Observations of Sand Dune-Obligate Spider, Geolycosa Wrighti, on Presque Isle State Park

Total Page:16

File Type:pdf, Size:1020Kb

Observations of Sand Dune-Obligate Spider, Geolycosa Wrighti, on Presque Isle State Park Observations of sand dune-obligate spider, Geolycosa wrighti, on Presque Isle State Park Final Report Matthew Foradori, PhD, Associate Professor Department of Biology and Health Services Edinboro University of Pennsylvania, 230 Scotland Road, Edinboro, PA 16412 Phone: (814) 732-1519 email: [email protected] Adam Hoke, Graduate Student Department of Biology and Health Sciences Edinboro University of Pennsylvania, 230 Scotland Road, Edinboro, PA 16412 Phone: (814) 720-1102 email: [email protected] Renee Foradori, MS, Adjunct Professor Department of Biology Gannon University, 109 University Square, Erie, PA 16541 Phone: (814) 403-7618 email: [email protected] Introduction Spiders from the Genus Geolycosa are somewhat rare arachnids endemic sandy habitats (Carrel, 2003). Geolycosa wrighti (Figure 1), a dune-obligate wolf spider, has been identified at Presque Isle State Park on two separate occasions (Truman, 1941; Buchkovich, unpublished). These burrowing wolf spiders are light brown on both the ventral cephalothorax and abdomen (Figure 1A). The ventral cephalothorax is a light brown color, usually becoming worn via sand abrasion, and ultimately resulting in hair loss, giving it a shiny appearance; the ventral abdomen is almost black (Bradley, 2013). According to Emerton (1912), G. wrighti is found in sandy environments along the Great Lakes region from the eastern end of Lake Erie near Buffalo west to Chicago, Illinois, and south to central Illinois, along the Illinois River. Its distribution along this range is sporadic and correlates with the presence of sand. Spiders in the genus Geolycosa are a unique group; like other wolf spiders, they can be vagile, yet predominantly exhibit a more sessile behavior. They frequently occur in habitat that has loose, sandy soil (Figure 2A) where they can burrow (Figure 2B) (Wallace, 1942). The burrow is constructed by excavating sand and wrapping it in small amounts of silk to produce a pellet. Each sand pellet is carried in their chelicerae to the opening of the burrow and deposited outside (Emerton, 1912). The upper part of the excavated burrow is lined with silk to prevent cave-ins (Nelson and Jackson, 2011); in some cases a turret is constructed at the end of the burrow (Wallace, 1942). G. wrighti have a minimal home range spending their entire life in the burrow or within a short distance of its opening. Females only leave their burrows to capture prey. Young males exhibit similar activity until they attain sexual maturity late in the season during September or October. Freshly molted, sexually mature males leave their burrows to actively seek out females for courtship and mating. Females lay fertilized eggs in late May then display maternal care by carrying the egg sac on their spinnerets. Care continues (Figure 3) after the spiderlings hatch until late June or early July, when the juveniles leave and construct their own burrows. The spiders overwinter in their burrows, and eventually reach sexually maturity the following September (Emerton, 1912). Both Skerl (1999) and Coddington et al. (1990) have suggested that G. wrighti be categorized as threatened or endangered. However, in an extensive review of threatened Pennsylvania invertebrates, three spiders were included while G. wrighti was omitted (Rawlins, 2 2007). As biodiversity is threatened by climate change, human development and contamination, it is of the utmost importance to monitor rare and threatened species in order to protect them and conserve their environments. Ecosystem conservation at unique places like Presque Isle State Park can only be enhanced by focusing some energy on the needs of these rare spiders. Ultimately, we would like them to be included in a review of threatened Pennsylvania invertebrates. Objectives The main objectives are: 1. Identify wolf spider burrows by sight, using sand pellets as potential burrow indications; collect spiders and confirm the presence of Geolycosa wrighti at Presque Isle State Park. 2. Survey these burrows for the presence of the burrowing spiders; monitoring the population throughout the year to identify population dynamics. Methods During the spring and summer of 2011 and 2012, we observed a population of Geolycosa wrighti on the eastern half of the Dead Pond Trail. The site was chosen after three periods of extensive observation, which started at the Thompson Circle and ended at the intersection with the B-Trail. Spiders were located by first finding the burrows; several of the spiders (Figure 1A, B) were positively identified to the species using resources by Ubick and coworkers (2005) and Wallace (1942). Spider burrow identification was performed by a bit of trial and error. Eventually, burrows were correctly determined by observing the presence of G. wrighti at the entrance. Ultimately, two sites were chosen immediately