7. Concepts in Probability, Statistics and Stochastic Modelling

Total Page:16

File Type:pdf, Size:1020Kb

7. Concepts in Probability, Statistics and Stochastic Modelling wrm_ch07.qxd 8/31/2005 12:18 PM Page 168 7. Concepts in Probability, Statistics and Stochastic Modelling 1. Introduction 169 2. Probability Concepts and Methods 170 2.1. Random Variables and Distributions 170 2.2. Expectation 173 2.3. Quantiles, Moments and Their Estimators 173 2.4. L-Moments and Their Estimators 176 3. Distributions of Random Events 179 3.1. Parameter Estimation 179 3.2. Model Adequacy 182 3.3. Normal and Lognormal Distributions 186 3.4. Gamma Distributions 187 3.5. Log-Pearson Type 3 Distribution 189 3.6. Gumbel and GEV Distributions 190 3.7. L-Moment Diagrams 192 4. Analysis of Censored Data 193 5. Regionalization and Index-Flood Method 195 6. Partial Duration Series 196 7. Stochastic Processes and Time Series 197 7.1. Describing Stochastic Processes 198 7.2. Markov Processes and Markov Chains 198 7.3. Properties of Time-Series Statistics 201 8. Synthetic Streamflow Generation 203 8.1. Introduction 203 8.2. Streamflow Generation Models 205 8.3. A Simple Autoregressive Model 206 8.4. Reproducing the Marginal Distribution 208 8.5. Multivariate Models 209 8.6. Multi-Season, Multi-Site Models 211 8.6.1. Disaggregation Models 211 8.6.2. Aggregation Models 213 9. Stochastic Simulation 214 9.1. Generating Random Variables 214 9.2. River Basin Simulation 215 9.3. The Simulation Model 216 9.4. Simulation of the Basin 216 9.5. Interpreting Simulation Output 217 10. Conclusions 223 11. References 223 wrm_ch07.qxd 8/31/2005 12:18 PM Page 169 169 7 Concepts in Probability, Statistics and Stochastic Modelling Events that cannot be predicted precisely are often called random. Many if not most of the inputs to, and processes that occur in, water resources systems are to some extent random. Hence, so too are the outputs or predicted impacts, and even people’s reactions to those outputs or impacts. To ignore this randomness or uncertainty is to ignore reality. This chapter introduces some of the commonly used tools for dealing with uncertainty in water resources planning and management. Subsequent chapters illustrate how these tools are used in various types of optimization, simulation and statistical models for impact prediction and evaluation. 1. Introduction of the system. If expected or median values of uncertain parameters or variables are used in a deterministic model, Uncertainty is always present when planning, developing, the planner can then assess the importance of uncertainty managing and operating water resources systems. It arises by means of sensitivity analysis, as is discussed later in this because many factors that affect the performance of water and the two subsequent chapters. resources systems are not and cannot be known with Replacement of uncertain quantities by either expected, certainty when a system is planned, designed, built, median or worst-case values can grossly affect the evalua- managed and operated. The success and performance of tion of project performance when important parameters each component of a system often depends on future are highly variable. To illustrate these issues, consider meteorological, demographic, economic, social, technical, the evaluation of the recreation potential of a reservoir. and political conditions, all of which may influence Table 7.1 shows that the elevation of the water surface future benefits, costs, environmental impacts, and social varies over time depending on the inflow and demand for acceptability. Uncertainty also arises due to the stochastic water. The table indicates the pool levels and their associ- nature of meteorological processes such as evaporation, ated probabilities as well as the expected use of the recre- ation facility with different pool levels. rainfall and temperature. Similarly, future populations of – towns and cities, per capita water-usage rates, irrigation The average pool level L is simply the sum of each patterns and priorities for water uses, all of which affect possible pool level times its probability, or – water demand, are never known with certainty. L ϭ 10(0.10) ϩ 20(0.25) ϩ 30(0.30) There are many ways to deal with uncertainty. One, and ϩ 40(0.25) 50(0.10) ϭ 30 (7.1) perhaps the simplest, approach is to replace each uncertain This pool level corresponds to 100 visitor-days per day: quantity either by its average (i.e., its mean or expected – VD(L) ϭ 100 visitor-days per day (7.2) value), its median, or by some critical (e.g., ‘worst-case’) value, and then proceed with a deterministic approach. Use A worst-case analysis might select a pool level of ten as a of expected or median values of uncertain quantities may be critical value, yielding an estimate of system performance adequate if the uncertainty or variation in a quantity is