THE MATING TIME of LEPIDOPTERA from an Oid

Total Page:16

File Type:pdf, Size:1020Kb

THE MATING TIME of LEPIDOPTERA from an Oid 1964 ] ournal of the Lepidopterists' Socicty 3.5 THE MATING TIME OF LEPIDOPTERA by GEORG PRONIN From an oId balcony of our house in Osanovo, Russia, one could see a large meadow which was densely covered with grass, clover, daisies, and sorrel. Among this vegetation were bunches of rosy wild carnations and blue-bell flowers. Farther away the meadow changed into an elder grove, with bunches of wild hops, raspberries, and flowering cherries (Prunus padus). The old basswood garden was joined to the young birch groves at the other side of the old house. Close to this side of the wooden house was a young grove of aspen trees. The dense branches of lilac and acacia were growing directly against the windows of the house. On the balcony a young boy sat motionless, looking very attentively at an old wire cylinder in which a big female moth was fastened. This female belonged to the northern race, Gastropacha qucrcifolia alnifolia, which has a dark violet shade over its brown ground color and is native in Moorom Woods of the government of Vladimir in Russia. Extending her heavy thick abdomen, the moth patiently waited for the males which were certainly flying around the house. The evening was going its way. The redness in the sky changed slowly into the bright summer night's twilight, as is common in the north. The night was silent; only the grating voice of the Com Crake was coming from the large spaces of wet meadows, and the com fields sent the biting cry of the quail. Suddenly a little shadow of a male moth was seen coming from the roof of the house. The boy moved too quickly, and the night visitor flew high up and disappeared. After that, although the young enthusiast sat near his moth in the wire cylinder evening after evening, nothing happened. Only one male was seen at the cage. These moths have no mouthparts and therefore can not take food. The only task which the adult males have is to find and fertilize females. Perhaps this female was not attractive to the males, but the boy could not believe that. Another female of this species was bred from a large, gray caterpillar which had been found sitting on a low willow branch. When disturbed, it showed large dark blue hairy brushes near its head. The caterpillar made a hairy cocoon, changed into a pupa, and after nearly three weeks hatched into a robust G. qucrcifolia female. Evening after evcning, beginning as late as nine 0' clock, the young entomologist sat hour after hour waiting in vain for attracted males. Everything seemed all right, but something was wrong. As four days passed, the female began to lay her eggs and on the fifth day she died. N early twelve years later, in another part of the country, more to the 36 PRONIN; Mating times VoLl8; no.1 west in Luck, Wolhyn [now Lutsk, Volyn, RussiaJ the young entomolo­ gist was again sitting at a wire cylinder which enclosed another female of the C. quercitolia. A big fruit garden surrounded the observation spot. The wire cage was put on the top of an old wooden box which once served as a beehive. The observation had begun at eight o'clock and at 8:45 three males were attracted. Evening after evening the entomologist collected the males which were attracted from 8:45 for a period of only seven or eight minutes. After this very short time no more males were seen. The question was answered. The young boy had begun his observations in Osanovo too late in the evening, when the courtship flight period of the males had already ended. The males of the moth Philudoria potatoria are very similar to those of C. quercitolia. The young collector was very familiar with them in his old basswood garden, and had often placed a female of P. potatoria on a branch in the garden but never found a male there before nearly ten 0'clock. The boy had thought that the mating hours of C. quercitolia would also be late, but the analogy is not the proof. The mating hour of C. quercitolia is 8:45, and of P. potatoria 10:35. But we must not be too severe with the boy for his error. The old genial entomologist, Henri Fahre, also made such a mistake. He waited in vain for the coming of the male Lasiocampa tritolii during the bright sunshine, guided only by the resemblance of the caterpillars of trifolii to those of L. quercus, which visits its female between two and four PM daily. The sexual flight