off of Dead Pond Trail. A 1.5 m2 perimeter was established around each of the group of burrows. Observations were performed on a weekly basis to determine specific burrow activity, which was defined as any visible proof that a spider currently inhabited a particular burrow. Each observation period lasted approximately 10 minutes. Results Geolycosa wrighti was initially observed on June 27th, 2011 on the most eastern part of the Dead Pond Trail named Site 1 (Figure 4, red dot). This outing provided excellent 3 observations of three adult G. wrighti. These burrowing spiders remained within close proximity to the opening of their respective burrows. This provided an excellent opportunity for photographic documentation (Figure 5C). Upon returning to Site 1 the following week (July 6th), however, all active burrows were absent. After careful analysis of the pictures taken from the first day, it was determined that one female G. wrighti was actively caring for young spiderlings. We now believe that the adult females sealed off the burrow entrance to either (1) protect the spiderlings, as suggested by Aisenberg et al. (2011), or (2) force the spiderlings to disperse by restricting access. The following week (July 13th), two burrows were again found at Site 1, one of which was identified as active. Site 1 was an exposed part of the trail, and saw constant traffic. Animal and human footprints were always plentiful during each observation period; sometimes SUV tracks were evident. In spite of this, we decided to keep monitoring Site 1, but we also wanted to add a second, low traffic area as well. Approximately 40-50 meters west on the Dead Pond Trail, a second field site (Figure 4, blue dot), Site 2, was established around a population of five juvenile G. wrighti burrows that were located within a radius of approximately 30 cm from each other (Figure 6). After setting up a 1.5 m2 field site, (Figure 6), we positively identified six burrows and after a ten minute observation period on this site it was determined that 4 of the 6 burrows could be classified as “Active”. In one instance, we recorded juvenile feeding behavior at the Site 2 (Figure 5A, B). Over the course of the next 3 months weekly observations were conducted at both sites along the Dead Pond Trail, to monitor any change in the spider populations. Activity continued at Site 1 throughout our research. Most notably, there was a large increase in the population of juvenile G. wrighti in the general area around Site 2 in the middle of September. The activity of spiders at both field sites gradually diminished both in abandoned and active burrows with the onset of fall. Juvenile spiders seal off the entrance to the burrow in order to overwinter (Emerton, 1912). Discussion Geolycosa wrighti, a dune-obligate wolf spider is an uncommon arachnid in Pennsylvania. It has been found at Presque Isle State Park, (Truman, 1941) and exhibits a patchy distribution across the sand dunes. The spider appears to have a centrally located distribution in 4 the dunes and scrub of Presque Isle; our efforts to locate this species on the exposed west-facing beaches and shoreline found none. This report focuses on observations of a population of G. wrighti located on the Dead Pond Trail. While described as being predominantly sessile (Wallace, 1942), we observed fluctuations in burrow activity, placement, and construction from week to week and month to month. The laborious construction of a burrow is not an indication that the spider is coupled to that location. Disturbances to the burrow site, natural or man-made, no matter how small, appear to be enough to cause the spider to leave and construct a burrow in another location. What constituted a good site (substrate selection) remains to be determined. Prey was abundant in our observations at both Site 1 and Site 2, and spiders were observed in the process of either hunting for or capturing prey during every observation period. There was a brief time at the end of June where the number of active burrows observed dropped precipitously. The reason was not immediately clear at the time, but in retrospect, it was during a brooding period by female G. wrighti. Each female seals off the burrow from during a period of time in order for the spiderling to develop. The female is exhibits maternal care by being ‘tolerant’ toward the spiderlings for this brief period of time (Miller, 1989). By the middle of July, the number of active burrows rebounded to those in early June. Photographic evidence (Figure 3) indicates that even after the burrows were reopened, maternal care could be exhibited. There appears to be little impact on G. wrighti by foot traffic and vehicle traffic on the Dead Pond Trail (see recommendations below). That being said, G. wrighti has been omitted from an extensive list of threatened or endangered Pennsylvania invertebrates created by Rawlins (2007). This is troubling considering multiple researchers feel that these spiders should be classified as such (Skerl, 1999; Coddington et al., 1990).
