Download the File
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating. -
Instituto De Botânica
MAIRA CORTELLINI ABRAHÃO Diversidade e ecologia de Agaricomycetes lignolíticos do Cerrado da Reserva Biológica de Mogi-Guaçu, estado de São Paulo, Brasil (exceto Agaricales e Corticiales) Tese apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de DOUTORA em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Avasculares e Fungos em Análises Ambientais. SÃO PAULO 2012 MAIRA CORTELLINI ABRAHÃO Diversidade e ecologia de Agaricomycetes lignolíticos do Cerrado da Reserva Biológica de Mogi-Guaçu, estado de São Paulo, Brasil (exceto Agaricales e Corticiales) Tese apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de DOUTORA em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Avasculares e Fungos em Análises Ambientais. ORIENTADORA: DRA. VERA LÚCIA RAMOS BONONI Ficha Catalográfica elaborada pelo NÚCLEO DE BIBLIOTECA E MEMÓRIA Abrahão, Maira Cortelellini A159d Diversidade e ecologia de Agaricomycetes lignolíticos do cerrado da Reserva Biológica de Mogi-Guaçu, estado de São Paulo, Brasil (exceto Agaricales e Corticiales) / Maira Cortellini Abrahão -- São Paulo, 2012. 132 p. il. Tese (Doutorado) -- Instituto de Botânica da Secretaria de Estado do Meio Ambiente, 2012 Bibliografia. 1. Basidiomicetos. 2. Basidiomycota. 3. Unidade de Conservação. I. Título CDU: 582.284 AGRADECIMENTOS Agradeço a Deus por mais uma oportunidade de estudar, crescer e amadurecer profissionalmente. Por colocar pessoas tão maravilhosas em minha vida durante esses anos de convívio e permitir que tudo ocorresse da melhor maneira possível. À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pela bolsa de doutorado (processo 2009/01403-6) e por todo apoio financeiro que me foi oferecido, desde os anos iniciais de minha carreira acadêmica (processos 2005/55136-8 e 2006/5878-6). -
Some Species of Macrofungi at Puncan, Carranglan, Nueva Ecija in the Philippines
Journal of Agricultural Technology 2008, V.4(2): 105-115 Some species of macrofungi at Puncan, Carranglan, Nueva Ecija in the Philippines P. Sibounnavong1*,Cynthia.C.D.1, Kalaw, S.P1, R.G. Reyes1 and K. Soytong2 1Department of Biology, Central Luzon State University, Munoz, Philippines. 2Department of Plant Pest Management, KMITL, Bangkok, Thailand. Sibounnavong, P., Cynthia, C.D., Kalaw, S.P., Reyes, R.G. and Soytong, K. (2008). Some species of macrofungi at Puncan, Carranglan, Nueva Ecija in the Philippines. Journal of Agricultural Technology 4(2): 105-115. Mushrooms and macrofungi were collected at Puncan, Carranglan, Nueva Ecija, Philippines in during dry season. There were identified into 7 species. With this, one species belong to Order Tulasnellales or Tremellales (Jelly Fungi), Family Auriculariaceae which is Auricularia fuscosuccinea. Another 4 species belong to Order Polyporales; Family Polyporaceae which are Gloeoporus dichrous (Fr.) Bres, Coltricia perennis (Fr.) Murr, Trametes versicolor (L.: Fries) Pilt and Phellinus pini (Fr.) Ames. Out of these, 2 species belong to Order Agaricales (Mushroom); Family Tricholomataceae which is Hobenbuebelia petaloides (Bull ex Fr.) Schulz and Family Cantharellaceae which is Cantharellus minor Pk. It is noticed that our survey were done in dry season, high temperature and low humidity which found that the climate and whether are not favorable for mushroom and other fungi growing. Since then, it is indicated that the species found in this season are rarely fresh but their specimens mostly dried. Key words: Auricularia, Gloeoporus, Coltricia, Trametes, Phellinus, Hobenbuebelia, Cantharellus Introduction Mushrooms and macrofungi need moisture to develop. There is an optimum period of mushroom season when the most of mushrooms and macro fungi come to appear. -