rea- equal to 100 visitor-days per day: ϭ ϭ sonably small and does not critically affect the performance VD(Llow) VD(10) 25 visitor-days per day (7.3) wrm_ch07.qxd 8/31/2005 12:18 PM Page 170 170 Water Resources Systems Planning and Management adequate representations of the data. Sections 4, 5 and 6 expand upon the use of these mathematical models, and possible probability recreation potential E021101a pool levels of each level in visitor-days per day discuss alternative parameter estimation methods. for reservoir with Section 7 presents the basic ideas and concepts of different pool levels the stochastic processes or time series. These are used to model streamflows, rainfall, temperature or other 10 0.10 25 20 0.25 75 phenomena whose values change with time. The section 30 0.30 100 contains a description of Markov chains, a special type of 40 0.25 80 stochastic process used in many stochastic optimization 50 0.10 70 and simulation models. Section 8 illustrates how synthetic flows and other time-series inputs can be generated for Table 7.1. Data for determining reservoir recreation potential. stochastic simulations. Stochastic simulation is introduced with an example in Section 9. Many topics receive only brief treatment in this intro- ductory chapter. Additional information can be found in Neither of these values is a good approximation of the applied statistical texts or book chapters such as Benjamin average visitation rate, that is and Cornell (1970), Haan (1977), Kite (1988), Stedinger –– VD ϭ 0.10 VD(10) ϩ 0.25 VD(20) ϩ 0.30 VD(30) et al. (1993), Kottegoda and Rosso (1997), and Ayyub ϩ 0.25 VD(40) ϩ 0.10 VD(50) and McCuen (2002). ϭ 0.10(25) ϩ 0.25(75) ϩ 0.30(100) ϩ 0.25(80) ϩ 0.10(70) (7.4) 2. Probability Concepts and ϭ 78.25 visitor-days per day Methods –– Clearly, the average visitation rate, VD ϭ 78.25, the visitation rate corresponding to the average pool level This section introduces the basic concepts and definitions – ϭ ϭ VD(L) 100, and the worst-case assessment VD(Llow) used in analyses involving probability and statistics. These 25, are very different. concepts are used throughout this chapter and later Using only average values in a complex model can chapters in the book. produce a poor representation of both the average performance and the possible performance range. When 2.1. Random Variables and Distributions important quantities are uncertain, a comprehensive analysis requires an evaluation of both the expected The basic concept in probability theory is that of the performance of a project and the risk and possible random variable. By definition, the value of a random magnitude of project failures in a physical, economic, variable cannot be predicted with certainty. It depends, ecological and/or social sense. at least in part, on the outcome of a chance event. This chapter reviews many of the methods of proba- Examples are: (1) the number of years until the flood bility and statistics that are useful in water resources stage of a river washes away a small bridge; (2) the num- planning and management. Section 2 is a condensed ber of times during a reservoir’s life that the level of the summary of the important concepts and methods of pool will drop below a specified level; (3) the rainfall probability and statistics. These concepts are applied in depth next month; and (4) next year’s maximum flow at this and subsequent chapters of this book. Section 3 a gauge site on an unregulated stream. The values of all presents several probability distributions that are often of these random events or variables are not knowable used to model or describe the distribution of uncertain before the event has occurred. Probability can be used quantities. The section also discusses methods for fitting to describe the likelihood that these random variables these distributions using historical information, and will equal specific values or be within a given range of methods of assessing whether the distributions are specific values. wrm_ch07.qxd 8/31/2005 12:18 PM Page 171 Concepts in Probability, Statistics and Stochastic Modelling 171 The first two examples illustrate discrete random The value of the cumulative distribution function FX(x) variables, random variables that take on values that are for a discrete random variable is the sum of the probabil- discrete (such as positive integers). The second two exam- ities of all xi that are less than or equal to x. ples illustrate continuous random variables. Continuous ϭ FxXXi() ∑ p () x (7.10) random variables take on any values within a specified Յ xxi range of values. A property of all continuous random variables is that the probability that the value of any of The right half of Figure 7.1 illustrates the cumulative those random variables will equal some specific number – distribution function (upper) and the probability mass any specific number – is always zero.