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Vibratory Communication in the Black Widow Spider, Latrodectus Hesperus (Araneae: Theridiidae)
    Vibratory Communication in the Black Widow Spider, Latrodectus hesperus (Araneae: Theridiidae) by Senthurran Sivalinghem A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Senthurran Sivalinghem 2020 Vibratory Communication in the Black Widow Spider, Latrodectus hesperus (Araneae: Theridiidae) Senthurran Sivalinghem Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto 2020 Abstract Several studies have described vibration producing behaviours across many web-building spiders, and vibratory communication is thought to play an integral role during male-female interactions. Despite the presumed ubiquity of vibratory communication in this group of spiders, very little is known about the characteristics and functions of the signals involved, how signals are produced and transmitted through webs, or how vibrations are perceived. In this thesis, I used the western black widow spider, Latrodectus hesperus, as my focal organism, to investigate the details of vibratory communication from sender to the receiver. My results show that male L. hesperus courtship vibration signals comprise three distinct components (abdominal tremulation, bounce and web plucks), each produced using different signal production mechanism. Larger males produced bounce and web pluck signals with high power, which suggests that these signals may carry information about male traits. I found that during the early phase of courtship, males produced these different signal components haphazardly, with little temporal organization among the individual components (unstructured signaling). However, during the later phase of courtship, as males approach females, males intermittently organized signal components into a stereotyped temporal sequence (structured signaling).
    [Show full text]
  • Dispersal and Survivorship in a Population of Geolycosa Turricola
    1991 . The Journal of Arachnology 19:49–5 4 DISPERSAL AND SURVIVORSHIP IN A POPULATION O F GEOLYCOSA TURRICOLA (ARANEAE, LYCOSIDAE ) Patricia R. Miller:' Department of Entomology, Mississippi Entomological Museum , Mississippi State University, Mississippi State, Mississippi 39762 US A Gary L. Miller: Department of Biology, The University of Mississippi, University, Mis- sissippi 38677 USA Abstract. A population of the burrowing wolf spider Geolycosa turricola in Mississippi was monitored over a period of 4 years. Weekly censuses of the number of burrows that were active, open but not active, or inactive were taken . The timing of the dispersal o f spiderlings was examined by use of caging experiments . A habitat manipulation experiment was used to assess burrow site preferences . This population reproduced on a 2-year cycle; no young were produced in even years . The results suggest that some dispersing spiderling s construct burrows immediately after leaving their mother's burrow while others overwinte r and build their first burrow during the spring . Two dispersing groups are identified and are shown to have different survivorship properties . The importance of this dispersal strategy in terms of subsocial behavior is discussed . A number of field studies of the populatio n a 1 ha Selma Chalk deposit (Harper 1857; Miller dynamics of the obligate burrowing wolf spider s 1984b) surrounded on three sides by thick growths (Geolycosa) have been undertaken in recent years of southern red cedar (Juniperus silicicola) and (e.g., McQueen 1978, 1983 ; Conley 1985) . For on the other side by a dirt road. The predominant the most part these studies have confirmed th e vegetation, beard grass (Andropogon sp.), oc- incidental observations of Wallace (1942) : mul- curred in large clumps interspersed with bare and tiyear life cycles predominate (McQueen 1978) , litter-covered ground .