Three Species of Wood-Decaying Fungi in <I>Polyporales</I> New to China
MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2017 January–March 2017—Volume 132, pp. 29–42 http://dx.doi.org/10.5248/132.29 Three species of wood-decaying fungi in Polyporales new to China Chang-lin Zhaoa, Shi-liang Liua, Guang-juan Ren, Xiao-hong Ji & Shuanghui He* Institute of Microbiology, Beijing Forestry University, No. 35 Qinghuadong Road, Haidian District, Beijing 100083, P.R. China * Correspondence to: [email protected] Abstract—Three wood-decaying fungi, Ceriporiopsis lagerheimii, Sebipora aquosa, and Tyromyces xuchilensis, are newly recorded in China. The identifications were based on morphological and molecular evidence. The phylogenetic tree inferred from ITS+nLSU sequences of 49 species of Polyporales nests C. lagerheimii within the phlebioid clade, S. aquosa within the gelatoporia clade, and T. xuchilensis within the residual polyporoid clade. The three species are described and illustrated based on Chinese material. Key words—Basidiomycota, polypore, taxonomy, white rot fungus Introduction Wood-decaying fungi play a key role in recycling nutrients of forest ecosystems by decomposing cellulose, hemicellulose, and lignin of the plant cell walls (Floudas et al. 2015). Polyporales, a large order in Basidiomycota, includes many important genera of wood-decaying fungi. Recent molecular studies employing multi-gene datasets have helped to provide a phylogenetic overview of Polyporales, in which thirty-four valid families are now recognized (Binder et al. 2013). The diversity of wood-decaying fungi is very high in China because of the large landscape ranging from boreal to tropical zones. More than 1200 species of wood-decaying fungi have been found in China (Dai 2011, 2012), and some a Chang-lin Zhao and Shi-liang Liu contributed equally to this work and share first-author status 30 .. -
New Data on the Occurence of an Element Both
Analele UniversităĠii din Oradea, Fascicula Biologie Tom. XVI / 2, 2009, pp. 53-59 CONTRIBUTIONS TO THE KNOWLEDGE DIVERSITY OF LIGNICOLOUS MACROMYCETES (BASIDIOMYCETES) FROM CĂ3ĂğÂNII MOUNTAINS Ioana CIORTAN* *,,Alexandru. Buia” Botanical Garden, Craiova, Romania Corresponding author: Ioana Ciortan, ,,Alexandru Buia” Botanical Garden, 26 Constantin Lecca Str., zip code: 200217,Craiova, Romania, tel.: 0040251413820, e-mail: [email protected] Abstract. This paper presents partial results of research conducted between 2005 and 2009 in different forests (beech forests, mixed forests of beech with spruce, pure spruce) in CăSăĠânii Mountains (Romania). 123 species of wood inhabiting Basidiomycetes are reported from the CăSăĠânii Mountains, both saprotrophs and parasites, as identified by various species of trees. Keywords: diversity, macromycetes, Basidiomycetes, ecology, substrate, saprotroph, parasite, lignicolous INTRODUCTION MATERIALS AND METHODS The data presented are part of an extensive study, The research was conducted using transects and which will complete the PhD thesis. The CăSăĠânii setting fixed locations in some vegetable formations, Mountains are a mountain group of the ùureanu- which were visited several times a year beginning with Parâng-Lotru Mountains, belonging to the mountain the months April-May until October-November. chain of the Southern Carpathians. They are situated in Fungi were identified on the basis of both the SE parth of the Parâng Mountain, between OlteĠ morphological and anatomical properties of fruiting River in the west, Olt River in the east, Lotru and bodies and according to specific chemical reactions LaroriĠa Rivers in the north. Our area is 900 Km2 large using the bibliography [1-8, 10-13]. Special (Fig. 1). The vegetation presents typical levers: major presentation was made in phylogenetic order, the associations characteristic of each lever are present in system of classification used was that adopted by Kirk this massif. -
