½temÀk1½genÀk4½gen½struct; dt illustrated by the dependence of human papillo- ma virus replication on the differentiation state d½struct ¼ k ½temÀk ½structÀk ½gen½struct: of its host cell (Knipe & Howley, 2001). In our dt 5 6 4 model, the switch from viral genome amplifica- ð1Þ tion to virus production was regulated through viral mass action kinetics, as was shown through By using an ODE model to describe viral the simulation studies. Because the switch could kinetics, an underlying assumption is made that mathematically be accomplished solely through viral components change continuously with time the dynamics of key viral components, for our (Erdi! & Toth,! 1988). Such an assumption is purposes it was unnecessary to introduce any justified by assuming that the modeling results explicit dependence upon the host. However, an represent the average behavior of a large number implicit host dependence is reflected in the values of infected cells. of the kineticparameters of the model. For example, if in a given host cell a certain amino Parameter Selection acid is limiting, it may be reflected by a lower rate constant for protein synthesis. We assumed that gen was produced at The modeling network employed was lumped, 1 molecule cellÀ1 dayÀ1, the synthesis parameter in the sense that many individual reaction steps of structural protein was 1000-fold greater than were combined into a single step. For example, gen, and the rate of virus production was synthesis of structural protein requires that the 1 molecule temÀ1 cellÀ1 dayÀ1. A steady-state con- viral DNA be transcribed to mRNA and that the straint of 20 tem molecules was applied. By mRNA be translated to generate the structural setting the steady state of gen and struct to protein. For the viral model, it was assumed that 200 molecules and 10 000 molecules, respectively, such reactions could be combined together and we determined all of the parameter values for the characterized using a single-rate parameter. The model, as listed in Table 1. lumped reactions are represented by arrows in Fig. 1. Linear Stability Analysis Further assumptions made were: (1) other components necessary for the reactions to occur Two steady states were calculated for the viral (i.e. nucleic acids, amino acids, etc.) were network. One steady state occurred when available at a constant level, (2) once a cell was tem ¼ gen ¼ struct ¼ 0, the so-called ‘‘trivial’’ infected, it could not be re-infected, even if the solution. The other steady state occurred at the initial infection was cleared (i.e. superinfection could not occur), (3) reactants were distributed in a spatially homogenous manner, (4) a cell was initially infected with a pre-set number of viral Ta ble 1 templates, and (5) cells were terminally differ- Model parameters entiated and did not divide. Parameter Value À1 k1 0.025 day À1 k2 0.25 day À1 k3 1.0 day Deterministic Analysis À6 À1 À1 k4 7.5 Â 10 molecules day À1 Based on the network established in Fig. 1, k5 1000 day k À1 a set of coupled ordinary differential equations 6 1.99 day 312 R.
Recommended publications
  • On Sampling from the Multivariate T Distribution by Marius Hofert
    CONTRIBUTED RESEARCH ARTICLES 129 On Sampling from the Multivariate t Distribution by Marius Hofert Abstract The multivariate normal and the multivariate t distributions belong to the most widely used multivariate distributions in statistics, quantitative risk management, and insurance. In contrast to the multivariate normal distribution, the parameterization of the multivariate t distribution does not correspond to its moments. This, paired with a non-standard implementation in the R package mvtnorm, provides traps for working with the multivariate t distribution. In this paper, common traps are clarified and corresponding recent changes to mvtnorm are presented. Introduction A supposedly simple task in statistics courses and related applications is to generate random variates from a multivariate t distribution in R. When teaching such courses, we found several fallacies one might encounter when sampling multivariate t distributions with the well-known R package mvtnorm; see Genz et al.(2013). These fallacies have recently led to improvements of the package ( ≥ 0.9-9996) which we present in this paper1. To put them in the correct context, we first address the multivariate normal distribution. The multivariate normal distribution The multivariate normal distribution can be defined in various ways, one is with its stochastic represen- tation X = m + AZ, (1) where Z = (Z1, ... , Zk) is a k-dimensional random vector with Zi, i 2 f1, ... , kg, being independent standard normal random variables, A 2 Rd×k is an (d, k)-matrix, and m 2 Rd is the mean vector. The covariance matrix of X is S = AA> and the distribution of X (that is, the d-dimensional multivariate normal distribution) is determined solely by the mean vector m and the covariance matrix S; we can thus write X ∼ Nd(m, S).
