Synthesis of Inhibitors of Steroid Sulfatase and Towards the Synthesis of a Chiral Electrophilic Fluorinating Reagent

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Inhibitors of Steroid Sulfatase and Towards the Synthesis of a Chiral Electrophilic Fluorinating Reagent Synthesis of Inhibitors of Steroid Sulfatase and Towards the Synthesis of a Chiral Electrophilic Fluorinating Reagent By Yong Liu A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry Waterloo, Ontario, Canada, 2006 ©Yong Liu 2006 AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Steroid sulfatase (STS) catalyzes the desulfation of sulfated steroids such as estrone sulfate to the corresponding steroid such as estrone. Inhibitors of STS are believed to have potential for treating estrogen-dependent breast cancer. A new class of potential irreversible suicide inhibitors of STS, based on aryl sulfates bearing a monofluoromethyl or difluoromethyl group ortho to the sulfate group, was synthesized. Key to the success of these syntheses was the use of new sulfation methodology recently developed in the Taylor group. A new and efficient route to 4-formyl estrone, a time-dependent, irreversible STS inhibitor, is also reported. Several new classes of potential, reversible STS inhibitors were synthesized. These compounds are analogs of known STS substrates in which the sulfate group is replaced with an α,α -difluoromethylenesulfonamide group, a boronic acid group or a sulfinic acid group. We also report the synthesis of estrone sulfate analogs that bear a carboxylate moiety at the 17-position and a sulfate surrogate at the 3-position. It is anticipated that these compounds will inhibit STS by interacting with Arg98 which lies at the periphery of the active site. Key to the success of this synthesis was the use of the t-butyl group as a protecting group for the 2-position of estrone. Finally, our preliminary investigations into the synthesis of a new class of chiral electrophilic fluorinating agents are presented. These reagents are based on a chiral binaphthyl sulfonimide scaffold and are expected to be capable of performing enantioselective electrophilic fluorinations. Such reagents may be useful in synthesizing organofluorines of biological significance including STS inhibitors. iii Acknowledgements I would like to thank my supervisor, Professor Scott D. Taylor. It has been such a pleasure to work with him and I have learned so much from him during my entire research project in the past four and half years. I really appreciate him for spending so much time helping me out with research problems. I also thank my advisory committee, Professor Michael J. Chong, Professor Gary Dimitrienko and Professor William Tam for their valuable guidance and generous help during the past few years. I have benefited a lot by taking Professor Tam’s, Professor Chong’s and Professor Fillion’s courses. I would like to thank all former and present members of the Taylor group, which include Farzad, Bryan, Chenguo, Wallach, Mehdi, Vanessa, Laura, Zena, Munawar and Ahmed M. and Ahmed D. They have been so helpful to me. I acknowledge Richard for mass spectra and Jan for NMR help. I also acknowledge all of the people on the third floor of C2 and ESC. I am very lucky to meet so many friendly people here. Finally, I want to express my special acknowledgement to my wife Fang, who has been supporting me with love, encouragement and dedication. iv To my wife Fang and my parents who have given me so much… v Table of Contents Title i Declaration ii Abstract iii Acknowledgements iv Table of Contents vi List of Tables ix List of Figures x List of Abbreviations xi Chapter 1. Inhibitors of Steroid Sulfatase 1 1.1. Introduction: Steroid Sulfatase and Breast Cancer 1 1.2. Steroid Sulfatase – Structure and Mechanism 2 1.3. Inhibitors of STS 5 1.4. Objective and Overview 8 1.5. References 10 Chapter 2. Irreversible Inhibitors of STS: Synthesis of Estrogens Modified at the 2- and 4-Positions 12 2.1. Introduction 12 2.2. Results and Discussion 