Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents Table Of Contents Introduction ............................................................................................................................................1 Chapter I: Organisms and Teleology in The Only Possible Argument................................ 23 1.1: Potentially Natural Responses to the Central Question ................................................ 30 1.2: A General Answer to the Central Question ....................................................................... 40 1.3: Epigenesis vs. Preformation as Accounts of Natural Generation ................................ 78 1.4: Natural Teleology and the Perfection of the World......................................................110 Chapter II: Organisms and Teleology in the 1770s ...............................................................124 2.1: Generation and Classification ..............................................................................................124 2.2: Natural History and Natural Teleology.............................................................................125 2.3: Generation and the Generative Force (Zeugungskraft)................................................130 2.4: Conclusions Concerning the Pre­Critical View ...............................................................153 Chapter III: Organisms and Teleology in the 1780’s.............................................................156 3.1: Reason and Nature in the Critique of Pure Reason ........................................................178 3.2: Kant, Leibniz, and the Order of Nature .............................................................................194 3.3: Ideas of Reason as Rules for Systematic Empirical Cognition...................................231 3.4: Systematic Unity and the Idea of a Fundamental Power.............................................264 3.5: The Two­Fold Justification of the Principle of Continuity ..........................................277 3.6: Kant and Herder in the 1780s..............................................................................................299 Chapter IV: Organisms and Teleology in the Critique of the Power of Judgment.........325 4.1: Natural History and the Critique of the Power of Judgment........................................339 4.2: Mechanical Inexplicability and the Causal Unity of Nature .......................................350 4.3: The Formative Power of Nature and Natural Organization........................................374 4.4: The Dialectic of Teleological Judgment and the Order of Nature .............................419 4.5: The Methodology of Natural Teleology (Conclusion)...................................................469 Bibliography.......................................................................................................................................488 Organisms and Teleology in Kant’s Natural Philosophy Introduction There is a trend in recent scholarship away from interpreting Kant as a philosopher interested exclusively in what can be known a priori and towards understanding him as a thinker concerned to reflect on, understand, and contribute to the development of the natural and the human sciences. A good deal of work has been done, for instance, on Kant’s understanding of Newtonian physics, the generally Leibnizean context into which Newton’s views are introduced in Germany, and the significance of the reception of these views for the development of Kant’s mature philosophy.1 Work has also been done on Kant’s understanding of anthropology, his role in the development of that discipline, and the differences between the model of cognition provided in the Critique of Pure Reason and the model Kant develops and applies to the task of understanding and interpreting human culture and life.2 Thus far, however, comparatively little attention has been paid to the details of Kant’s long time engagement with two disciplines that are central to the eighteenth-century context in which he is working, namely, natural history and physiology. This is somewhat surprising given several relevant facts, some of which are already generally recognized by Kant scholars and historians of the philosophy of science. It is fairly well known, for instance, that one of Kant’s first publications is an original work on the natural history of the cosmos. Kant also lectures on physical geography nearly every year during his 1 Notable work in this area has been done by Watkins [1995, 1998a, 1998b, 2001a, 2001b, 2005] Friedman [1992] Polonoff [1971], Schönfeld [2000] 2 Makkreel [1990] provides a discussion of Kant’s general framework for interpretation in the human sciences. Düsing [1968] provides a discussion of the central role of teleology in Kant’s conception of the human world. Zammito [2002] discusses Kant’s role in the development of anthropology in eighteenth- century Germany. 