    [Show full text]
  • EFFICIENT ESTIMATION and SIMULATION of the TRUNCATED MULTIVARIATE STUDENT-T DISTRIBUTION
    Efficient estimation and simulation of the truncated multivariate student-t distribution Zdravko I. Botev, Pierre l’Ecuyer To cite this version: Zdravko I. Botev, Pierre l’Ecuyer. Efficient estimation and simulation of the truncated multivariate student-t distribution. 2015 Winter Simulation Conference, Dec 2015, Huntington Beach, United States. hal-01240154 HAL Id: hal-01240154 https://hal.inria.fr/hal-01240154 Submitted on 8 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of the 2015 Winter Simulation Conference L. Yilmaz, W. K V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. Rosetti, eds. EFFICIENT ESTIMATION AND SIMULATION OF THE TRUNCATED MULTIVARIATE STUDENT-t DISTRIBUTION Zdravko I. Botev Pierre L’Ecuyer School of Mathematics and Statistics DIRO, Universite´ de Montreal The University of New South Wales C.P. 6128, Succ. Centre-Ville Sydney, NSW 2052, AUSTRALIA Montreal´ (Quebec),´ H3C 3J7, CANADA ABSTRACT We propose an exponential tilting method for exact simulation from the truncated multivariate student-t distribution in high dimensions as an alternative to approximate Markov Chain Monte Carlo sampling. The method also allows us to accurately estimate the probability that a random vector with multivariate student-t distribution falls in a convex polytope.
    [Show full text]
  • Stochastic Simulation APPM 7400
    Stochastic Simulation APPM 7400 Lesson 1: Random Number Generators August 27, 2018 Lesson 1: Random Number Generators Stochastic Simulation August27,2018 1/29 Random Numbers What is a random number? Lesson 1: Random Number Generators Stochastic Simulation August27,2018 2/29 Random Numbers What is a random number? “You mean like... 5?” Lesson 1: Random Number Generators Stochastic Simulation August27,2018 2/29 Random Numbers What is a random number? “You mean like... 5?” Formal definition from probability: A random number is a number uniformly distributed between 0 and 1. Lesson 1: Random Number Generators Stochastic Simulation August27,2018 2/29 Random Numbers What is a random number? “You mean like... 5?” Formal definition from probability: A random number is a number uniformly distributed between 0 and 1. (It is a realization of a uniform(0,1) random variable.) Lesson 1: Random Number Generators Stochastic Simulation August27,2018 2/29 Random Numbers Here are some realizations: 0.8763857 0.2607807 0.7060687 0.0826960 Density 0.7569021 . 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 sample Lesson 1: Random Number Generators Stochastic Simulation August27,2018 3/29 Random Numbers Here are some realizations: 0.8763857 0.2607807 0.7060687 0.0826960 Density 0.7569021 . 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 sample Lesson 1: Random Number Generators Stochastic Simulation August27,2018 3/29 Random Numbers Here are some realizations: 0.8763857 0.2607807 0.7060687 0.0826960 Density 0.7569021 .
    [Show full text]
  • Multivariate Stochastic Simulation with Subjective Multivariate Normal
    MULTIVARIATE STOCHASTIC SIMULATION WITH SUBJECTIVE MULTIVARIATE NORMAL DISTRIBUTIONS1 Peter J. Ince2 and Joseph Buongiorno3 Abstract.-In many applications of Monte Carlo simulation in forestry or forest products, it may be known that some variables are correlated. However, for simplicity, in most simulations it has been assumed that random variables are independently distributed. This report describes an alternative Monte Carlo simulation technique for subjectivelyassessed multivariate normal distributions. The method requires subjective estimates of the 99-percent confidence interval for the expected value of each random variable and of the partial correlations among the variables. The technique can be used to generate pseudorandom data corresponding to the specified distribution. If the subjective parameters do not yield a positive definite covariance matrix, the technique determines minimal adjustments in variance assumptions needed to restore positive definiteness. The method is validated and then applied to a capital investment simulation for a new papermaking technology.In that example, with ten correlated random variables, no significant difference was detected between multivariate stochastic simulation results and results that ignored the correlation. In general, however, data correlation could affect results of stochastic simulation, as shown by the validation results. INTRODUCTION MONTE CARLO TECHNIQUE Generally, a mathematical model is used in stochastic The Monte Carlo simulation technique utilizes three simulation studies. In addition to randomness, correlation may essential elements: (1) a mathematical model to calculate a exist among the variables or parameters of such models.In the discrete numerical result or outcome as a function of one or case of forest ecosystems, for example, growth can be more discrete variables, (2) a sequence of random (or influenced by correlated variables, such as temperatures and pseudorandom) numbers to represent random probabilities, and precipitations.
