Our Galaxy the Milky Way

Total Page:16

File Type:pdf, Size:1020Kb

Our Galaxy the Milky Way Northeastern Illinois University Our Galaxy The Milky Way Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Spring 2018 c 2012-2018G. Anderson Universe: Past, Present & Future – slide 1 / 91 Northeastern Illinois Overview University The Milky Way ISM Nebula Galactic Recycling Evolution The Galactic Center Review c 2012-2018G. Anderson Universe: Past, Present & Future – slide 2 / 91 M31: The Andromeda Galaxy NGC 4565: The Needle Galaxy SA(s)b Northeastern Illinois University Andromeda NGC 4565 The Milky Way The Night Sky Etymology Moments in History Q: Galactic Fog Milky Way M13 Q: Disk The Milky Way Thickness Q: Disk Diameter Q: Galactic Halo Milky Way Orbits Galactic Merry-Go-Round Fig 14.02 Q: Bobbing Stars Galactic Mass from Orbital Velocity Q: Orbital Speed Q: Sun’s Orbit Milky Way Milky Way Spiral Arms Spiral Arm – Theory c 2012-2018G. Anderson Universe: Past, Present & Future slide 5 / 91 c Matipon Tangmatitham Northeastern Illinois Etymology University • The English word galaxy is derived from the greek γαλαξιας (galaxias) meaning milky. • The English Milky Way is derived from from Latin Via Lactea from the Greek γαλαξιας κυκλoς´ aka Milky Circle. c 2012-2018G. Anderson Universe: Past, Present & Future – slide 7 / 91 Northeastern Illinois Moments in History University • Galileo Galilei first resolved the band of light known as the Milky Way into individual stars with his telescope in 1610, demonstrating the hypothesis of Anaxagoras and Democritus (5th century BCE). • Galactocentrism: 1785 William Herschel: Sun at center of flattened disk. (His view through the disk was obstructed by the “fog” of interstellar medium) • 1918 Harlow Shapley: globular clusters centered on a point 50,000 ly 27,000 ly from us. • Heber Curtis (1917) & Edwin Hubble (1920) demonstrated that spiral “nebulae” were actually distant galaxies beyond the Milky Way. c 2012-2018G. Anderson Universe: Past, Present & Future – slide 8 / 91 Northeastern Illinois Q: Galactic Fog University How does the interstellar medium affect our view of most of the galaxy? A) It prevents us from seeing most of the galactic disk with visible and ultraviolet light. B) It absorbs all wavelengths of light. C) It produces so much visible light that it blocks our view of anything beyond it. D) It has no effect on visible-light observations, but prevents us from studying the galactic center with radio waves or X-rays. c 2012-2018G. Anderson Universe: Past, Present & Future – slide 9 / 91 Northeastern Illinois Q: Galactic Fog University How does the interstellar medium affect our view of most of the galaxy? A) It prevents us from seeing most of the galactic disk with visible and ultraviolet light. B) It absorbs all wavelengths of light. C) It produces so much visible light that it blocks our view of anything beyond it. D) It has no effect on visible-light observations, but prevents us from studying the galactic center with radio waves or X-rays. c 2012-2018G. Anderson Universe: Past, Present & Future – slide 9 / 91 Theb Milky Way b b b b b b b b b b b b b b b b b b b b b b b b b b b b Halo b b b b b b b b b ∼ 150 Globular Clusters b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Bulgeb b b b b b b Sgrb A* b b b b b b b b b b b b b b b b b Sun 27,000 ly from galacticb center Disk b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 12 200 billion stars, 100, 000 ly diameter, 1, 000 ly thick, M & 10 M⊙ Globular Cluster: M13 (NGC 6205) Northeastern Illinois Q: Disk Thickness University What is the thickness of the Milky Way’s disk? A) 100 light years B) 1,000 light years C) 10,000 light years D) 100,000 light years E) 1,000,000 light years c 2012-2018G. Anderson Universe: Past, Present & Future – slide 12 / 91 Northeastern Illinois Q: Disk Thickness University What is the thickness of the Milky Way’s disk? A) 100 light years B) 1,000 light years C) 10,000 light years D) 100,000 light years E) 1,000,000 light years c 2012-2018G. Anderson Universe: Past, Present & Future – slide 12 / 91 Northeastern Illinois Q: Disk Diameter University What is the diameter of the Milky Way’s disk? A) 100 light years B) 1,000 light years C) 10,000 light years D) 100,000 light years E) 1,000,000 light years c 2012-2018G. Anderson Universe: Past, Present & Future – slide 13 / 91 Northeastern Illinois Q: Disk Diameter University What is the diameter of the Milky Way’s disk? A) 100 light years B) 1,000 light years C) 10,000 light years D) 100,000 light years E) 1,000,000 light years c 2012-2018G. Anderson Universe: Past, Present & Future – slide 13 / 91 Northeastern Illinois Q: Galactic Halo University What kinds of objects lie in the halo of our galaxy? A) open clusters B) hot, young blue giants C) globular clusters D) gas and dust E) all of the above c 2012-2018G. Anderson Universe: Past, Present & Future – slide 14 / 91 Northeastern Illinois Q: Galactic Halo University What kinds of objects lie in the halo of our galaxy? A) open clusters B) hot, young blue giants C) globular clusters D) gas and dust E) all of the above c 2012-2018G. Anderson Universe: Past, Present & Future – slide 14 / 91 Dark Matter Halo b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b bbb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b bb b b b b b b b b b b b b b b b b b b b Northeastern Illinois Orbits University b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b bb bbb b b b b b b b b b b bb b b b b b b b b b b bb b b b b b b b b bb b b b bb b b b b b bb b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b bb bb b b b b b b b b b b b b b b b b bb b b b b b b b b b b bb b b b b b b b b b b b b bb b b b b bb b b b b b b b b b b b b b bb bb b bb bb b b b b b b b b b b b b b b b b b bb b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b bb b b b bb b b b b b b b b b b b bb b b b b b b bb bb b b bb b b b b b b b b bb b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b bb b b b b b b b b b b b b b b b bb b bbbbb bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b bb b b b b