1 time as an active lecturer. In his other lecture courses (e.g., metaphysics, logic, ethics) Kant lectures from introductory textbooks that are already readily available, but his physical geography lectures are delivered from a compendium he puts together himself through consulting the latest work of practicing physiologists and natural historians.3 Although the focus on Kant’s relation to the cosmology and general physics of modern science is clearly justifiable, it can also tend to obscure the fact that many of the important metaphysical and methodological controversies that concern Kant and his eighteenth-century contemporaries are more directly related to the scientific investigation of aspects of nature that do not lend themselves straightforwardly to the mathematically precise models of mechanistic physics. This fact, I believe, becomes even more obscured by the tendency to conflate Kant’s claims about mechanistic physics with his claims about the mechanism of nature, and to assume that his various appeals to a supersensible substrate for the former are largely motivated by his practical interest in supernatural entities and powers that are free from the constraints of the latter. In the following, I aim to make a contribution to the growing body of historically informed and philosophically rigorous work on Kant’s engagement with the sciences of his time. My work provides a closer look at Kant’s theoretical views concerning the status and nature of the various substances and powers appealed to in plant and animal physiology, and the status of the methodological principles that guide classificatory and explanatory hypotheses in natural history than is currently available in the secondary literature on Kant and on the history of the philosophy of biology. It will, I hope, provide a more contextually accurate and a more philosophically interesting picture of central aspects of the development and expression of Kant’s Critical philosophy than one finds in largely ahistorical reconstructions of the arguments in Kant’s major works in theoretical and practical philosophy. By paying detailed attention to how one of the greatest philosophical minds of the modern period approaches a constellation of issues 3 Werner Stark and Reinhardt Brandt are editing a new Akademie edition of Kant’s physical geography lectures. For a discussion of the way in which Kant came to put together this compendium, see Stark [2001] 2 confronted by natural philosophers who are striving to equal the achievements of Leibniz and Newton, within the constraints provided both by the nature of the particular objects of their inquiry and the nature of the human understanding, I believe we can also gain a fuller appreciation of the obstacles that present themselves to the eventual establishment of biology as a unified and autonomous natural science in the nineteenth century. I hope to show that the view Kant carefully constructs and defends concerning organisms and teleology in natural philosophy is far more original and far more coherent, both with the accepted methods and practices of natural philosophers at the time and with his own mature project in metaphysics and transcendental philosophy, than is generally recognized to be the case. In the remainder of this introduction, I will provide an overview of some of the recent work that has been done on Kant’s views on organisms and their role in justifying a teleological approach to the natural world, before providing an overview of my own position and of the chapters that will follow. The common point of focus in the literature is on Kant’s Critique of the Teleological Power of Judgment (1790, hereafter CTJ). This work has remained relatively obscure in comparison to the first two installments in Kant’s three-part critique of reason, namely, the Critique of Pure Reason (A edition 1781, revised B edition 1787, hereafter CPR) and the Critique of Practical Reason (1788), and even in comparison to the first half of the third Critique, the Critique of the Aesthetic Power of Judgment (hereafter CAJ). If one accepts the judgment of contemporary scholars such as Paul Guyer, there is good reason for this.4 According to Guyer, the several arguments that Kant provides to establish that organisms defy all mechanical explanation and, thus, require the adoption of causal principles that are located outside of the mechanism of nature are bad arguments that rest on confusions that Kant himself diagnoses in the CPR. What is worse, in Guyer’s view, is that the position Kant argues for there, in an effort to provide empirical justification for the basic two-worlds presupposition of his practical
Recommended publications
  • Undergraduate Catalog 14-16
    UNDERGRADUATE CATALOG: 2014-2016 Connecticut State Colleges and Universities ACADEMIC DEPARTMENTS, PROGRAMS, AND Accreditation and Policy COURSES Message from the President Ancell School of Business Academic Calendar School of Arts & Sciences Introduction to Western School of Professional Studies The Campus School of Visual and Performing Arts Admission to Western Division of Graduate Studies Student Expenses Office of Student Aid & Student Employment Directory Student Affairs Administration Academic Services and Procedures Faculty/Staff Academic Programs and Degrees Faculty Emeriti Graduation Academic Program Descriptions WCSU Undergraduate Catalog: 2014-2016 1 CONNECTICUT STATE COLLEGES & UNIVERSITIES The 17 Connecticut State Colleges & Universities (ConnSCU) provide affordable, innovative and rigorous programs that permit students to achieve their personal and career goals, as well as contribute to the economic growth of Connecticut. The ConnSCU System encompasses four state universities – Western Connecticut State University in Danbury, Central Connecticut State University in New Britain, Eastern Connecticut State University in Willimantic and Southern Connecticut State University in New Haven – as well as 12 community colleges and the online institution Charter Oak State College. Until the state’s higher education reorganization of 2011, Western was a member of the former Connecticut State Unviersity System that also encompassed Central, Eastern and Southern Connecticut state universities. With origins in normal schools for teacher education founded in the 19th and early 20th centuries, these institutions evolved into diversified state universities whose graduates have pursued careers in the professions, business, education, public service, the arts and other fields. Graduates of Western and other state universities contribute to all aspects of Connecticut economic, social and cultural life.