    [Show full text]
  • Stochastic Simulation
    Agribusiness Analysis and Forecasting Stochastic Simulation Henry Bryant Texas A&M University Henry Bryant (Texas A&M University) Agribusiness Analysis and Forecasting 1 / 19 Stochastic Simulation In economics we use simulation because we can not experiment on live subjects, a business, or the economy without injury. In other fields they can create an experiment Health sciences they feed (or treat) lots of lab rats on different chemicals to see the results. Animal science researchers feed multiple pens of steers, chickens, cows, etc. on different rations. Engineers run a motor under different controlled situations (temp, RPMs, lubricants, fuel mixes). Vets treat different pens of animals with different meds. Agronomists set up randomized block treatments for a particular seed variety with different fertilizer levels. Henry Bryant (Texas A&M University) Agribusiness Analysis and Forecasting 2 / 19 Probability Distributions Parametric and Non-Parametric Distributions Parametric Dist. have known and well defined parameters that force their shapes to known patterns. Normal Distribution - Mean and Standard Deviation. Uniform - Minimum and Maximum Bernoulli - Probability of true Beta - Alpha, Beta, Minimum, Maximum Non-Parametric Distributions do not have pre-set shapes based on known parameters. The parameters are estimated each time to make the shape of the distribution fit the data. Empirical { Actual Observations and their Probabilities. Henry Bryant (Texas A&M University) Agribusiness Analysis and Forecasting 3 / 19 Typical Problem for Risk Analysis We have a stochastic variable that needs to be included in a business model. For example: Price forecast has residuals we could not explain and they are the stochastic component we need to simulate.
    [Show full text]
  • Random Numbers and Stochastic Simulation
    Stochastic Simulation and Randomness Random Number Generators Quasi-Random Sequences Scientific Computing: An Introductory Survey Chapter 13 – Random Numbers and Stochastic Simulation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial, educational use only. Michael T. Heath Scientific Computing 1 / 17 Stochastic Simulation and Randomness Random Number Generators Quasi-Random Sequences Stochastic Simulation Stochastic simulation mimics or replicates behavior of system by exploiting randomness to obtain statistical sample of possible outcomes Because of randomness involved, simulation methods are also known as Monte Carlo methods Such methods are useful for studying Nondeterministic (stochastic) processes Deterministic systems that are too complicated to model analytically Deterministic problems whose high dimensionality makes standard discretizations infeasible (e.g., Monte Carlo integration) < interactive example > < interactive example > Michael T. Heath Scientific Computing 2 / 17 Stochastic Simulation and Randomness Random Number Generators Quasi-Random Sequences Stochastic Simulation, continued Two main requirements for using stochastic simulation methods are Knowledge of relevant probability distributions Supply of random numbers for making random choices Knowledge of relevant probability distributions depends on theoretical or empirical information about physical system being simulated By simulating large number of trials, probability
    [Show full text]
  • Arxiv:2008.11456V2 [Physics.Optics]
    Efficient stochastic simulation of rate equations and photon statistics of nanolasers Emil C. Andr´e,1 Jesper Mørk,1, 2 and Martijn Wubs1,2, ∗ 1Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 345A, DK-2800 Kgs. Lyngby, Denmark 2NanoPhoton - Center for Nanophotonics, Technical University of Denmark, Ørsteds Plads 345A, DK-2800 Kgs. Lyngby, Denmark Based on a rate equation model for single-mode two-level lasers, two algorithms for stochastically simulating the dynamics and steady-state behaviour of micro- and nanolasers are described in detail. Both methods lead to steady-state photon numbers and statistics characteristic of lasers, but one of the algorithms is shown to be significantly more efficient. This algorithm, known as Gillespie’s First Reaction Method (FRM), gives up to a thousandfold reduction in computation time compared to earlier algorithms, while also circumventing numerical issues regarding time-increment size and ordering of events. The FRM is used to examine intra-cavity photon distributions, and it is found that the numerical results follow the analytics exactly. Finally, the FRM is applied to a set of slightly altered rate equations, and it is shown that both the analytical and numerical results exhibit features that are typically associated with the presence of strong inter-emitter correlations in nanolasers. I. INTRODUCTION transitions from thermal to coherent emission, and we will investigate the prospects of introducing effectively Optical cavities on the micro- and nanometer scale can altered rates of emission in the rate equations as a way reduce the number of available modes for light emission to qualitatively describe the effects of collective inter- and increase the coupling of spontaneously emitted light emitter correlations.