16 2.2.1. Synthesis of 2-Formyl Estrone 16 2.2.2. Synthesis of Compounds 2.4-2.11 24 2.2.3. New Approaches to the Synthesis of 2.13 32 2.2.4. Synthesis of Other A-Ring Modified E1 and E2 Derivatives 51 2.3. Summary and Future work 56 2.4. Experimental 58 vi 2.4.1. General 58 2.4.2. Syntheses 59 2.5. References 108 Chapter 3. Synthesis of Steroidal and Non-Steroidal Compounds Bearing Sulfate Surrogates 112 3.1. Introduction 112 3.1.1. Reversible Inhibitors of STS Bearing Sulfate Surrogates 112 3.1.2. The α, α-Difluoromethylenesulfonamide Group as a Sulfate Surrogate 113 3.1.3. Boronic Acids as STS Inhibitors 115 3.1.4. Sulfinic Acids as STS Inhibitors 116 3.1.5. Enhancing the Potency of STS inhibitors by Iintroducing Anionic Groups at the 17-Position. 117 3.1.6. Objectives 118 3.2. Results and Discussion 118 3.2.1. Synthesis of α, α-Difluoromethylenesulfonamides 118 3.2.2. Synthesis of Boronic Acids 126 3.2.3. Synthesis of Sulfinic Acids 133 3.2.4. Synthesis of Steroids Modified at the 17-Position with a Carboxylic Acid Group 136 3.2.5. Preliminary Results from Inhibition Studies 140 3.2.6. Future Work 145 3.3. Experimental 148 3.3.1. General 148 3.3.2. Syntheses 149 3.4. References 198 Chapter 4. Towards the Synthesis of a Chiral Electrophilic Fluorinating Agent 202 vii 4.1. Introduction and Background 202 4.1.1. Enantioselective Fluorination 202 4.1.2. Enantioselective Fluorination Using Chiral Electrophilic Fluorinating Agents 203 4.1.3. Enantioselective Fluorination Using Transition-Metal Catalysts 205 4.1.4. Enantioselective Fluorination Using Chiral Organocatalysts 207 4.1.5. Chiral Halogenating Agents Based on Chiral Binaphthyl Scaffolds 208 4.1.6. Objectives 212 4.2. Results and Discussion 212 4.3. Summary and Future Work 220 4.4. Experimental 221 4.4.1. General 221 4.4.2. Syntheses 223 4.5. References 238 viii List of Tables Table 2.1 Synthesis of 2.14 by Direct Formylation of E1 21 Table 2.2 Synthesis of 2.13 by Reduction of the Nitrile Group in Compound 2.52 Using Raney Ni 33 Table 2.3 Formylation of 2.70 under Different Conditions 47 Table 3.1 STS Inhibitors in which the Sulfate Group of Estrone Sulfate is Replaced With an O-, N-, or S-Linked Sulfate Surrogate 112 Table 4.1 Enantioselective EF of β-Keto Esters Using Selectfluor and Catalyst 4.17 205 Table 4.2 An Enantioselective Mannich Reaction Catalyzed by Chiral Brønsted Acids 4.38a-d 211 ix List of Figures Figure 1.1 Structures of Norethindrone, Estrone and Estradiol 1 Figure 1.2 Ribbon Structure of STS (Courtesy of D. Ghosh) 4 Figure 1.3 Active Site of STS (Courtesy of D. Ghosh) 5 Figure 1.4 Structures of Sulfamate Inhibitors 1.1-1.4 6 Figure 1.5 Structures of Reversible Inhibitors 1.5-1.8 7 Figure 2.1 Proposed Suicide Inhibitors of STS 13 Figure 2.2 Structure of 4-Formylestrone 16 Figure 2.3 Structure of 2,4-Diformyl Estrone (2.87) 55 Figure 3.1 Structures of EMATE, Estrone Sulfate (E1S) and Selected Analogs 113 Figure 3.2 A Potential Approach to Rationally Designed STS Inhibitors 117 Figure 3.3 Structures of Target Sulfonamides 118 Figure 3.4 Structures of Target Boronic Acids 127 Figure 3.5 Structures of Target Sulfinic Acids 133 Figure 3.6 Structures of Target Steroids Modified at the 17-Position 137 Figure 3.7 Crystal Structure of Compound 3.53 Bound to STS (Courtesy of D. Ghosh) 142 Figure 4.1 Structures of Chiral Monofluoromethylenephosphonic Acids 4.1 and 4.2 202 Figure 4.2 Chiral N-F Reagents Prepared by Davis et al. and Takeuchi and Coworkers 204 Figure 4.3 Structure of Ligand 4.22 207 Figure 4.4 Structure of Chiral N-F Reagent 4.28 209 Figure 4.5 Structures of Compounds of Type 4.40 and 4.41 212 Figure 4.6 Structures of Compounds 4.42 and 4.43 213 Figure 4.7 Structures of Byproduct 4.54 215 Figure 4.8 Racemic S-Aryl Thiocarbamate 4.60 216 Figure 4.9 Structure of the Proposed Four-Center Transition State/Intermediate for the NKR 221 x List of Abbreviations 2-FE1 2-formylestrone 4-FE1 4-formylestrone Ac acetyl AIBN 2,2′-azo-bis(isobutyronitrile) All allyl aq aqueous Ar aryl Arg arginine