of L. tritolii is at nine in the evening. We must distinguish the flying hours from the mating time, because they are not the same. For example, many hawk moths, which have tongues for sucking nectar, fly at twilight to feed but have their mating hours later, after feeding. The common European sphingid, Laothoe populi, begins flying after 9 PM and the mating hours are after midnight. Perhaps another reason for this is that the young males thus have time to fly very far from the place of their birth and this makes mating with their sisters improbable. Here is a short table of mating hours observed for different moths: THE MATING TIME OF MOTHS Species Time Month Locality Hyalophom euryalus Bdv. 10:30 PM VI Shasta Co., Calif., USA Saturnia pyri Schiff. 10:30 PM V Bosporus, Turkey Saturnia pavonia L. 2-4 PM V Munchen, Germany Aglia tau L. 11-12 AM V Bayerbrun, Germany Endromis versicolora L. 11-12 AM IV Vladimir, Russia Macrothylacia rubi L. 4-6 PM VI Vladimir, Russia 1964 ] oumal of the Lepidopterists' Society 37 Lasiocampa quercus L. 2-4 PM VII Luck, Wolyn, Russia Lasiocampa trifolii Schiff. 9 PM VIII Miinchen, Gennany Lasiocampa grandis Rougeuh 8:45 PM VIII Bosporus, Turkey Lemonia dumi L. 11-12 AM Luck, Wolyn, Russia Lymantria dispar L. 11-12 AM VIII Luck, Wolyn, Russia Philrudoria potatoria L. 10:35 PM VII Luck, Wolyn, Russia Gastropacha quercifolia alnifolia O. 8:45 PM Luck, Wolyn, Russia Epicnaptera americana Harris 9:30 PM VII MalYs Peak, Ore., USA Orgyia antiqua L. 10-12 AM VIII Vladimir, Russia Orgyia gonostigma F. 11-12 AM VII Luck, Wolyn, Russia Laothoe populi L. 12:33 AM VII Luck, Wolyn, Russia Smerinthus ocellatus L. 11-12 AM VII Luck, Wolyn, Russia M imas tiliae L. 10:15 PM VI Vladimir, Russia 9:15 PM VI Kharkov, Russia 7:15 PM V Bosporus, Turkey Deilephila elpenor L. 9:45 PM VI Luck, Wolyn, Russia Sphinx liqustri L. 11:30 PM VI Miinchen, Germany Arctia caia L. 11 PM VII Luck, Wolyn, Russia Eriogaster rimicola Hbn. 10 PM VIII Luck, Wolyn, Russia Catocala elocata Esp. 8:15 PM IV Luck, Wolyn, Russia Psyche unicolor Hufn. 11-12 AM VII Praha, Czechoslovakia Fumea casta Pall. 6 PM; 4AM VII Luck,Wolyn, Russia Aegeria apiformis Cl. 11-12 AM VI Vladimir, Russia Such a table must always have the locality, date, and thc time of day. The locality gives us the possibility of detennining the meridian correlation. An example of the importance of these data is the difference in mating times of M imas tiMae, which begins to fly to his female in North Vladimir at 10:15; in Kharkov at 9:15, and in Bosporus, Turkey, at 7:15 PM. This phenomenon may be connected with the beginning of dew condensation. An unusual mating time was observed in a pair of Smel'inthus kindermanni. An old male was stored in a semi-dark cellar for about 6 days until a female was hatched. When he was put into the box with her, they began to mate at once, at 2 PM in daylight. It may be significant that the pupae had been brought from southern Iran, and the mating took place in Lodz in central Europe. The mating time can be short, as observed in Lasiocampa grandis, whose caterpillar is similar to that of L. quercus. This species lives at Bosporus near Istanbul, Turkey, and I have reared it. One evening one of the big brown males came in through an open window and flew around the electric lamp. In my rearing box were two females. When 38 PRONIN: Mating times VoLl8: no.1 I took the box out into the garden, it was at once surrounded with a small swann of males. This was at 8:45 PM and lasted only 4 or 5 minutes; then the entire lot of males flew away. The mating time of Hyalophora euryalus, which I observed in Shasta County, California, is not short. The pupa of a female of this species had overwintered in her cocoon in an open wire cage at Hat Creek. The conditions were normal, and she hatched on June 5. I put her into a box with walls of tulle netting and took a seat at the beginning of twilight on the balcony of the Hat Creek Entomological Station. At almost 10 PM I could see one male after another flying continuously around the box. One male came very near to the box and after inquiry with his antennae he also flew away. Did the males know that the female was surrounded on every side by tissue? I could not tell. But to permit the female to mate without giving her the chance to escape I very carefully cut her wings so she could not fly, then placed her in a tall wide-mouthed jar, left it on the balcony, and went to sleep.