Recommended publications
  • A New Approach for Dynamic Stochastic Fractal Search with Fuzzy Logic for Parameter Adaptation
    fractal and fractional Article A New Approach for Dynamic Stochastic Fractal Search with Fuzzy Logic for Parameter Adaptation Marylu L. Lagunes, Oscar Castillo * , Fevrier Valdez , Jose Soria and Patricia Melin Tijuana Institute of Technology, Calzada Tecnologico s/n, Fracc. Tomas Aquino, Tijuana 22379, Mexico; [email protected] (M.L.L.); [email protected] (F.V.); [email protected] (J.S.); [email protected] (P.M.) * Correspondence: [email protected] Abstract: Stochastic fractal search (SFS) is a novel method inspired by the process of stochastic growth in nature and the use of the fractal mathematical concept. Considering the chaotic stochastic diffusion property, an improved dynamic stochastic fractal search (DSFS) optimization algorithm is presented. The DSFS algorithm was tested with benchmark functions, such as the multimodal, hybrid, and composite functions, to evaluate the performance of the algorithm with dynamic parameter adaptation with type-1 and type-2 fuzzy inference models. The main contribution of the article is the utilization of fuzzy logic in the adaptation of the diffusion parameter in a dynamic fashion. This parameter is in charge of creating new fractal particles, and the diversity and iteration are the input information used in the fuzzy system to control the values of diffusion. Keywords: fractal search; fuzzy logic; parameter adaptation; CEC 2017 Citation: Lagunes, M.L.; Castillo, O.; Valdez, F.; Soria, J.; Melin, P. A New Approach for Dynamic Stochastic 1. Introduction Fractal Search with Fuzzy Logic for Metaheuristic algorithms are applied to optimization problems due to their charac- Parameter Adaptation. Fractal Fract. teristics that help in searching for the global optimum, while simple heuristics are mostly 2021, 5, 33.
    [Show full text]
  • Introduction to Stochastic Processes - Lecture Notes (With 33 Illustrations)
    Introduction to Stochastic Processes - Lecture Notes (with 33 illustrations) Gordan Žitković Department of Mathematics The University of Texas at Austin Contents 1 Probability review 4 1.1 Random variables . 4 1.2 Countable sets . 5 1.3 Discrete random variables . 5 1.4 Expectation . 7 1.5 Events and probability . 8 1.6 Dependence and independence . 9 1.7 Conditional probability . 10 1.8 Examples . 12 2 Mathematica in 15 min 15 2.1 Basic Syntax . 15 2.2 Numerical Approximation . 16 2.3 Expression Manipulation . 16 2.4 Lists and Functions . 17 2.5 Linear Algebra . 19 2.6 Predefined Constants . 20 2.7 Calculus . 20 2.8 Solving Equations . 22 2.9 Graphics . 22 2.10 Probability Distributions and Simulation . 23 2.11 Help Commands . 24 2.12 Common Mistakes . 25 3 Stochastic Processes 26 3.1 The canonical probability space . 27 3.2 Constructing the Random Walk . 28 3.3 Simulation . 29 3.3.1 Random number generation . 29 3.3.2 Simulation of Random Variables . 30 3.4 Monte Carlo Integration . 33 4 The Simple Random Walk 35 4.1 Construction . 35 4.2 The maximum . 36 1 CONTENTS 5 Generating functions 40 5.1 Definition and first properties . 40 5.2 Convolution and moments . 42 5.3 Random sums and Wald’s identity . 44 6 Random walks - advanced methods 48 6.1 Stopping times . 48 6.2 Wald’s identity II . 50 6.3 The distribution of the first hitting time T1 .......................... 52 6.3.1 A recursive formula . 52 6.3.2 Generating-function approach .