    [Show full text]
  • Simulation and the Monte Carlo Method
    SIMULATION AND THE MONTE CARLO METHOD Third Edition Reuven Y. Rubinstein Technion Dirk P. Kroese University of Queensland Copyright © 2017 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. Library of Congress Cataloging-in-Publication Data: Names: Rubinstein, Reuven Y. | Kroese, Dirk P. Title: Simulation and the Monte Carlo method. Description: Third edition / Reuven Rubinstein, Dirk P. Kroese. | Hoboken, New Jersey : John Wiley & Sons, Inc., [2017] | Series: Wiley series in probability and statistics | Includes bibliographical references and index. Identifiers: LCCN 2016020742 (print) | LCCN 2016023293 (ebook) | ISBN 9781118632161 (cloth) | ISBN 9781118632208 (pdf) | ISBN 9781118632383 (epub) Subjects: LCSH: Monte Carlo method. | Digital computer simulation. | Mathematical statistics. | Sampling (Statistics) Classification: LCC QA298 .R8 2017 (print) | LCC QA298 (ebook) | DDC 518/.282--dc23 LC record available at https://lccn.loc.gov/2016020742 Printed in the United States of America CONTENTS Preface xiii Acknowledgments xvii 1 Preliminaries 1 1.1 Introduction 1 1.2 Random Experiments 1 1.3 Conditional Probability and Independence 2 1.4 Random Variables and Probability Distributions 4 1.5 Some Important Distributions 5 1.6 Expectation 6 1.7 Joint Distributions 7 1.8 Functions of Random Variables 11 1.8.1 Linear Transformations 12 1.8.2 General Transformations 13 1.9 Transforms 14 1.10 Jointly Normal Random Variables 15 1.11 Limit Theorems 16
    [Show full text]
  • A Deterministic Monte Carlo Simulation Framework for Dam Safety Flow Control Assessment
    water Article A Deterministic Monte Carlo Simulation Framework for Dam Safety Flow Control Assessment Leanna M. King * and Slobodan P. Simonovic Department of Civil and Environmental Engineering, Western University, London, ON N6A3K7, Canada; [email protected] * Correspondence: [email protected] Received: 17 December 2019; Accepted: 5 February 2020; Published: 12 February 2020 Abstract: Simulation has become more widely applied for analysis of dam safety flow control in recent years. Stochastic simulation has proven to be a useful tool that allows for easy estimation of the overall probability of dam overtopping failure. However, it is difficult to analyze “uncommon combinations of events” with a stochastic approach given current computing abilities, because (a) the likelihood of these combinations of events is small, and (b) there may not be enough simulated instances of these rare scenarios to determine their criticality. In this research, a Deterministic Monte Carlo approach is presented, which uses an exhaustive list of possible combinations of events (scenarios) as a deterministic input. System dynamics simulation is used to model the dam system interactions so that low-level events within the system can be propagated through the model to determine high-level system outcomes. Monte Carlo iterations are performed for each input scenario. A case study is presented with results from a single example scenario to demonstrate how the simulation framework can be used to estimate the criticality parameters for each combination of events simulated. The approach can analyze these rare events in a thorough and systematic way, providing a better coverage of the possibility space as well as valuable insights into system vulnerabilities.