    [Show full text]
  • SMT Solving in a Nutshell
    SAT and SMT Solving in a Nutshell Erika Abrah´ am´ RWTH Aachen University, Germany LuFG Theory of Hybrid Systems February 27, 2020 Erika Abrah´ am´ - SAT and SMT solving 1 / 16 What is this talk about? Satisfiability problem The satisfiability problem is the problem of deciding whether a logical formula is satisfiable. We focus on the automated solution of the satisfiability problem for first-order logic over arithmetic theories, especially using SAT and SMT solving. Erika Abrah´ am´ - SAT and SMT solving 2 / 16 CAS SAT SMT (propositional logic) (SAT modulo theories) Enumeration Computer algebra DP (resolution) systems [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories CAD Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping Partial CAD Virtual CDCL [GRASP’97] [zChaff’04] DPLL(T) substitution Watched literals Equalities and uninterpreted Clause learning/forgetting functions Variable ordering heuristics Bit-vectors Restarts Array theory Arithmetic Decision procedures for first-order logic over arithmetic theories in mathematical logic 1940 Computer architecture development 1960 1970 1980 2000 2010 Erika Abrah´ am´ - SAT and SMT solving 3 / 16 SAT SMT (propositional logic) (SAT modulo theories) Enumeration DP (resolution) [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping CDCL [GRASP’97] [zChaff’04]
    [Show full text]
  • A Survey of User Interfaces for Computer Algebra Systems
    J. Symbolic Computation (1998) 25, 127–159 A Survey of User Interfaces for Computer Algebra Systems NORBERT KAJLER† AND NEIL SOIFFER‡§ †Ecole des Mines de Paris, 60 Bd. St-Michel, 75006 Paris, France ‡Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL 61820, U.S.A. This paper surveys work within the Computer Algebra community (and elsewhere) di- rected towards improving user interfaces for scientific computation during the period 1963–1994. It is intended to be useful to two groups of people: those who wish to know what work has been done and those who would like to do work in the field. It contains an extensive bibliography to assist readers in exploring the field in more depth. Work related to improving human interaction with computer algebra systems is the main focus of the paper. However, the paper includes additional materials on some closely related issues such as structured document editing, graphics, and communication protocols. c 1998 Academic Press Limited 1. Introduction There are several problems with current computer algebra systems (CASs) that are interface-related. These problems include: the use of an unnatural linear notation to enter and edit expressions, the inherent difficulty of selecting and modifying subexpressions with commands, and the display of large expressions that run off the screen. These problems may intimidate novice users and frustrate experienced users. The more natural and intuitive the interface (the closer it corresponds to pencil and paper manipulations), the more likely it is that people will want to take advantage of the CAS for its ability to do tedious computations and to verify derivations.
    [Show full text]
  • The Process of Urban Systems Integration
    THE PROCESS OF URBAN SYSTEMS An integrative approach towards the institutional process of systems integration in urban area development INTEGRATION MSc Thesis Eva Ros MSc Thesis November 2017 Eva Ros student number # 4188624 MSc Architecture, Urbanism and Building Sciences Delft University of Technology, department of Management in the Built Environment chair of Urban Area Development (UAD) graduation laboratory Next Generation Waterfronts in collaboration with the AMS institute First mentor Arie Romein Second mentor Ellen van Bueren This thesis was printed on environmentally friendly recycled and unbleached paper 2 THE PROCESS OF URBAN SYSTEMS INTEGRATION An integrative approach towards the institutional process of systems integration in urban area development 3 MANAGEMENT SUMMARY (ENG) INTRODUCTION Today, more than half of the world’s population lives in cities. This makes them centres of resource consumption and waste production. Sustainable development is seen as an opportunity to respond to the consequences of urbanisation and climate change. In recent years the concepts of circularity and urban symbiosis have emerged as popular strategies to develop sustainable urban areas. An example is the experimental project “Straat van de Toekomst”, implementing a circular strategy based on the Greenhouse Village concept (appendix I). This concept implements circular systems for new ways of sanitation, heat and cold storage and greenhouse-house symbiosis. Although many technological artefacts have to be developed for these sustainable solutions, integrating infrastructural systems asks for more than just technological innovation. A socio-cultural change is needed in order to reach systems integration. The institutional part of technological transitions has been underexposed over the past few years.