Asn asparagine Asp aspartic acid ARS aryl sulfatase ARSA aryl sulfatase A BINOL 2,2′-dihydroxy-1,1′-binaphthalene Bn benzyl br broad Bu butyl CA cinchona alkaloids conc concentrated cacld calculated cat catalyst CHO Chinese Hamster Ovary compd compound COUMATE coumarin sulfamate CTH catalytic transfer hydrogenation d doublet DAST diethylaminosulfur trifluoride xi DBU 1,8-diazabicyclo[5.4.0]undec-7-ene DIBAL diisobutylaluminium hydride DFMS difluoromethylenesulfonamide DMAP 4-(N,N-dimethylamino)pyridine DMB 2,4-dimethoxybenzyl DME 1,2-dimethoxyethane DMF N,N-dimethylformamide DMSO dimethyl sulfoxide E+ electrophile E1 estrone E1S estrone sulfate E2 estradiol EAS electrophilic aromatic substitution EMATE estrone sulfamate eq or equiv equivalent(s) ether diethyl ether EF electrophilic fluorination ESI electrospray ionization Et ethyl fGly formyl glycine Gln glutamine F-C Friedel-Crafts h hour His histidine HMPA hexamethylphosphoric amide HRMS high resolution mass spectrometry HMT hexamethyltetramine xii HTS high throughput screening Hz Hertz i iso IC50 concentration of an inhibitor that is required for 50% inhibition of catalytic activity IR infrared spectroscopy J spin coupling constant Ki equilibrium dissociation constant of the enzyme-inhibitor complex LRMS low resolution mass spectrometry Lys lysine m multiplet M molar mCPBA meta-chloroperbenzoic acid Me methyl mesylate methanesulfonate min minute mL millilitre Ms methanesulfonyl mmol millimole mol mole MOM methoxymethyl mp melting point MUS 4-methylumbelliferyl-6-O-sulfate m/z mass/charge N normal NaHMDS sodium hexamethyldisilazane NBA N-bromoacetamide xiii NBS N-bromosuccinimide NCS N-chlorosuccinimide NFSi N-fluorobenzenesulfonimide NKR Newman-Kwart rearrangement nM nanomolar NMP N-methyl-2-pyrrolidone NMR nuclear magnetic resonance Nu nucleophile PCC pyridinium chlorochromate Ph phenyl pM picomolar PMB para-methoxybenzyl Pr propyl PTP1B protein tyrosine phosphatase 1B PTSA para-toluenesulfonic acid q quartet quint quintet R alkyl group rt.
Recommended publications
  • Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals
    Journal of Clinical Medicine Review Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals Carlotta Cocchetti 1, Jiska Ristori 1, Alessia Romani 1, Mario Maggi 2 and Alessandra Daphne Fisher 1,* 1 Andrology, Women’s Endocrinology and Gender Incongruence Unit, Florence University Hospital, 50139 Florence, Italy; [email protected] (C.C); jiska.ristori@unifi.it (J.R.); [email protected] (A.R.) 2 Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, 50139 Florence, Italy; [email protected]fi.it * Correspondence: fi[email protected] Received: 16 April 2020; Accepted: 18 May 2020; Published: 26 May 2020 Abstract: Introduction: To date no standardized hormonal treatment protocols for non-binary transgender individuals have been described in the literature and there is a lack of data regarding their efficacy and safety. Objectives: To suggest possible treatment strategies for non-binary transgender individuals with non-standardized requests and to emphasize the importance of a personalized clinical approach. Methods: A narrative review of pertinent literature on gender-affirming hormonal treatment in transgender persons was performed using PubMed. Results: New hormonal treatment regimens outside those reported in current guidelines should be considered for non-binary transgender individuals, in order to improve psychological well-being and quality of life. In the present review we suggested the use of hormonal and non-hormonal compounds, which—based on their mechanism of action—could be used in these cases depending on clients’ requests. Conclusion: Requests for an individualized hormonal treatment in non-binary transgender individuals represent a future challenge for professionals managing transgender health care. For each case, clinicians should balance the benefits and risks of a personalized non-standardized treatment, actively involving the person in decisions regarding hormonal treatment.