    [Show full text]
  • Sand Transport and Burrow Construction in Sparassid and Lycosid Spiders
    2017. Journal of Arachnology 45:255–264 Sand transport and burrow construction in sparassid and lycosid spiders Rainer Foelix1, Ingo Rechenberg2, Bruno Erb3, Andrea Alb´ın4 and Anita Aisenberg4: 1Neue Kantonsschule Aarau, Biology Department, Electron Microscopy Unit, Zelgli, CH-5000 Aarau, Switzerland. Email: [email protected]; 2Technische Universita¨t Berlin, Bionik & Evolutionstechnik, Sekr. ACK 1, Ackerstrasse 71-76, D-13355 Berlin, Germany; 3Kilbigstrasse 15, CH-5018 Erlinsbach, Switzerland; 4Laboratorio de Etolog´ıa, Ecolog´ıa y Evolucio´n, Instituto de Investigaciones Biolo´gicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay Abstract. A desert-living spider sparassid (Cebrennus rechenbergi Ja¨ger, 2014) and several lycosid spiders (Evippomma rechenbergi Bayer, Foelix & Alderweireldt 2017, Allocosa senex (Mello-Leita˜o, 1945), Geolycosa missouriensis (Banks, 1895)) were studied with respect to their burrow construction. These spiders face the problem of how to transport dry sand and how to achieve a stable vertical tube. Cebrunnus rechenbergi and A. senex have long bristles on their palps and chelicerae which form a carrying basket (psammophore). Small balls of sand grains are formed at the bottom of a tube and carried to the burrow entrance, where they are dispersed. Psammophores are known in desert ants, but this is the first report in desert spiders. Evippomma rechenbergi has no psammophore but carries sand by using a few sticky threads from the spinnerets; it glues the loose sand grains together, grasps the silk/sand bundle and carries it to the outside. Although C. rechenbergi and E. rechenbergi live in the same environment, they employ different methods to carry sand.
    [Show full text]
  • Optimal Climbing Speed Explains the Evolution of Extreme Sexual Size Dimorphism in Spiders
    doi: 10.1111/j.1420-9101.2009.01707.x Optimal climbing speed explains the evolution of extreme sexual size dimorphism in spiders J. MOYA-LARAN˜ O,*D.VINKOVIC´ , C. M. ALLARDà &M.W.FOELLMER§ *Departamento de Ecologı´a Funcional y Evolutiva, Estacio´n Experimental de Zonas A´ ridas, Consejo Superior de Investigaciones Cientı´ficas, General Segura, Almerı´a, Spain Physics Department, University of Split, Split, Croatia àDepartment of Biological Sciences, Clemson University, Clemson, SC, USA §Department of Biology, Adelphi University, Garden City, NY, USA Keywords: Abstract Araneomorphae; Several hypotheses have been put forward to explain the evolution of extreme biomechanics; sexual size dimorphism (SSD). Among them, the gravity hypothesis (GH) dwarf males; explains that extreme SSD has evolved in spiders because smaller males have a gravity hypothesis; mating or survival advantage by climbing faster. However, few studies have mate search; supported this hypothesis thus far. Using a wide span of spider body sizes, we muscle physiology; show that there is an optimal body size (7.4 mm) for climbing and that scramble competition; extreme SSD evolves only in spiders that: (1) live in high-habitat patches and sexual size dimorphism; (2) in which females are larger than the optimal size. We report that the spiders; evidence for the GH across studies depends on whether the body size of stabilizing selection. individuals expands beyond the optimal climbing size. We also present an ad hoc biomechanical model that shows how the higher stride frequency of small animals predicts an optimal body size for climbing. range of SSD in spiders (Araneae) (Head, 1995; Vollrath, Introduction 1998; Hormiga et al., 2000; Foellmer & Moya-Laran˜ o, Understanding the evolution of different phenotypes in 2007).