    [Show full text]
  • On Sampling from the Multivariate T Distribution by Marius Hofert
    CONTRIBUTED RESEARCH ARTICLES 129 On Sampling from the Multivariate t Distribution by Marius Hofert Abstract The multivariate normal and the multivariate t distributions belong to the most widely used multivariate distributions in statistics, quantitative risk management, and insurance. In contrast to the multivariate normal distribution, the parameterization of the multivariate t distribution does not correspond to its moments. This, paired with a non-standard implementation in the R package mvtnorm, provides traps for working with the multivariate t distribution. In this paper, common traps are clarified and corresponding recent changes to mvtnorm are presented. Introduction A supposedly simple task in statistics courses and related applications is to generate random variates from a multivariate t distribution in R. When teaching such courses, we found several fallacies one might encounter when sampling multivariate t distributions with the well-known R package mvtnorm; see Genz et al.(2013). These fallacies have recently led to improvements of the package ( ≥ 0.9-9996) which we present in this paper1. To put them in the correct context, we first address the multivariate normal distribution. The multivariate normal distribution The multivariate normal distribution can be defined in various ways, one is with its stochastic represen- tation X = m + AZ, (1) where Z = (Z1, ... , Zk) is a k-dimensional random vector with Zi, i 2 f1, ... , kg, being independent standard normal random variables, A 2 Rd×k is an (d, k)-matrix, and m 2 Rd is the mean vector. The covariance matrix of X is S = AA> and the distribution of X (that is, the d-dimensional multivariate normal distribution) is determined solely by the mean vector m and the covariance matrix S; we can thus write X ∼ Nd(m, S).
    [Show full text]
  • 1 Stochastic Processes and Their Classification
    1 1 STOCHASTIC PROCESSES AND THEIR CLASSIFICATION 1.1 DEFINITION AND EXAMPLES Definition 1. Stochastic process or random process is a collection of random variables ordered by an index set. ☛ Example 1. Random variables X0;X1;X2;::: form a stochastic process ordered by the discrete index set f0; 1; 2;::: g: Notation: fXn : n = 0; 1; 2;::: g: ☛ Example 2. Stochastic process fYt : t ¸ 0g: with continuous index set ft : t ¸ 0g: The indices n and t are often referred to as "time", so that Xn is a descrete-time process and Yt is a continuous-time process. Convention: the index set of a stochastic process is always infinite. The range (possible values) of the random variables in a stochastic process is called the state space of the process. We consider both discrete-state and continuous-state processes. Further examples: ☛ Example 3. fXn : n = 0; 1; 2;::: g; where the state space of Xn is f0; 1; 2; 3; 4g representing which of four types of transactions a person submits to an on-line data- base service, and time n corresponds to the number of transactions submitted. ☛ Example 4. fXn : n = 0; 1; 2;::: g; where the state space of Xn is f1; 2g re- presenting whether an electronic component is acceptable or defective, and time n corresponds to the number of components produced. ☛ Example 5. fYt : t ¸ 0g; where the state space of Yt is f0; 1; 2;::: g representing the number of accidents that have occurred at an intersection, and time t corresponds to weeks. ☛ Example 6. fYt : t ¸ 0g; where the state space of Yt is f0; 1; 2; : : : ; sg representing the number of copies of a software product in inventory, and time t corresponds to days.