Recommended publications
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS ROMANIA January 2007 Forest Resources Development Service Working Paper FBS/28E Forest Management Division FAO, Rome, Italy Forestry Department DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Romania. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). Overview of forest pests - Romania TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests and diseases................................................................................................. 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases................................................................................................................
    [Show full text]
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • Butterflies and Moths of Ada County, Idaho, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Protection of Pandora Moth (Coloradia Pandora Blake) Eggs from Consumption by Golden-Mantled Ground Squirrels (Spermophilus Lateralis Say)
    AN ABSTRACT OF THE THESIS OF Elizabeth Ann Gerson for the degree of Master of Science in Forest Science presented on 10 January, 1995. Title: Protection of Pandora Moth (Coloradia pandora Blake) Eggs From Consumption by Golden-mantled Ground Squirrels (Spermophilus lateralis Say) Abstract approved: Redacted for Privacy William C. McComb Endemic populations of pandora moths (Coloradia pandora Blake), a defoliator of western pine forests, proliferated to epidemic levels in central Oregon in 1986 and increased dramatically through 1994. Golden-mantled ground squirrels (Spermophilus lateralis Say) consume adult pandora moths, but reject nutritionally valuable eggs from gravid females. Feeding trials with captive S. lateralis were conducted to identify the mode of egg protection. Chemical constituents of fertilized eggs were separated through a polarity gradient of solvent extractions. Consumption of the resulting hexane, dichloromethane, and water egg fractions, and the extracted egg tissue residue, was evaluated by randomized 2-choice feeding tests. Consumption of four physically distinct egg fractions (whole eggs, "whole" egg shells, ground egg shells, and egg contents) also was evaluated. These bioassays indicated that C. pandora eggs are not protected chemically, however, the egg shell does inhibit S. lateralis consumption. Egg protection is one mechanism that enables C. pandora to persist within the forest food web. Spermophilus lateralis, a common and often abundant rodent of central Oregon pine forests, is a natural enemy of C. pandora
    [Show full text]
  • Lepidoptera, Lasiocampidae)
    Vestnik zoologii, 34(3): 49—60, 2000 © 2000 I. V. Dolinskaya, I. G. Pljushch ÓÄÊ 595.78 : 591.40 EXTERNAL MORPHOLOGY OF THE EGGS OF SOME LAPPET MOTHS (LEPIDOPTERA, LASIOCAMPIDAE) I. V. Dolinskaya, I. G. Pljushch Schmalhausen Institute of Zoology, vul. B. Khmelnits’kogo, 15, Kyiv, 01601 Ukraine Accepted 28 December 1999 External Morphology of the Eggs of Some Lappet Moths (Lepidoptera, Lasiocampidae). Dolinskaya I. V. , Pljushch I. G. – Eggs of 9 species belonging to 5 genera of Lasiocampidae were examined with the use of scanning electron microscopy. Descriptions and comparative morphological analysis are provided for all these species. As a result, all the examined species are divided into 2 groups and 2 subgroups; the diagnostic charac- ters for genera and species are chosen. Key words: Lepidoptera, Lasiocampidae, eggs, morphology, exochorion sculpture, descriptions, diagnostic charcters. Íàðóæíàÿ ìîðôîëîãèÿ ÿèö íåêîòîðûõ êîêîíîïðÿäîâ (Lepidoptera, Lasiocampidae). Äîëèíñêàÿ È. Â., Ïëþù È. Ã. – Ñ ïîìîùüþ ýëåêòðîííîãî ñêàíèðóþùåãî ìèêðîñêîïà èçó÷åíû ÿéöà 9 âèäîâ Lasiocampidae, îòíîñÿùèåñÿ ê 5 ðîäàì. Âûäåëåíû äèàãíîñòè÷åñêèå ïðèçíàêè äëÿ ðîäîâ è âèäîâ. Ïðîâåäåíà