    [Show full text]
  • Nandrolone Technical Document July 04 V1.0
    WADA Technical Document – TD2004NA Document Number: TD2004NA Version Number: 1.0 Written by: WADA Laboratory Committee Approved by: WADA Executive Committee Date: 28 May, 2004 Effective Date: 13 August, 2004 REPORTING NORANDROSTERONE FINDINGS 1. Introduction: This document has been established to harmonize analysis and reporting of norandrosterone Adverse Analytical Findings by Laboratories. The administration of 19-norsteroids such as 19-nortestosterone (nandrolone), 19-norandrostene-3,17- dione and 19-norandrostene-3,17-diol (delta-4 and -5 isomers) has been shown to lead mainly to the excretion of 19-norandrosterone (NA), 19-noretiocholanolone (NE) and 19-norepiandrosterone (NEA). The latter is found exclusively as its sulfoconjugate while the others are usually excreted as their glucuronide derivative. The sulfate derivatives, generally persistent, may be prevalent at the end of the excretion period. After the i.m. administration of the long-lasting preparations of nandrolone, the metabolites may be detected for months, but metabolites formed after the oral ingestion are excreted massively in the first hours and remain detectable for only a few days. The excretion of 19-norandrosterone generally predominates that of the 5b-isomer but inversed proportions have been reported in some individuals after oral administration either at the end of the excretion period or when ? 5-isomers of related norsteroids were taken (1). Norandrosterone is excreted during pregnancy and2010 as a minor metabolite of norethisterone (2). Special procedures such as more sensitive instrumentation, larger volumes of urine and more extensive sample clean-up were needed to detect, identify and quantify endogenous 19-norandrosterone (with limits of detection needing to be ten times lower than routine testing i.e.
    [Show full text]
  • Steroids – Basic Science
    STEROIDS – BASIC SCIENCE Edited by Hassan Abduljabbar Steroids – Basic Science Edited by Hassan Abduljabbar Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2011 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Bojan Rafaj Technical Editor Teodora Smiljanic Cover Designer InTech Design Team Image Copyright loriklaszlo, 2011. DepositPhotos First published December, 2011 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Steroids – Basic Science, Edited by Hassan Abduljabbar p.
    [Show full text]
  • Inhibition of Estrone Sulfate-Induced Uterine Growth by Potent Nonestrogenic Steroidal Inhibitors of Steroid Sulfatase1
    [CANCER RESEARCH 63, 6442–6446, October 1, 2003] Inhibition of Estrone Sulfate-induced Uterine Growth by Potent Nonestrogenic Steroidal Inhibitors of Steroid Sulfatase1 Liviu C. Ciobanu, Van Luu-The, Ce´line Martel, Fernand Labrie, and Donald Poirier2 Medicinal Chemistry Division, Oncology and Molecular Endocrinology Research Center, Centre Hospitalier Universitaire de Que´bec-Pavillon CHUL, and Universite´ Laval, Que´bec, G1V 4G2, Canada ABSTRACT thetic pathway accounts for the transformation of DHEAS into the estrogenic C19 steroid 5-diol. Thus, inhibition of steroid sulfatase, the The present study describes the biological in vitro and in vivo evaluation enzyme responsible for the conversion of DHEAS to dehydroepi- of 2-methoxy derivatives of estrogenic inhibitors of steroid sulfatase, androsterone and E StoE , may allow reduction of estrogen levels in namely 3-sulfamoyloxy-17␣-p-tert-butylbenzyl(or benzyl)-1,3,5 (10)- 1 1 estratrien-17␤-ols. The addition of the 2-methoxy group conserves the tumors and could represent a promising approach for the treatment of estrogen-sensitive breast cancer. potent inhibitory effect on steroid sulfatase activity (IC50s of 0.024 and 0.040 nM) while removing the estrogenic action. Using an ovariectomized Some of the most efficient steroid sulfatase inhibitors developed were mouse model, we show that the first generation of steroid sulfatase inhib- sulfamate derivatives (10–12). The first reported inhibitor in this series, itors tested, 3-sulfamoyloxy-17␣-p-tert-butylbenzyl(or benzyl)estra-1,3,5 estrone sulfamate (EMATE; Ref. 25, 26) is a very potent irreversible (10)-trien-17␤-ols and estrone-3-O-sulfamate, are estrogenic compounds inhibitor, but it is also an estrogenic compound (27), thus having less than stimulating estrogen-sensitive uterine growth.