    [Show full text]
  • EFFICIENT ESTIMATION and SIMULATION of the TRUNCATED MULTIVARIATE STUDENT-T DISTRIBUTION
    Efficient estimation and simulation of the truncated multivariate student-t distribution Zdravko I. Botev, Pierre l’Ecuyer To cite this version: Zdravko I. Botev, Pierre l’Ecuyer. Efficient estimation and simulation of the truncated multivariate student-t distribution. 2015 Winter Simulation Conference, Dec 2015, Huntington Beach, United States. hal-01240154 HAL Id: hal-01240154 https://hal.inria.fr/hal-01240154 Submitted on 8 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of the 2015 Winter Simulation Conference L. Yilmaz, W. K V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. Rosetti, eds. EFFICIENT ESTIMATION AND SIMULATION OF THE TRUNCATED MULTIVARIATE STUDENT-t DISTRIBUTION Zdravko I. Botev Pierre L’Ecuyer School of Mathematics and Statistics DIRO, Universite´ de Montreal The University of New South Wales C.P. 6128, Succ. Centre-Ville Sydney, NSW 2052, AUSTRALIA Montreal´ (Quebec),´ H3C 3J7, CANADA ABSTRACT We propose an exponential tilting method for exact simulation from the truncated multivariate student-t distribution in high dimensions as an alternative to approximate Markov Chain Monte Carlo sampling. The method also allows us to accurately estimate the probability that a random vector with multivariate student-t distribution falls in a convex polytope.
    [Show full text]
  • Stochastic Simulation APPM 7400
    Stochastic Simulation APPM 7400 Lesson 1: Random Number Generators August 27, 2018 Lesson 1: Random Number Generators Stochastic Simulation August27,2018 1/29 Random Numbers What is a random number? Lesson 1: Random Number Generators Stochastic Simulation August27,2018 2/29 Random Numbers What is a random number? “You mean like... 5?” Lesson 1: Random Number Generators Stochastic Simulation August27,2018 2/29 Random Numbers What is a random number? “You mean like... 5?” Formal definition from probability: A random number is a number uniformly distributed between 0 and 1. Lesson 1: Random Number Generators Stochastic Simulation August27,2018 2/29 Random Numbers What is a random number? “You mean like... 5?” Formal definition from probability: A random number is a number uniformly distributed between 0 and 1. (It is a realization of a uniform(0,1) random variable.) Lesson 1: Random Number Generators Stochastic Simulation August27,2018 2/29 Random Numbers Here are some realizations: 0.8763857 0.2607807 0.7060687 0.0826960 Density 0.7569021 . 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 sample Lesson 1: Random Number Generators Stochastic Simulation August27,2018 3/29 Random Numbers Here are some realizations: 0.8763857 0.2607807 0.7060687 0.0826960 Density 0.7569021 . 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 sample Lesson 1: Random Number Generators Stochastic Simulation August27,2018 3/29 Random Numbers Here are some realizations: 0.8763857 0.2607807 0.7060687 0.0826960 Density 0.7569021 .
    [Show full text]
  • Monte Carlo Sampling Methods
    [1] Monte Carlo Sampling Methods Jasmina L. Vujic Nuclear Engineering Department University of California, Berkeley Email: [email protected] phone: (510) 643-8085 fax: (510) 643-9685 UCBNE, J. Vujic [2] Monte Carlo Monte Carlo is a computational technique based on constructing a random process for a problem and carrying out a NUMERICAL EXPERIMENT by N-fold sampling from a random sequence of numbers with a PRESCRIBED probability distribution. x - random variable N 1 xˆ = ---- x N∑ i i = 1 Xˆ - the estimated or sample mean of x x - the expectation or true mean value of x If a problem can be given a PROBABILISTIC interpretation, then it can be modeled using RANDOM NUMBERS. UCBNE, J. Vujic [3] Monte Carlo • Monte Carlo techniques came from the complicated diffusion problems that were encountered in the early work on atomic energy. • 1772 Compte de Bufon - earliest documented use of random sampling to solve a mathematical problem. • 1786 Laplace suggested that π could be evaluated by random sampling. • Lord Kelvin used random sampling to aid in evaluating time integrals associated with the kinetic theory of gases. • Enrico Fermi was among the first to apply random sampling methods to study neutron moderation in Rome. • 1947 Fermi, John von Neuman, Stan Frankel, Nicholas Metropolis, Stan Ulam and others developed computer-oriented Monte Carlo methods at Los Alamos to trace neutrons through fissionable materials UCBNE, J. Vujic Monte Carlo [4] Monte Carlo methods can be used to solve: a) The problems that are stochastic (probabilistic) by nature: - particle transport, - telephone and other communication systems, - population studies based on the statistics of survival and reproduction.