îöåíêà çíà÷èìîñòè ïðèçíàêîâ. Íà îñíîâàíèè ñðàâíèòåëüíî-ìîðôîëîãè÷åñêîãî àíàëèçà âñå èññëåäóåìûå âèäû ðàçäåëåíû íà 2 ãðóïïû è 2 ïîäãðóïïû. Ê ë þ ÷ å â û å ñ ë î â à : Lepidoptera, Lasiocampidae, ÿéöà, ìîðôîëîãèÿ, ñêóëüïòóðà ýêçîõîðèîíà, îïèñà- íèÿ, äèàãíîñòè÷åñêèå ïðèçíàêè. Introduction There is a number of recently published papers concerning the use of SEM (scanning electron microscopy) for the investigation of the surface eggshell structure in Lepidoptera. Hinton (1981) published a voluminous review of various chorion structures of insect eggs, including Lepidoptera. Many works are devoted to the egg morphology of Heterocera, mostly of Noctuidae and Geometridae (Salkeld, 1975; 1976; 1977; 1983; 1984; Hill, 1982; Fehrenbach & al., 1987; Suludere, 1988 a).
    [Show full text]
  • A Note on the Recent Distribution of Aporia Crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) 453-454 ©Ges
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2000 Band/Volume: 31 Autor(en)/Author(s): Fric Zdenek Flatynek, Hula Vladimir, Konvicka Martin, Pavlicko Alois Artikel/Article: A note on the recent distribution of Aporia crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) 453-454 ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (December 2000) 31 (3/4):453-454, Würzburg, ISSN 0171-0079 A note on the recent distribution of Aporia crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) by Z d e n e k Fr ic, V l a d im ír H u la , M a r t in K o n v ic k a & A lo is Pa v l ic k o received 20.X.2000 Eitschberger & Steiniger (2000), in their overview of records of Aporia crataegi in Germany, mentioned an interesting occurrence of this species in Wellertal, Silberbach and between Hohenberg, Fichtelgebirge and Dubina, closely to the German-Czech Republic border. The au­ thors speculated that the individuals originated from Czech territory. To understand the con­ text of their records, it is necessary to take into account the recent distribution of this species in the Czech Republic. Approximately since the 1950s, this butterfly species had been declining and gradually disap­ peared from both Bohemia and Moravia (Novak & Liska, 1997; Lastuvka, 1998; Beun, 1999), although there were occasional invasions followed by establishments of transient populations, such as near Pribram in the 1970s (Zeleny, 1977).
    [Show full text]
  • B. BIOLOGICAL RESOURCES the Parks in the Study Area Are Home to a Wide Range of Biological Habitats and Species
    L S A A S S O C I A T E S , I N C . E B R P D W I L D F I R E H A Z A R D R E D U C T I O N A N D R E S O U R C E M A N A G E M E N T P L A N E I R J U L Y 2 0 0 9 I V . S E T T I N G , I M P A C T S , A N D M I T I G A T I O N B . B I O L O G I C A L R E S O U R C E S B. BIOLOGICAL RESOURCES The parks in the Study Area are home to a wide range of biological habitats and species. This EIR section (1) describes the setting section for biological resources within the Study Area, (2) evaluates the potential impacts to biological resources related to implementation of the Wildfire Hazard Reduction and Resource Management Plan (the proposed project), and recommends appropriate mitigation measures where necessary. The reader should note that this section focuses on biological resources and conditions that are particularly relevant to the issue of wildfire hazard reduction. In the following developed shoreline parks, wildfire hazards are very low and fuel modification activities are not expected to be undertaken: Point Isabel; Middle Harbor Shoreline Park; Robert W. Crown Memorial State Beach; and Martin Luther King Jr. Regional Shoreline. Vegetation in these shoreline parks is confined to irrigated landscaping, coastal strand, or coastal salt marsh which do not provide highly combustible fuels nor would they be subject to wildfire conditions.