Identification and Tracking Activity of Fungus from the Antarctic Pole on Antagonistic of Aquatic Pathogenic Bacteria
INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 19F–079/2019/22–6–1311–1319 DOI: 10.17957/IJAB/15.1203 http://www.fspublishers.org Full Length Article Identification and Tracking Activity of Fungus from the Antarctic Pole on Antagonistic of Aquatic Pathogenic Bacteria Chuner Cai1,2,3, Haobing Yu1, Huibin Zhao2, Xiaoyu Liu1*, Binghua Jiao1 and Bo Chen4 1Department of Biochemistry and Molecular Biology, College of Basic Medicine, Naval Medical University, Shanghai, 200433, China 2College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China 3Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu, 222005, China 4Polar Research Institute of China, Shanghai, 200136, China *For correspondence: [email protected] Abstract To seek the lead compound with the activity of antagonistic aquatic pathogenic bacteria in Antarctica fungi, the work identified species of a previously collected fungus with high sensitivity to Aeromonas hydrophila ATCC7966 and Streptococcus agalactiae. Potential active compounds were separated from fermentation broth by activity tracking and identified in structure by spectrum. The results showed that this fungus had common characteristics as Basidiomycota in morphology. According to 18S rDNA and internal transcribed space (ITS) DNA sequencing, this fungus was identified as Bjerkandera adusta in family Meruliaceae. Two active compounds viz., veratric acid and erythro-1-(3, 5-dichlone-4- methoxyphenyl)-1, 2-propylene glycol were identified by nuclear magnetic resonance spectrum and mass spectrum. Veratric acid was separated for the first time from any fungus, while erythro-1-(3, 5-dichlone-4-methoxyphenyl)-1, 2-propylene glycol was once reported in Bjerkandera. -
<I> Junghuhnia</I> S.Lat
Persoonia 41, 2018: 130–141 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2018.41.07 A re-evaluation of Neotropical Junghuhnia s.lat. (Polyporales, Basidiomycota) based on morphological and multigene analyses M.C. Westphalen1,*, M. Rajchenberg2, M. Tomšovský3, A.M. Gugliotta1 Key words Abstract Junghuhnia is a genus of polypores traditionally characterised by a dimitic hyphal system with clamped generative hyphae and presence of encrusted skeletocystidia. However, recent molecular studies revealed that Mycodiversity Junghuhnia is polyphyletic and most of the species cluster with Steccherinum, a morphologically similar genus phylogeny separated only by a hydnoid hymenophore. In the Neotropics, very little is known about the evolutionary relation- Steccherinaceae ships of Junghuhnia s.lat. taxa and very few species have been included in molecular studies. In order to test the taxonomy proper phylogenetic placement of Neotropical species of this group, morphological and molecular analyses were carried out. Specimens were collected in Brazil and used for DNA sequence analyses of the internal transcribed spacer and the large subunit of the nuclear ribosomal RNA gene, the translation elongation factor 1-α gene, and the second largest subunit of RNA polymerase II gene. Herbarium collections, including type specimens, were studied for morphological comparison and to confirm the identity of collections. The molecular data obtained revealed that the studied species are placed in three different genera. Specimens of Junghuhnia carneola represent two distinct species that group in a lineage within the phlebioid clade, separated from Junghuhnia and Steccherinum, which belong to the residual polyporoid clade. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