    [Show full text]
  • Interactions of Nandrolone and Psychostimulant Drugs on Central Monoaminergic Systems
    Sanna Kailanto Sanna Kailanto Interactions of Nandrolone Sanna Kailanto and Psychostimulant Drugs RESEARCH Interactions of Nandrolone and RESEARCH Psychostimulant Drugs on Central on Central Monoaminergic Monoaminergic Systems Systems Monoaminergic Systems Monoaminergic Central on Drugs Psychostimulant and Nandrolone of Interactions This study had four main aims. First, it aimed to explore the effects of nandrolone decanoate on dopaminergic and serotonergic activities in rat brains. Second, it set out to assess whether nandrolone pre-exposure modulates the acute neurochemical and behavioral effects of psychostimulant drugs in experimental animals. A third aim was to investigate if AAS-pretreatment-induced changes in brain reward circuitry are reversible. Finally, the study was also intended to evaluate the role of androgen receptors in nandrolone’s ability to modulate the dopaminergic and serotonergic effects of stimulants. The results of the study show that AAS pretreatment inhibits the reward- related neurochemical and behavioral effects of amphetamine, MDMA and cocaine in experimental animals. Given that LMA, stereotyped behavior and accumbal outflow of DA and 5-HT are all related to reward, this study suggests that nandrolone, at tested doses, significantly affects the rewarding properties of stimulant drugs. Furthermore, it seems that these effects could be long- lasting and that the ability of nandrolone to modulate reward-related effects of stimulants depends on AR or ER activation. .!7BC5<2"HIFILD! National Institute for Health and Welfare P.O. Box 30 (Mannerheimintie 166) FI-00271 Helsinki, Finland Telephone: +358 20 610 6000 30 ISBN 978-952-245-258-0 www.thl.fi 30 2010 30 Sanna Kailanto Interactions of Nandrolone and Psychostimulant Drugs on Central Monoaminergic Systems Academic disSertAtIoN To be presented with the permission of the Faculty of Biological and Environmental Sciences, University of Helsinki, for public examination in the Arppeanum auditorium, Helsinki University Museum, Snellmaninkatu 3, Helsinki, on April 29nd, at 12 o’clock noon.
    [Show full text]
  • Estradiol Prodrugs (EP) for Efficient Oral Estrogen Treatment And
    Journal of Steroid Biochemistry & Molecular Biology 165 (2017) 305–311 Contents lists available at ScienceDirect Journal of Steroid Biochemistry & Molecular Biology journal homepage: www.elsevier.com/locate/jsbmb Estradiol prodrugs (EP) for efficient oral estrogen treatment and abolished effects on estrogen modulated liver functions a d a a a a e W. Elger , R. Wyrwa , G. Ahmed , F. Meece , H.B. Nair , B. Santhamma , Z. Killeen , a c b a, B. Schneider , R. Meister , H. Schubert , K. Nickisch * a Evestra, Inc., 14805 Omicron Drive, Suite 100, San Antonio, TX 78245, USA b Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany c Beuth University of Applied Science, Luxemburger Str. 10, 13353 Berlin, Germany d Innovent e.V., Prüssingstraße 27B, 07745 Jena, Germany e University of Arizona College of Medicine, 1501 N Campbell Ave, Tucson, AZ 85724, USA A R T I C L E I N F O A B S T R A C T Article history: Received 23 March 2016 Oral compared to parenteral estrogen administration is characterized by reduced systemic but Received in revised form 15 July 2016 prominent hepatic estrogenic effects on lipids, hemostatic factors, GH-/IGF I axis, angiotensinogen. In Accepted 18 July 2016 order to avoid such adverse metabolic effects of oral treatment, estradiol (E2) prodrugs (EP) were Available online 20 July 2016 designed which bypass the liver tissue as inactive molecules. Carbone17-OH sulfonamide [-O2–NH2] substituted esters of E2 (EC508, others) were synthesized and tested for carbonic anhydrase II (CA-II) Keywords: binding. CA II in erythrocytes is thought to oppose extraction of EP from portal vein blood during liver COC (combined oral contraceptives) passage.