    [Show full text]
  • Conservation and Management of Eastern Big-Eared Bats a Symposium
    Conservation and Management of Eastern Big-eared Bats A Symposium y Edited b Susan C. Loeb, Michael J. Lacki, and Darren A. Miller U.S. Department of Agriculture Forest Service Southern Research Station General Technical Report SRS-145 DISCLAIMER The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service. Papers published in these proceedings were submitted by authors in electronic media. Some editing was done to ensure a consistent format. Authors are responsible for content and accuracy of their individual papers and the quality of illustrative materials. Cover photos: Large photo: Craig W. Stihler; small left photo: Joseph S. Johnson; small middle photo: Craig W. Stihler; small right photo: Matthew J. Clement. December 2011 Southern Research Station 200 W.T. Weaver Blvd. Asheville, NC 28804 Conservation and Management of Eastern Big-eared Bats: A Symposium Athens, Georgia March 9–10, 2010 Edited by: Susan C. Loeb U.S Department of Agriculture Forest Service Southern Research Station Michael J. Lacki University of Kentucky Darren A. Miller Weyerhaeuser NR Company Sponsored by: Forest Service Bat Conservation International National Council for Air and Stream Improvement (NCASI) Warnell School of Forestry and Natural Resources Offield Family Foundation ContEntS Preface . v Conservation and Management of Eastern Big-Eared Bats: An Introduction . 1 Susan C. Loeb, Michael J. Lacki, and Darren A. Miller Distribution and Status of Eastern Big-eared Bats (Corynorhinus Spp .) . 13 Mylea L. Bayless, Mary Kay Clark, Richard C. Stark, Barbara S.
    [Show full text]
  • Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A
    Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou To cite this version: Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou. Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses, MDPI, 2018, 10 (7), pp.366. 10.3390/v10070366. hal-02140538 HAL Id: hal-02140538 https://hal.archives-ouvertes.fr/hal-02140538 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Article Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé 1,2, Carlos Lopez-Vaamonde 1,3 ID , Jenny S. Cory 4 and Elisabeth A. Herniou 1,* ID 1 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, 37200 Tours, France; [email protected] (J.T.); [email protected]
    [Show full text]
  • Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes
    Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes Akito Y. Kawahara1*, Andre A. Mignault1, Jerome C. Regier2, Ian J. Kitching3, Charles Mitter1 1 Department of Entomology, College Park, Maryland, United States of America, 2 Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland, United States of America, 3 Department of Entomology, The Natural History Museum, London, United Kingdom Abstract Background: The 1400 species of hawkmoths (Lepidoptera: Sphingidae) comprise one of most conspicuous and well- studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes. Methodology/Principal Findings: The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two- thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes.