    [Show full text]
  • Modeling and Analysis of Hybrid Systems
    Building Bridges between Symbolic Computation and Satisfiability Checking Erika Abrah´ am´ RWTH Aachen University, Germany in cooperation with Florian Corzilius, Gereon Kremer, Stefan Schupp and others ISSAC’15, 7 July 2015 Photo: Prior Park, Bath / flickr Liam Gladdy What is this talk about? Satisfiability problem The satisfiability problem is the problem of deciding whether a logical formula is satisfiable. We focus on the automated solution of the satisfiability problem for first-order logic over arithmetic theories, especially on similarities and differences in symbolic computation and SAT and SMT solving. Erika Abrah´ am´ - SMT solving and Symbolic Computation 2 / 39 CAS SAT SMT (propositional logic) (SAT modulo theories) Enumeration Computer algebra DP (resolution) systems [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories CAD Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping Partial CAD Virtual CDCL [GRASP’97] [zChaff’04] DPLL(T) substitution Watched literals Equalities and uninterpreted Clause learning/forgetting functions Variable ordering heuristics Bit-vectors Restarts Array theory Arithmetic Decision procedures for first-order logic over arithmetic theories in mathematical logic 1940 Computer architecture development 1960 1970 1980 2000 2010 Erika Abrah´ am´ - SMT solving and Symbolic Computation 3 / 39 SAT SMT (propositional logic) (SAT modulo theories) Enumeration DP (resolution) [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62]
    [Show full text]
  • Satisfiability Checking and Symbolic Computation
    Satisfiability Checking and Symbolic Computation E. Abrah´am´ 1, J. Abbott11, B. Becker2, A.M. Bigatti3, M. Brain10, B. Buchberger4, A. Cimatti5, J.H. Davenport6, M. England7, P. Fontaine8, S. Forrest9, A. Griggio5, D. Kroening10, W.M. Seiler11 and T. Sturm12 1RWTH Aachen University, Aachen, Germany; 2Albert-Ludwigs-Universit¨at, Freiburg, Germany; 3Universit`adegli studi di Genova, Italy; 4Johannes Kepler Universit¨at, Linz, Austria; 5Fondazione Bruno Kessler, Trento, Italy; 6University of Bath, Bath, U.K.; 7Coventry University, Coventry, U.K.; 8LORIA, Inria, Universit´ede Lorraine, Nancy, France; 9Maplesoft Europe Ltd; 10University of Oxford, Oxford, U.K.; 11Universit¨at Kassel, Kassel, Germany; 12CNRS, LORIA, Nancy, France and Max-Planck-Institut f¨ur Informatik, Saarbr¨ucken, Germany. Abstract Symbolic Computation and Satisfiability Checking are viewed as individual research areas, but they share common interests in the development, implementation and application of decision procedures for arithmetic theories. Despite these commonalities, the two communities are currently only weakly con- nected. We introduce a new project SC2 to build a joint community in this area, supported by a newly accepted EU (H2020-FETOPEN-CSA) project of the same name. We aim to strengthen the connection between these communities by creating common platforms, initiating interaction and exchange, identi- fying common challenges, and developing a common roadmap. This abstract and accompanying poster describes the motivation and aims for the project, and reports on the first activities. 1 Introduction We describe a new project to bring together the communities of Symbolic Computation and Satisfiability Checking into a new joint community, SC2. Both communities have long histories, as illustrated by the tool development timeline in Figure 1, but traditionally they do not interact much even though they are now individually addressing similar problems in non-linear algebra.