Listado De La Colección De Hongos (Ascomycota Y Basidiomycota) Del Herbario Nacional Del Ecuador (QCNE) Del Instituto Nacional De Biodiversidad (INABIO)
Artículo/Article Sección/Section B 12 (20), 38-71 Listado de la colección de hongos (Ascomycota y Basidiomycota) del Herbario Nacional del Ecuador (QCNE) del Instituto Nacional de Biodiversidad (INABIO) Rosa Batallas-Molina1, Gabriela Fernanda Moya-Marcalla2, Daniel Navas Muñoz3 1Instituto Nacional de Biodiversidad del Ecuador (INABIO), colección micológica del Herbario Nacional del Ecuador (QCNE), Av. Río Coca E6-115 e Isla Fernandina, sector Jipijapa, Quito, Ecuador 2Programa de Maestría en Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica (UTI), Machala y Sabanilla, Quito, Ecuador 3Carrera en Ingeniería en Biodiversidad y Recursos Genéticos, Universidad Tecnológica Indoamérica (UTI), Machala y Sabanilla, Quito, Ecuador *Autor para correspondencia / Corresponding author, email: [email protected] Checklist of the fungi collection (Ascomycota and Basidiomycota) of the National Herbarium of Ecuador (QCNE) of the National Institute of Biodiversity (INABIO) Abstract The National Herbarium of Ecuador (QCNE) of the National Institute of Biodiversity (INABIO) preserves the public mycological collection of Ecuador, being the most representative of the country with 6200 specimens between fungi and lichens. The mycological collection started in 1999 with contributions from university students and specialists who deposited their specimens in the cryptogam section of the QCNE Herbarium. Since 2013 the information has been digitized and 4400 records were taken as the basis for this manuscript. The objective of this work is to present the list of species of fungi of the mycological collection of QCNE. The collection of fungi is organized according to the criteria of the most recent specialized literature, and 319 species of fungi are reported, corresponding to samples from the Ascomycota and Basidiomycota divisions. -
Pilzgattungen Europas
Pilzgattungen Europas - Liste 3: Notizbuchartige Auswahlliste zur Bestimmungsliteratur für Aphyllophorales und Heterobasidiomyceten (ohne cyphelloide Pilze und ohne Rost- und Brandpilze) Bernhard Oertel INRES Universität Bonn Auf dem Hügel 6 D-53121 Bonn E-mail: [email protected] 24.06.2011 Gattungen 1) Hauptliste 2) Liste der heute nicht mehr gebräuchlichen Gattungsnamen (Anhang) 1) Hauptliste Abortiporus Murr. 1904 (muss Loweomyces hier dazugeschlagen werden?): Lebensweise: Z.T. phytoparasitisch an Wurzeln von Bäumen Typus: A. distortus (Schw. : Fr.) Murr. [= Boletus distortus Schw. : Fr.; heute: A. biennis (Bull. : Fr.) Sing.; Anamorfe: Sporotrichopsis terrestris (Schulz.) Stalpers; Synonym der Anamorfe: Ceriomyces terrestris Schulz.] Bestimm. d. Gatt.: Bernicchia (2005), 68 u. 74 (auch Arten- Schlüssel); Bresinsky u. Besl (2003), 64; Hansen u. Knudsen 3 (1997), 220; Jülich (1984), 37-38 u. 328; Pegler (1973), The Fungi 4B, 404; Ryvarden u. Gilbertson (1993), Bd. 1, 70 u. 81 (auch Arten- Schlüssel) Abb.: 2) Lit.: Bollmann, Gminder u. Reil-CD (2007) Fidalgo, O. (1969), Revision ..., Rickia 4, 99-208 Jahn (1963), 65 Lohmeyer, T.R. (2000), Porlinge zwischen Inn und Salzach ..., Mycol. Bavarica 4, 33-47 Moser et al. (1985 ff.), Farbatlas (Gatt.-beschr.) Murrill (1904), Bull. Torrey Bot. Club 31, 421 Ryvarden u. Gilbertson (1993), Bd. 1, 81 s. ferner in 1) Abundisporus Ryv. 1999 [Europa?]: Typus: A. fuscopurpureus (Pers.) Ryv. (= Polyporus fuscopurpureus Pers.) Lit.: Ryvarden, L. ("1998", p. 1999), African polypores ..., Belg. J. Bot. 131 [Heinemann-Festschrift], 150- 155 (S. 154) s. ferner in 1) Acanthobasidium Oberw. 1965 (zu Aleurodiscus?): Typus: A. delicatum (Wakef.) Oberw. ex Jül. (= Aleurodiscus delicatus Wakef.) Bestimm. d. Gatt.: Bernicchia u. -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.