    [Show full text]
  • Multivariate Stochastic Simulation with Subjective Multivariate Normal
    MULTIVARIATE STOCHASTIC SIMULATION WITH SUBJECTIVE MULTIVARIATE NORMAL DISTRIBUTIONS1 Peter J. Ince2 and Joseph Buongiorno3 Abstract.-In many applications of Monte Carlo simulation in forestry or forest products, it may be known that some variables are correlated. However, for simplicity, in most simulations it has been assumed that random variables are independently distributed. This report describes an alternative Monte Carlo simulation technique for subjectivelyassessed multivariate normal distributions. The method requires subjective estimates of the 99-percent confidence interval for the expected value of each random variable and of the partial correlations among the variables. The technique can be used to generate pseudorandom data corresponding to the specified distribution. If the subjective parameters do not yield a positive definite covariance matrix, the technique determines minimal adjustments in variance assumptions needed to restore positive definiteness. The method is validated and then applied to a capital investment simulation for a new papermaking technology.In that example, with ten correlated random variables, no significant difference was detected between multivariate stochastic simulation results and results that ignored the correlation. In general, however, data correlation could affect results of stochastic simulation, as shown by the validation results. INTRODUCTION MONTE CARLO TECHNIQUE Generally, a mathematical model is used in stochastic The Monte Carlo simulation technique utilizes three simulation studies. In addition to randomness, correlation may essential elements: (1) a mathematical model to calculate a exist among the variables or parameters of such models.In the discrete numerical result or outcome as a function of one or case of forest ecosystems, for example, growth can be more discrete variables, (2) a sequence of random (or influenced by correlated variables, such as temperatures and pseudorandom) numbers to represent random probabilities, and precipitations.
    [Show full text]
  • Stochastic Simulation
    Agribusiness Analysis and Forecasting Stochastic Simulation Henry Bryant Texas A&M University Henry Bryant (Texas A&M University) Agribusiness Analysis and Forecasting 1 / 19 Stochastic Simulation In economics we use simulation because we can not experiment on live subjects, a business, or the economy without injury. In other fields they can create an experiment Health sciences they feed (or treat) lots of lab rats on different chemicals to see the results. Animal science researchers feed multiple pens of steers, chickens, cows, etc. on different rations. Engineers run a motor under different controlled situations (temp, RPMs, lubricants, fuel mixes). Vets treat different pens of animals with different meds. Agronomists set up randomized block treatments for a particular seed variety with different fertilizer levels. Henry Bryant (Texas A&M University) Agribusiness Analysis and Forecasting 2 / 19 Probability Distributions Parametric and Non-Parametric Distributions Parametric Dist. have known and well defined parameters that force their shapes to known patterns. Normal Distribution - Mean and Standard Deviation. Uniform - Minimum and Maximum Bernoulli - Probability of true Beta - Alpha, Beta, Minimum, Maximum Non-Parametric Distributions do not have pre-set shapes based on known parameters. The parameters are estimated each time to make the shape of the distribution fit the data. Empirical { Actual Observations and their Probabilities. Henry Bryant (Texas A&M University) Agribusiness Analysis and Forecasting 3 / 19 Typical Problem for Risk Analysis We have a stochastic variable that needs to be included in a business model. For example: Price forecast has residuals we could not explain and they are the stochastic component we need to simulate.