    [Show full text]
  • Spin and Orbital Polarons in Strongly Correlated Electron Systems
    Jagiellonian University Faculty of Physics, Astronomy & Applied Computer Science Marian Smoluchowski Institute of Physics Spin and Orbital Polarons in Strongly Correlated Electron Systems Krzysztof Bieniasz A Ph.D. Thesis prepared under the supervision of prof. dr hab. Andrzej Michał Oleś Kraków 4239 Oświadczenie Ja, niżej podpisany, Krzysztof Bieniasz (nr indeksu: 323673;), doktorant Wydziału Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiel- lońskiego, oświadczam, że przedłożona przeze mnie rozprawa doktorska pt. „Polarony spinowe i orbitalne w układach silnie skorelowanych elektronów” (tytuł w języku angielskim: “Spin and Orbital Polarons in Strongly Correlated Electron Systems”) jest oryginalna i przedstawia wyniki badań wykonanych przeze mnie osobiście, pod kierunkiem prof. dra hab. Andrzeja M. Olesia. Pracę napisałem samodzielnie. Oświadczam, że moja rozprawa doktorska została opracowana zgodnie z Ustawą o prawie autorskim i prawach pokrewnych z dnia 6 lutego 3;;6 r. (Dziennik Ustaw 3;;6 nr 46 poz. :5 wraz z późniejszymi zmianami). Jestem świadom, że niezgodność niniejszego oświadczenia z prawdą, ujaw- niona w dowolnym czasie, niezależnie od skutków prawnych wynikających z wyżej wymienionej ustawy, może spowodować unieważnienie stopnia naby- tego na podstawie tej rozprawy. Kraków, 45 czerwca 4239 r. .............................. Streszczenie Właściwości układów silnie skorelowanych elektronów, a w szczególności skorelowanych izolatorów Motta, które są często spotykane wśród tlenków metali przejściowych, są istotnym zagadnieniem w fizyce fazy skonden- sowanej. Jednym z głównych problemów w tej dziedzinie, zwłaszcza ze względu na jego znaczenie dla eksperymentów fotoemisyjnych, jest zachowanie się ładunku poruszającego się w izolatorze Motta, sprzęga- jącego się do spinowych i orbitalnych stopni swobody, tworząc polaron. Zagadnienie istnienia oraz dynamicznych właściwości powstającej w ten sposób kwazicząstki da się rozwiązać za pomocą obliczeń funkcji Greena z modeli efektywnych.
    [Show full text]
  • Impossible Objects
    Some (Possibly) New Considerations Regarding Impossible Objects Aaron Sloman http://www.cs.bham.ac.uk/~axs School of Computer Science University of Birmingham Mathematical cognition is primarily about necessities and impossibilities, recognized through understanding of structural relationships NOT regularities and probabilities derived by collecting statistical evidence. E.g. if spatial volume V1 contains V2, and V2 contains V3, then V1 mustcontain V3. I.e. V1 contains V2, and V2 contains V3 and V1 does not contain V3 is impossible. Similarly 3+5 mustequal 8. It cannotequal 9. (Immanuel Kant pointed out this feature of mathematics in Kant(1781).) Neural nets that merely derive probabilities from statistical data cannot explain those key kinds of mathematical cognition. Surprisingly many neuroscientists, psychologists, philosophers and AI researchers are blind to this limitation of neural nets including some who are much admired for research on mathematical cognition! Perhaps they and their admirers are simply blind to key features of mathematical cognition pointed out by Kant. Euclid’s Elements is full of examples but misguided 20th century educational decisions deprived a high proportion of intelligent learners of opportunities to experience discovering geometrical proofs and refutations. Alternative titles: -- Impossibility: the dark face of necessity. -- What don’t we know about spatial perception/cognition? especially the perceptual abilities of ancient mathematicians? -- Aspects of mathematical consciousness, -- Possible impossible
    [Show full text]
  • Analytic Kantianism
    Philosophical Topics VOLUME 34, NUMBERS 1 & 2 SPRING AND FALL 2006 ANALYTIC KANTIANISM Contents Kantian Lessons about Mind, Meaning, and Rationality 1 Robert Brandom Meaning and Aesthetic Judgment in Kant 21 Eli Friedlander Carnap and Quine: Twentieth-Century Echoes of Kant and Hume 35 Michael Friedman Kant and the Problem of Experience 59 Hannah Ginsborg Kant on Beauty and the Normative Force of Feeling 107 Arata Hamawaki Spontaneity and Receptivity in Kant’s Theory of Knowledge 145 Andrea Kern Logicist Responses to Kant: (Early) Frege and (Early) Russell 163 Michael Kremer Kant’s Spontaneity Thesis 189 Thomas Land Prolegomena to a Proper Treatment of Mathematics in the Critique of Pure Reason 221 Thomas Lockhart Self-Consciousness and Consciousness of One’s Own Body: Variations on a Kantian Theme 283 Béatrice Longuenesse Sensory Consciousness in Kant and Sellars 311 John McDowell The Bounds of Sense 327 A. W. Moore Logical Form as a Relation to the Object 345 Sebastian Rödl Kant on the Nature of Logical Laws 371 Clinton Tolley PHILOSOPHICAL TOPICS VOL. 34, NOS. 1 & 2, SPRING AND FALL 2006 Kantian Lessons about Mind, Meaning, and Rationality Robert Brandom University of Pittsburgh Kant revolutionized our thinking about what it is to have a mind. Some of what seem to me to be among the most important lessons he taught us are often not yet sufficiently appreciated, however. I think this is partly because they are often not themes that Kant himself explicitly emphasized. To appreciate these ideas, one must look primarily at what he does, rather than at what he says about what he is doing.