    [Show full text]
  • 48 Florida Entomologist 83(1) March, 2000 INSTABILITY of SANDY
    48 Florida Entomologist 83(1) March, 2000 INSTABILITY OF SANDY SOIL ON THE LAKE WALES RIDGE AFFECTS BURROWING BY WOLF SPIDERS (ARANEAE: LYCOSIDAE) AND ANTLIONS (NEUROPTERA: MYRMELEONTIDAE) MICHELLE M. HALLORAN, MARGARET A. CARREL AND JAMES E. CARREL Division of Biological Sciences, 105 Tucker Hall University of Missouri-Columbia, Columbia, MO 65211-7400 ABSTRACT Tests with Geolycosa spiders revealed that these arachnids may be excluded largely from the Ridge Sandhill-turkey oak ecosystem on the Lake Wales Ridge be- cause their burrows quickly collapse in the unstable natural soil (Astatula sand). Comparable results were obtained in tests of pit construction by antlion larvae (Myrmeleontidae), which may serve as bioindicators of soil stability. Key Words: Geolycosa, Myrmeleon, Florida scrub, sandhill, ecology, behavior RESUMEN Pruebas con la araña Geolycosa demuestran que esta especie puede ser excluídas del ecosistema de “Southern Ridge Sandhill-turkey oak” en la loma de Lake Wales, dado que sus madrigueras se derrumban rápidamente en el suelo natural inestable (arena “Astatula”). Resultados semejantes fueron obtenidos en pruebas de hoyos ex- cavados por larvas de la hormiga león (Myrmeleontidae), lo cual podría ser utilizado como un bio-indicador de la estabilidad del suelo. The scrub and sandhill ecosystems on the Lake Wales Ridge in central Florida are major centers of endemism that now harbor many rare and endangered species (Dey- rup & Eisner 1993, 1996, Dobson et al. 1997, Ando et al. 1998). These xeric, upland communities consist of a complex patchwork of approximately 15 distinct vegetative associations, most of which depend on periodic fire to maintain species diversity (Abrahamson et al.
    [Show full text]
  • Arachnologische Arachnology
    Arachnologische Gesellschaft E u Arachnology 2015 o 24.-28.8.2015 Brno, p Czech Republic e www.european-arachnology.org a n Arachnologische Mitteilungen Arachnology Letters Heft / Volume 51 Karlsruhe, April 2016 ISSN 1018-4171 (Druck), 2199-7233 (Online) www.AraGes.de/aramit Arachnologische Mitteilungen veröffentlichen Arbeiten zur Faunistik, Ökologie und Taxonomie von Spinnentieren (außer Acari). Publi- ziert werden Artikel in Deutsch oder Englisch nach Begutachtung, online und gedruckt. Mitgliedschaft in der Arachnologischen Gesellschaft beinhaltet den Bezug der Hefte. Autoren zahlen keine Druckgebühren. Inhalte werden unter der freien internationalen Lizenz Creative Commons 4.0 veröffentlicht. Arachnology Logo: P. Jäger, K. Rehbinder Letters Publiziert von / Published by is a peer-reviewed, open-access, online and print, rapidly produced journal focusing on faunistics, ecology Arachnologische and taxonomy of Arachnida (excl. Acari). German and English manuscripts are equally welcome. Members Gesellschaft e.V. of Arachnologische Gesellschaft receive the printed issues. There are no page charges. URL: http://www.AraGes.de Arachnology Letters is licensed under a Creative Commons Attribution 4.0 International License. Autorenhinweise / Author guidelines www.AraGes.de/aramit/ Schriftleitung / Editors Theo Blick, Senckenberg Research Institute, Senckenberganlage 25, D-60325 Frankfurt/M. and Callistus, Gemeinschaft für Zoologische & Ökologische Untersuchungen, D-95503 Hummeltal; E-Mail: [email protected], [email protected] Sascha
    [Show full text]
  • Special Publications Special
    ARACHNIDS ASSOCIATED WITH WET PLAYAS IN THE SOUTHERN HIGH PLAINS WITH WET PLAYAS ARACHNIDS ASSOCIATED SPECIAL PUBLICATIONS Museum of Texas Tech University Number 54 2008 ARACHNIDS ASSOCIATED WITH WET PLAYAS IN THE SOUTHERN HIGH PLAINS (LLANO ESTACADO), C okendolpher et al. U.S.A. JAMES C. COKENDOLPHER, SHANNON M. TORRENCE, JAMES T. ANDERSON, W. DAVID SISSOM, NADINE DUPÉRRÉ, JAMES D. RAY & LOREN M. SMITH SPECIAL PUBLICATIONS Museum of Texas Tech University Number 54 Arachnids Associated with Wet Playas in the Southern High Plains (Llano Estacado), U.S.A. JAMES C. COKENDOLPHER , SHANNON M. TORREN C E , JAMES T. ANDERSON , W. DAVID SISSOM , NADINE DUPÉRRÉ , JAMES D. RAY , AND LOREN M. SMI T H Texas Tech University, Oklahoma State University, B&W Pantex, Texas Parks and Wildlife Department, West Texas A&M University, West Virginia University Layout and Design: Lisa Bradley Cover Design: James C. Cokendolpher et al. Copyright 2008, Museum of Texas Tech University All rights reserved. No portion of this book may be reproduced in any form or by any means, including electronic storage and retrieval systems, except by explicit, prior written permission of the publisher. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 10 April 2008 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 54 Series Editor: Robert J. Baker Arachnids Associated with Wet Playas in the Southern High Plains (Llano Estacado), U.S.A.