    [Show full text]
  • Évaluation Biologique in Vitro D'inhibiteurs De La Stéroïde Sulfatase
    Évaluation biologique in vitro d’inhibiteurs de la stéroïde sulfatase ayant un effet SERM Mémoire Charles Ouellet Maîtrise en physiologie-endocrinologie Maître ès sciences (M.Sc.) Québec, Canada © Charles Ouellet, 2013 Résumé Initialement, les cancers du sein sont majoritairement hormonodépendants, c’est-à-dire qu’ils sont stimulés par les hormones estrogéniques endogènes. Une première approche pour traiter ce type de cancer consiste à utiliser un antiestrogène pour bloquer l’activation du récepteur des estrogènes dans le tissu mammaire. Une seconde approche consiste à inhiber la synthèse des estrogènes par l’utilisation d’inhibiteurs spécifiques pour certaines enzymes clés de la stéroïdogénèse. La stéroïde sulfatase (STS), une enzyme impliquée dans la biosynthèse des estrogènes, constituerait une importante cible thérapeutique. Dans le cadre de ce mémoire, je discuterai d’un nouveau projet de recherche qui consiste à développer des composés à double-action combinant les deux types d’approches nommées précédemment. Nous cherchons à développer une molécule non-stéroïdienne qui serait en mesure d’inhiber la STS mais également de bloquer le récepteur des estrogènes dans le tissu mammaire. Notre composé doit donc posséder un effet SERM (Selective Estrogen Receptor Modulator), c’est-à-dire de jouer le rôle d’un antagoniste dans le tissu mammaire tout en jouant le rôle d’un agoniste dans d’autres tissus (i.e. tissu osseux) où l’action des estrogènes est importante. Dans ce mémoire, j’aborderai rapidement la synthèse chimique des deux générations de composés pour m’attarder davantage sur les tests biologiques in vitro nécessaires à l’évaluation de leur potentiel à double-action.
    [Show full text]
  • New Estrone Oxime Derivatives: Synthesis, Cytotoxic Evaluation and Docking Studies
    molecules Article New Estrone Oxime Derivatives: Synthesis, Cytotoxic Evaluation and Docking Studies Catarina Canário 1 , Mariana Matias 1, Vanessa Brito 1, Adriana O. Santos 1, Amílcar Falcão 2,3 , Samuel Silvestre 1,4,* and Gilberto Alves 1 1 CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; [email protected] (C.C.); [email protected] (M.M.); [email protected] (V.B.); [email protected] (A.O.S.); [email protected] (G.A.) 2 Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; [email protected] 3 CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal 4 CNC–Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal * Correspondence: [email protected] Abstract: The interest in the introduction of the oxime group in molecules aiming to improve their biological effects is increasing. This work aimed to develop new steroidal oximes of the estrane series with potential antitumor interest. For this, several oximes were synthesized by reaction of hydroxylamine with the 17-ketone of estrone derivatives. Then, their cytotoxicity was evaluated in six cell lines. An estrogenicity assay, a cell cycle distribution analysis and a fluorescence microscopy study with Hoechst 3358 staining were performed with the most promising compound. In addition, molecular docking studies against estrogen receptor α, steroid sulfatase, 17β-hydroxysteroid dehy- drogenase type 1 and β-tubulin were also accomplished. The 2-nitroestrone oxime showed higher Citation: Canário, C.; Matias, M.; Brito, V.; Santos, A.O.; Falcão, A.; cytotoxicity than the parent compound on MCF-7 cancer cells.