    [Show full text]
  • Stochastic Vs. Deterministic Modeling of Intracellular Viral Kinetics R
    J. theor. Biol. (2002) 218, 309–321 doi:10.1006/yjtbi.3078, available online at http://www.idealibrary.com on Stochastic vs. Deterministic Modeling of Intracellular Viral Kinetics R. Srivastavawz,L.Youw,J.Summersy and J.Yinnw wDepartment of Chemical Engineering, University of Wisconsin, 3633 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706, U.S.A., zMcArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, WI 53706, U.S.A. and yDepartment of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, U.S.A. (Received on 5 February 2002, Accepted in revised form on 3 May 2002) Within its host cell, a complex coupling of transcription, translation, genome replication, assembly, and virus release processes determines the growth rate of a virus. Mathematical models that account for these processes can provide insights into the understanding as to how the overall growth cycle depends on its constituent reactions. Deterministic models based on ordinary differential equations can capture essential relationships among virus constituents. However, an infection may be initiated by a single virus particle that delivers its genome, a single molecule of DNA or RNA, to its host cell. Under such conditions, a stochastic model that allows for inherent fluctuations in the levels of viral constituents may yield qualitatively different behavior. To compare modeling approaches, we developed a simple model of the intracellular kinetics of a generic virus, which could be implemented deterministically or stochastically. The model accounted for reactions that synthesized and depleted viral nucleic acids and structural proteins. Linear stability analysis of the deterministic model showed the existence of two nodes, one stable and one unstable.
    [Show full text]
  • Random Numbers and Stochastic Simulation
    Stochastic Simulation and Randomness Random Number Generators Quasi-Random Sequences Scientific Computing: An Introductory Survey Chapter 13 – Random Numbers and Stochastic Simulation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial, educational use only. Michael T. Heath Scientific Computing 1 / 17 Stochastic Simulation and Randomness Random Number Generators Quasi-Random Sequences Stochastic Simulation Stochastic simulation mimics or replicates behavior of system by exploiting randomness to obtain statistical sample of possible outcomes Because of randomness involved, simulation methods are also known as Monte Carlo methods Such methods are useful for studying Nondeterministic (stochastic) processes Deterministic systems that are too complicated to model analytically Deterministic problems whose high dimensionality makes standard discretizations infeasible (e.g., Monte Carlo integration) < interactive example > < interactive example > Michael T. Heath Scientific Computing 2 / 17 Stochastic Simulation and Randomness Random Number Generators Quasi-Random Sequences Stochastic Simulation, continued Two main requirements for using stochastic simulation methods are Knowledge of relevant probability distributions Supply of random numbers for making random choices Knowledge of relevant probability distributions depends on theoretical or empirical information about physical system being simulated By simulating large number of trials, probability
    [Show full text]
  • Arxiv:2008.11456V2 [Physics.Optics]
    Efficient stochastic simulation of rate equations and photon statistics of nanolasers Emil C. Andr´e,1 Jesper Mørk,1, 2 and Martijn Wubs1,2, ∗ 1Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 345A, DK-2800 Kgs. Lyngby, Denmark 2NanoPhoton - Center for Nanophotonics, Technical University of Denmark, Ørsteds Plads 345A, DK-2800 Kgs. Lyngby, Denmark Based on a rate equation model for single-mode two-level lasers, two algorithms for stochastically simulating the dynamics and steady-state behaviour of micro- and nanolasers are described in detail. Both methods lead to steady-state photon numbers and statistics characteristic of lasers, but one of the algorithms is shown to be significantly more efficient. This algorithm, known as Gillespie’s First Reaction Method (FRM), gives up to a thousandfold reduction in computation time compared to earlier algorithms, while also circumventing numerical issues regarding time-increment size and ordering of events. The FRM is used to examine intra-cavity photon distributions, and it is found that the numerical results follow the analytics exactly. Finally, the FRM is applied to a set of slightly altered rate equations, and it is shown that both the analytical and numerical results exhibit features that are typically associated with the presence of strong inter-emitter correlations in nanolasers. I. INTRODUCTION transitions from thermal to coherent emission, and we will investigate the prospects of introducing effectively Optical cavities on the micro- and nanometer scale can altered rates of emission in the rate equations as a way reduce the number of available modes for light emission to qualitatively describe the effects of collective inter- and increase the coupling of spontaneously emitted light emitter correlations.
    [Show full text]