    [Show full text]
  • British Lepidoptera (/)
    British Lepidoptera (/) Home (/) Anatomy (/anatomy.html) FAMILIES 1 (/families-1.html) GELECHIOIDEA (/gelechioidea.html) FAMILIES 3 (/families-3.html) FAMILIES 4 (/families-4.html) NOCTUOIDEA (/noctuoidea.html) BLOG (/blog.html) Glossary (/glossary.html) Family: SPHINGIDAE (3SF 13G 18S) Suborder:Glossata Infraorder:Heteroneura Superfamily:Bombycoidea Refs: Waring & Townsend, Wikipedia, MBGBI9 Proboscis short to very long, unscaled. Antenna ~ 1/2 length of forewing; fasciculate or pectinate in male, simple in female; apex pointed. Labial palps long, 3-segmented. Eye large. Ocelli absent. Forewing long, slender. Hindwing ±triangular. Frenulum and retinaculum usually present but may be reduced. Tegulae large, prominent. Leg spurs variable but always present on midtibia. 1st tarsal segment of mid and hindleg about as long as tibia. Subfamily: Smerinthinae (3G 3S) Tribe: Smerinthini Probably characterised by a short proboscis and reduced or absent frenulum Mimas Smerinthus Laothoe 001 Mimas tiliae (Lime Hawkmoth) 002 Smerinthus ocellata (Eyed Hawkmoth) 003 Laothoe populi (Poplar Hawkmoth) (/002- (/001-mimas-tiliae-lime-hawkmoth.html) smerinthus-ocellata-eyed-hawkmoth.html) (/003-laothoe-populi-poplar-hawkmoth.html) Subfamily: Sphinginae (3G 4S) Rest with wings in tectiform position Tribe: Acherontiini Agrius Acherontia 004 Agrius convolvuli 005 Acherontia atropos (Convolvulus Hawkmoth) (Death's-head Hawkmoth) (/005- (/004-agrius-convolvuli-convolvulus- hawkmoth.html) acherontia-atropos-deaths-head-hawkmoth.html) Tribe: Sphingini Sphinx (2S)
    [Show full text]
  • Contribution to the Knowledge of the Fauna of Bombyces, Sphinges And
    driemaandelijks tijdschrift van de VLAAMSE VERENIGING VOOR ENTOMOLOGIE Afgiftekantoor 2170 Merksem 1 ISSN 0771-5277 Periode: oktober – november – december 2002 Erkenningsnr. P209674 Redactie: Dr. J–P. Borie (Compiègne, France), Dr. L. De Bruyn (Antwerpen), T. C. Garrevoet (Antwerpen), B. Goater (Chandlers Ford, England), Dr. K. Maes (Gent), Dr. K. Martens (Brussel), H. van Oorschot (Amsterdam), D. van der Poorten (Antwerpen), W. O. De Prins (Antwerpen). Redactie-adres: W. O. De Prins, Nieuwe Donk 50, B-2100 Antwerpen (Belgium). e-mail: [email protected]. Jaargang 30, nummer 4 1 december 2002 Contribution to the knowledge of the fauna of Bombyces, Sphinges and Noctuidae of the Southern Ural Mountains, with description of a new Dichagyris (Lepidoptera: Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae, Arctiidae) Kari Nupponen & Michael Fibiger [In co-operation with Vladimir Olschwang, Timo Nupponen, Jari Junnilainen, Matti Ahola and Jari- Pekka Kaitila] Abstract. The list, comprising 624 species in the families Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae and Arctiidae from the Southern Ural Mountains is presented. The material was collected during 1996–2001 in 10 different expeditions. Dichagyris lux Fibiger & K. Nupponen sp. n. is described. 17 species are reported for the first time from Europe: Clostera albosigma (Fitch, 1855), Xylomoia retinax Mikkola, 1998, Ecbolemia misella (Püngeler, 1907), Pseudohadena stenoptera Boursin, 1970, Hadula nupponenorum Hacker & Fibiger, 2002, Saragossa uralica Hacker & Fibiger, 2002, Conisania arida (Lederer, 1855), Polia malchani (Draudt, 1934), Polia vespertilio (Draudt, 1934), Polia altaica (Lederer, 1853), Mythimna opaca (Staudinger, 1899), Chersotis stridula (Hampson, 1903), Xestia wockei (Möschler, 1862), Euxoa dsheiron Brandt, 1938, Agrotis murinoides Poole, 1989, Agrotis sp.
    [Show full text]