    [Show full text]
  • Cross-Reactivity of Steroid Hormone Immunoassays
    Krasowski et al. BMC Clinical Pathology 2014, 14:33 http://www.biomedcentral.com/1472-6890/14/33 RESEARCH ARTICLE Open Access Cross-reactivity of steroid hormone immunoassays: clinical significance and two-dimensional molecular similarity prediction Matthew D Krasowski1*, Denny Drees1, Cory S Morris1, Jon Maakestad1, John L Blau1,2 and Sean Ekins3 Abstract Background: Immunoassays are widely used in clinical laboratories for measurement of plasma/serum concentrations of steroid hormones such as cortisol and testosterone. Immunoassays can be performed on a variety of standard clinical chemistry analyzers, thus allowing even small clinical laboratories to do analysis on-site. One limitation of steroid hormone immunoassays is interference caused by compounds with structural similarity to the target steroid of the assay. Interfering molecules include structurally related endogenous compounds and their metabolites as well as drugs such as anabolic steroids and synthetic glucocorticoids. Methods: Cross-reactivity of a structurally diverse set of compounds were determined for the Roche Diagnostics Elecsys assays for cortisol, dehydroepiandrosterone (DHEA) sulfate, estradiol, progesterone, and testosterone. These data were compared and contrasted to package insert data and published cross-reactivity studies for other marketed steroid hormone immunoassays. Cross-reactivity was computationally predicted using the technique of two-dimensional molecular similarity. Results: The Roche Elecsys Cortisol and Testosterone II assays showed a wider range
    [Show full text]
  • Potter BMC 2012 20 8 2506 Ii.Pdf
    Citation for published version: Woo, LWL, Leblond, B, Purohit, A & Potter, BVL 2012, 'Synthesis and evaluation of analogues of estrone-3-O- sulfamate as potent steroid sulfatase inhibitors', Bioorganic and Medicinal Chemistry, vol. 20, no. 8, pp. 2506- 2519. https://doi.org/10.1016/j.bmc.2012.03.007 DOI: 10.1016/j.bmc.2012.03.007 Publication date: 2012 Document Version Peer reviewed version Link to publication NOTICE: this is the author’s version of a work that was accepted for publication in Bioorganic & Medicinal Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Bioorganic & Medicinal Chemistry, vol 20, issue 8, 2012, DOI 10.1016/j.bmc.2012.03.007 University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Synthesis and evaluation of analogues of estrone-3-O-sulfamate as potent steroid sulfatase inhibitors L.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,053,077 B1 Elger Et Al
    US007053077B1 (12) United States Patent (10) Patent No.: US 7,053,077 B1 Elger et al. (45) Date of Patent: May 30, 2006 (54) USE OF BIOGENIC ESTROGEN (56) References Cited SULFAMATES FOR HORMONE REPLACEMENT THERAPY U.S. PATENT DOCUMENTS 5,314,694. A * 5/1994 Gale et al. (75) Inventors: Walter Elger, Berlin (DE); Pekka 5,633,242 A 5, 1997 Oettel Lähteenmäki, Turku (FI); Matti FOREIGN PATENT DOCUMENTS Lehtinen, Pispanristi (FI): Gudrun Reddersen, Jena (DE); Holger WO 95 O1161 1, 1995 Zimmermann, Ilmenau-Roda (DE); WO WO-96,05216- * 2/1996 Michael Oettel, Jena (DE); Sigfrid OTHER PUBLICATIONS Schwarz, Jena (DE) Elger, W. et al.: "Sulfamates of various estrogens are (73) Assignee: Schering AG, Berlin (DE) prodrugs with increased systemic and reduces hepatic estrogenicity at oral application.” Journal of Steroid (*) Notice: Subject to any disclaimer, the term of this Biochemisty and Molecular Biology, Vol. 55, No. 3-4 pp. patent is extended or adjusted under 35 395-403. U.S.C. 154(b) by 0 days. Elger, Wet al. “Novel oestrogen sulfamates: a new approach to oral hormone therapy” vol. 7, No. 4, 1998 pp. 575-658. (21) Appl. No.: 09/744,574 * cited by examiner (22) PCT Filed: May 13, 1999 Primary Examiner Sreeni Padmanabhan Assistant Examiner Abigail M. Cotton (86). PCT No.: PCT/DE99/O1496 (74) Attorney, Agent, or Firm Millen, White, Zelano & S 371 (c)(1), Branigan, P.C. (2), (4) Date: Apr. 5, 2001 (57) ABSTRACT (87) PCT Pub. No.: WO00/06175 The invention relates to the use of biogenic estrogen Sulfa mates for the oral discontinuous application for hormone PCT Pub.
    [Show full text]
  • Thesis Rests with Its Author
    University of Bath PHD Novel inhibitors of steroidogenesis for the treatment of hormone-dependent breast cancer Fischer, Delphine S. Award date: 2004 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 NOVEL INHIBITORS OF STEROIDOGENESIS FOR THE TREATMENT OF HORMONE-DEPENDENT BREAST CANCER submitted by Delphine S. Fischer for the degree of PhD of the University of Bath 2004 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
    [Show full text]