    [Show full text]
  • Stochastic Simulation Script for the Course in Spring 2012
    Stochastic Simulation Script for the course in spring 2012 Hansruedi K¨unsch Seminar f¨urStatistik, ETH Zurich June 2012 Contents 1 Introduction and Examples 1 1.1 What is Stochastic Simulation? . 1 1.2 Distribution of Estimators and Test Statistics . 2 1.2.1 Precision of the trimmed mean . 2 1.2.2 Bootstrap . 4 1.3 Simulation in Bayesian Statistics . 5 1.3.1 Conditional distributions of continuous random vectors . 5 1.3.2 Introduction to Bayesian statistics . 6 1.4 Simulations in Statistical Mechanics . 8 1.5 Simulations in Operations Research . 10 1.6 Simulations in Financial Mathematics . 10 1.7 The accuracy of Monte Carlo methods . 12 1.8 Other applications of stochastic simulation . 14 2 Generating Uniform Random Variables 15 2.1 Linear Congruential Generators . 16 2.2 Other Generators . 18 2.3 Combination of Generators . 19 2.4 Testing of Random Numbers . 20 3 Direct Generation of Random Variables 23 3.1 Quantile Transform . 23 3.2 Rejection Sampling . 24 3.3 Ratio of Uniform Random Variables . 26 3.4 Relations between Distributions . 27 3.4.1 The Normal Distribution . 27 3.4.2 The Poisson Distribution . 29 3.5 Summary: Simulation of Selected Distributions . 29 3.6 Random Sampling and Random Permutations . 31 3.7 Importance Sampling . 32 3.8 Markov Chains and Markov Processes . 32 3.8.1 Simulation of Stochastic Differential Equations . 33 3.9 Variance Reduction . 35 3.9.1 Antithetic Variates . 35 3.9.2 Control Variates . 36 3.9.3 Importance Sampling and Variance Reduction . 37 3.9.4 Quasi-Monte Carlo .
    [Show full text]
  • Statistics and Simulation
    Statistics and Simulation By Smita Skrivanek, Principal Statistician, MoreSteam.com LLC Stochastic Simulation Stochastic simulation has played an increasingly large role in statistics with rapid increases in computing power. The exercises in the MoreSteam courses are examples of simulation. Simulations are used to model complicated processes, estimate distributions of estimators (using methods such as bootstrap), and have dramatically increased the use of an entire field of statistics, Bayesian statistics, since simulation can be used to estimate the distribution of its statistics, which are usually analytically intractable except in the simplest situations. So what is ‘stochastic simulation’? Stochastic simulation, a.k.a Monte Carlo simulation, is the use of random number generators to produce data from a mathematical model. A random number generator is any process that produces data whose observations are independent and identically distributed (i.i.d) from some distribution. It is a method used to evaluate processes or systems using probabilities based on sampling repeatedly from randomly generated numbers. Simulation by random sampling was in use during the genesis of probability theory, long before computers. Toss a coin a hundred times and count the number of times it falls Heads. Dividing the total number of times the coin falls Heads by the total number of tosses gives you an estimate of the probability of Heads for that coin, using simulation. The error associated with that estimate is called “Monte Carlo error”. Stochastic simulation was used as far back as in 1777 by Buffon to estimate the probability of a needle falling across a line in a uniform grid of parallel lines, known as Buffon’s needle problem.
    [Show full text]
  • Blackimportance Sampling and Its Optimality for Stochastic
    Electronic Journal of Statistics ISSN: 1935-7524 Importance Sampling and its Optimality for Stochastic Simulation Models Yen-Chi Chen and Youngjun Choe University of Washington, Department of Statistics Seattle, WA 98195 e-mail: [email protected]∗ University of Washington, Department of Industrial and Systems Engineering Seattle, WA 98195 e-mail: [email protected]∗ Abstract: We consider the problem of estimating an expected outcome from a stochastic simulation model. Our goal is to develop a theoretical framework on importance sampling for such estimation. By investigating the variance of an importance sampling estimator, we propose a two-stage procedure that involves a regression stage and a sampling stage to construct the final estimator. We introduce a parametric and a nonparametric regres- sion estimator in the first stage and study how the allocation between the two stages affects the performance of the final estimator. We analyze the variance reduction rates and derive oracle properties of both methods. We evaluate the empirical performances of the methods using two numerical examples and a case study on wind turbine reliability evaluation. MSC 2010 subject classifications: Primary 62G20; secondary 62G86, 62H30. Keywords and phrases: nonparametric estimation, stochastic simulation model, oracle property, variance reduction, Monte Carlo. 1. Introduction The 2011 Fisher lecture (Wu, 2015) features the landscape change in engineer- ing, where computer simulation experiments are replacing physical experiments thanks to the advance of modeling and computing technologies. An insight from the lecture highlights that traditional principles for physical experiments do not necessarily apply to virtual experiments on a computer. The virtual environ- ment calls for new modeling and analysis frameworks distinguished from those arXiv:1710.00473v2 [stat.ME] 25 Sep 2019 developed under the constraint of physical environment.
    [Show full text]