    [Show full text]
  • Epigeic Spider (Araneae) Diversity and Habitat Distributions in Kings
    Clemson University TigerPrints All Theses Theses 5-2011 Epigeic Spider (Araneae) Diversity and Habitat Distributions in Kings Mountain National Military Park, South Carolina Sarah Stellwagen Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Entomology Commons Recommended Citation Stellwagen, Sarah, "Epigeic Spider (Araneae) Diversity and Habitat Distributions in Kings Mountain National Military Park, South Carolina" (2011). All Theses. 1091. https://tigerprints.clemson.edu/all_theses/1091 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. EPIGEIC SPIDER (ARANEAE) DIVERSITY AND HABITAT DISTRIBUTIONS IN KINGS MOUNTAIN NATIONAL MILITARY PARK, SOUTH CAROLINA ______________________________ A Thesis Presented to the Graduate School of Clemson University _______________________________ In Partial Fulfillment of the Requirements for the Degree Masters of Science Entomology _______________________________ by Sarah D. Stellwagen May 2011 _______________________________ Accepted by: Dr. Joseph D. Culin, Committee Chair Dr. Eric Benson Dr. William Bridges ABSTRACT This study examined the epigeic spider fauna in Kings Mountain National Military Park. The aim of this study is to make this information available to park management for use in the preservation of natural resources. Pitfall trapping was conducted monthly for one year in three distinct habitats: riparian, forest, and ridge-top. The study was conducted from August 2009 to July 2010. One hundred twenty samples were collected in each site. Overall, 289 adult spiders comprising 66 species were collected in the riparian habitat, 345 adult comprising 57 species were found in the forest habitat, and 240 adults comprising 47 species were found in the ridge-top habitat.
    [Show full text]
  • Comportamiento De Cortejo En Una Especie Colombiana De Latrodectus Walckenaer, 1805 (Araneae: Theridiidae): Énfasis En Señales Vibratorias
    Comportamiento de cortejo en una especie Colombiana de Latrodectus Walckenaer, 1805 (Araneae: Theridiidae): énfasis en señales vibratorias. Munar, Sebastián; Realpe, Emilio & Rueda, Martha Alexandra Laboratorio de Zoología y Ecología Acuática - LAZOEA Departamento de Ciencias. Biológicas. Universidad de los Andes Abstract El cortejo pre copulatorio es una estrategia vital en la reproducción de las arañas. Gracias al cortejo, el instinto predatorio puede ser suprimido y adicionalmente ambos individuos pueden reconocer y evaluar el estado de su posible pareja (Robinson, 1982). Para estos cortejos, pueden ser usadas señales químicas, visuales, sísmicas y todas las posibles combinaciones entre estas (Uetz, 2002). El objetivo de este trabajo es realizar la caracterización vibrométrica del ritual copulatorio de Latrodectus sp. Para este fin, fueron capturados en los municipios de Saldaña, Coyaima y Natagaima del departamento de Tolima, ejemplares de ambos sexos de Latrodectus sp. que fueron mantenidos en cautiverio. Posteriormente se realizó un montaje que permitió medir las vibraciones en la tela de la hembra, cuando el macho entraba en ella. Mediante el uso de un vibrómetro laser Doppler y equipo de filmación de video, se registraron las señales comportamentales y sísmicas del ritual de apareamiento (n=19) (Vibert et al., 2014). Para el análisis de estos datos se definieron comportamientos estereotípicos tanto para los machos como para las hembras y se obtuvieron cinco componentes espectrales y temporales para dichos eventos (Ross & Smith, 1979). En este trabajo se presenta por primera vez un análisis vibrométrico del cortejo para una araña del genero Latrodectus Walckenaer, 1805 y para la familia Theridiidae, para el macho y la hembra.