    [Show full text]
  • Acegen Contents 2 Acegen Code Generator
    University of Ljubljana Ljubljana, 2012 Slovenia AceGen Contents 2 AceGen code generator AceGen Contents AceGen Tutorials .......................................................................................................................8 AceGen Preface ................................................................................................................8 AceGen Overview ............................................................................................................9 Introduction ........................................................................................................................10 AceGen Palettes ...............................................................................................................14 Standard AceGen Procedure ......................................................................................16 Mathematica syntax - AceGen syntax ....................................................................24 • Mathematica input • AceGen input • AceGen code profile • Mathematica input • AceGen input • AceGen code profile • Mathematica input • AceGen input • AceGen code profile • Mathematica input • AceGen input • AceGen code profile Auxiliary Variables ..........................................................................................................32 User Interface ....................................................................................................................37 Verification of Automatically Generated Code ...................................................43
    [Show full text]
  • Acegen Code Generator
    AAcceeGGeenn SMSInitialize "test", "Language" −> "Fortran" ; SMSModule "test", Real x$$, f$$ ; x£ SMSReal x$$ ; @ D Module : @test @ DD @ D SMSIf x<= 0 ; f• x2; SMSElse ; @ D f§ Sin x ; J. Korelc SMSEndIf f ; @D SMSExport@ D f, f$$ ; SMSWrite@"test"D ; Function :@ testD 4 formulae, 18 sub−expressions 0 File@ createdD : test.f Size : 850 @ D UNIVERSITY OF LJUBLJANA FACULTY OF CIVIL AND GEODETIC ENGINEERING 2006 2 AceGen code generator AceGen Contents AceGen Contents ................................................................................................................... 2 Tutorial ........................................................................................................................................ 7 Preface ............................................................................................................................... 7 Introduction ..................................................................................................................... 8 General .......... 8 AceGen .......... 8 Mathematica and AceGen ...... 10 Bibliography .. 11 Standard AceGen Procedure ................................................................................... 12 Load AceGen package ........... 12 Description of Introductory Example 12 Description of AceGen Characteristic Steps .. 12 Generation of C code . 15 Generation of MathLink code 16 Generation of Matlab code .... 18 Symbolic-Numeric Interface ..................................................................................... 19 Auxiliary Variables
    [Show full text]
  • Rules for Watt?
    Imke Lammers Imke Rules for Watt? INVITATION You are cordially invited Designing Appropriate Governance to the public defence of Arrangements for the Introduction of Smart Grids my PhD dissertation entitled: RULES FOR WATT? Designing Appropriate Governance Arrangements for the Introduction of Smart Grids Rules for Watt? for Watt? Rules On Friday, 23rd of November, 2018 at 12:30 in Prof. dr. G. Berkhoff room, Waaier Building, University of Twente. Paranymphs: Leila Niamir Karen S. Góngora Pantí Imke Lammers Imke Lammers [email protected] Rules for Watt? Designing Appropriate Governance Arrangements for the Introduction of Smart Grids Imke Lammers 525645-L-sub01-bw-Lammers Processed on: 31-10-2018 PDF page: 1 Members of the graduation committee: Chair and Secretary: Prof. dr. T.A.J. Toonen University of Twente Supervisors: Prof. mr. dr. M.A. Heldeweg University of Twente Dr. M.J. Arentsen University of Twente Co-supervisor: Dr. T. Hoppe Delft University of Technology Members: Prof. dr. J.Th.A. Bressers University of Twente Prof. dr. J.L. Hurink University of Twente Prof. mr. dr. H.H.B. Vedder University of Groningen Prof. dr. M.L.P. Groenleer Tilburg University This work is part of the research programme ‘Uncertainty Reduction in Smart Energy Systems’ (URSES) with project number 408-13-005, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). Department of Governance and Technology for Sustainability (CSTM), Faculty of Behavioural, Management and Social Sciences, University of Twente. Printed by: Ipskamp Printing Cover photo credits: istockphoto.com ISBN: 978-90-365-4644-7 DOI: 10.3990/1.9789036546447 Copyright © Imke Lammers, 2018, Enschede, The Netherlands.
    [Show full text]