    [Show full text]
  • Molecular Systematics of the Wolf Spider Genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin
    Molecular Phylogenetics and Evolution 67 (2013) 414–428 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular systematics of the wolf spider genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin ⇑ Enric Planas a, Carmen Fernández-Montraveta b, Carles Ribera a, a Institut de Recerca de la Biodiversitat (IRBio), Departament de Biologia Animal, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain b Departamento de Psicología Biológica y de la Salud, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain article info abstract Article history: In this study, we present the first molecular phylogeny of the wolf spider genus Lycosa Latreille, 1804 in Received 2 January 2013 the Western Mediterranean Basin. With a wide geographic sampling comprising 90 localities and includ- Revised 2 February 2013 ing more than 180 individuals, we conducted species delimitation analyses with a Maximum Likelihood Accepted 7 February 2013 approach that uses a mixed Yule-coalescent model to detect species boundaries. We estimated molecular Available online 15 February 2013 phylogenetic relationships employing Maximum Likelihood and Bayesian Inference methods using mito- chondrial and nuclear sequences. We conducted divergence time analyses using a relaxed clock model Keywords: implemented in BEAST. Our results recovered 12 species that form four groups: Lycosa tarantula group Phylogeny comprising L. tarantula the type species of the genus, L. hispanica and L. bedeli; Lycosa oculata group com- Species delimitation Taxonomy posed of L. oculata, L. suboculata and three putative new species; Lycosa baulnyi group formed by the mag- Biogeography hrebian L. baulnyi and L. vachoni and Lycosa fasciiventris group that includes two widespread species, L.
    [Show full text]
  • Curriculum Vitae
    Paula E. Cushing, Ph.D. Senior Curator of Invertebrate Zoology, Department of Zoology, Denver Museum of Nature & Science, 2001 Denver,Colorado 80205 USA E-mail: [email protected]; Web: https://science.dmns.org/museum- scientists/paula-cushing/, http://www.solifugae.info, http://spiders.dmns.org/default.aspx; Office Phone: (303) 370-6442; Lab Phone: (303) 370-7223; Fax: (303) 331-6492 CURRICULUM VITAE EDUCATION University of Florida, Gainesville, FL, 1990 - 1995, Ph.D. Virginia Tech, Blacksburg, VA, 1985 - 1988, M.Sc. Virginia Tech, Blacksburg, VA, 1982 - 1985, B.Sc. PROFESSIONAL AFFILIATIONS AND POSITIONS Denver Museum of Nature & Science, Senior Curator of Invertebrate Zoology, 1998 - present Associate Professor Adjoint, Department of Integrative Biology, University of Colorado, Denver, 2013 - present Denver Museum of Nature & Science, Department Chair of Zoology, 2006 – 2011 Adjunct Faculty, Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, 2011 - present Affiliate Faculty Member, Department of Biology and Wildlife, University of Alaska, Fairbanks, 2009 – 2012 Adjunct Faculty, Department of Bioagricultural Sciences and Pest Management, Colorado State University, 1999 – present Affiliate Faculty Member, Department of Life, Earth, and Environmental Science, West Texas AMU, 2011 - present American Museum of Natural History, Research Collaborator (Co-PI with Lorenzo Prendini), 2007 – 2012 College of Wooster, Wooster, Ohio, Visiting Assistant Professor, 1996 – 1997 University of Florida, Gainesville, Florida, Postdoctoral Teaching Associate, 1996 Division of Plant Industry, Gainesville, Florida, Curatorial Assistant for the Florida Arthropod Collection, 1991 National Museum of Natural History (Smithsonian), high school intern at the Insect Zoo, 1981; volunteer, 1982 GRANTS AND AWARDS 2018 - 2022: NSF Collaborative Research: ARTS: North American camel spiders (Arachnida, Solifugae, Eremobatidae): systematic revision and biogeography of an understudied taxon.
    [Show full text]