Recommended publications
  • Rigel & the Witch Nebula
    Vol. 20, No. 11 Two-Time Winner of the Astronomical League’s Mabel Sterns Award ☼ 2006 & 2009 November 2012 In This Issue Rigel & the Witch Nebula CCAS Fall 2012 Events .......................... 2 Nicholas’s Humor Corner ....................... 2 October 2012 Meeting Minutes .............. 2 New iPad App from NASA .................... 3 November 2012 Member Speaker .......... 3 The Sky Over Chester County: November 2012 ................................... 4 November 2012 Observing Highlights ........................................... 5 NASA’s Space Place............................... 6 CCAS Directions: Brandywine Valley Association .............................. 7 Through the Eyepiece: The Open Clusters in Auriga: M36, M37 and M38...................................... 8 Membership Renewals .......................... 10 New Member Welcome ........................ 10 CCAS Directions: WCU Map ......................................... 10 Treasurer’s Report ................................ 10 CCAS Information Directory ...................................... 11-12 IC 2118, the Witch Head Nebula spans about 50 light-years and is composed of interstellar Membership Renewals Due dust grains reflecting Rigel's starlight. Photo courtesy of Rogelio Bernal Andreo 11/2012 Buczynski Hepler Important November 2012 Dates Holenstein O’Hara Taylor 6th • Last Quarter Moon, 7:36 p.m. Zibinski 13th • New Moon, 5:08 p.m. 12/2012 Bogusch 17th • Leonid Meteor Shower Peaks Franchi O'Leary 20th • First Quarter Moon, 9:32 a.m. Phipps Ramasamy 28th• Full Moon, 9:46 a.m. 01/2013 Golub Labroli Linskens Loeliger Prasad Rich Smith November 2012 • Chester County Astronomical Society www.ccas.us Observations • 1 Autumn 2012 Minutes from the October 9, 2012 CCAS Monthly Meeting Society Events by Ann Miller, CCAS Secretary November 2012 15 members in attendance were welcomed by our president Roger Taylor. 2nd • West Chester University Planetarium Don Knabb our observing chair gave us our monthly sky tour on Stellari- Show: “Dethroning Earth,” in the Schmucker um.
    [Show full text]
  • JRASC-2007-04-Hr.Pdf
    Publications and Products of April / avril 2007 Volume/volume 101 Number/numéro 2 [723] The Royal Astronomical Society of Canada Observer’s Calendar — 2007 The award-winning RASC Observer's Calendar is your annual guide Created by the Royal Astronomical Society of Canada and richly illustrated by photographs from leading amateur astronomers, the calendar pages are packed with detailed information including major lunar and planetary conjunctions, The Journal of the Royal Astronomical Society of Canada Le Journal de la Société royale d’astronomie du Canada meteor showers, eclipses, lunar phases, and daily Moonrise and Moonset times. Canadian and U.S. holidays are highlighted. Perfect for home, office, or observatory. Individual Order Prices: $16.95 Cdn/ $13.95 US RASC members receive a $3.00 discount Shipping and handling not included. The Beginner’s Observing Guide Extensively revised and now in its fifth edition, The Beginner’s Observing Guide is for a variety of observers, from the beginner with no experience to the intermediate who would appreciate the clear, helpful guidance here available on an expanded variety of topics: constellations, bright stars, the motions of the heavens, lunar features, the aurora, and the zodiacal light. New sections include: lunar and planetary data through 2010, variable-star observing, telescope information, beginning astrophotography, a non-technical glossary of astronomical terms, and directions for building a properly scaled model of the solar system. Written by astronomy author and educator, Leo Enright; 200 pages, 6 colour star maps, 16 photographs, otabinding. Price: $19.95 plus shipping & handling. Skyways: Astronomy Handbook for Teachers Teaching Astronomy? Skyways Makes it Easy! Written by a Canadian for Canadian teachers and astronomy educators, Skyways is Canadian curriculum-specific; pre-tested by Canadian teachers; hands-on; interactive; geared for upper elementary, middle school, and junior-high grades; fun and easy to use; cost-effective.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • 197 6Apjs. . .30. .451H the Astrophysical Journal Supplement Series, 30:451-490, 1976 April © 1976. the American Astronomical S
    .451H The Astrophysical Journal Supplement Series, 30:451-490, 1976 April .30. © 1976. The American Astronomical Society. All rights reserved. Printed in U.S.A. 6ApJS. 197 EVOLVED STARS IN OPEN CLUSTERS Gretchen L. H. Harris* David Dunlap Observatory, Richmond Hill, Ontario Received 1974 September 16; revised 1975 June 18 ABSTRACT Radial-velocity observations and MK classifications have been used to study evolved stars in 25 open clusters. Published data on stars in 72 additional clusters are rediscussed and com- bined with the observations friade in this investigation to yield positions in the Hertzsprung- Russell diagram for 559 evolved stars in 97 clusters. Ages for the parent clusters were estimated from the main-sequence turnoff points, earliest spectral types, and bluest stars in the clusters themselves. The evolved stars were sorted into six age groups ranging from 4 x 106 yr to 4 x 108 yr, and the composite H-R diagram for each age group was then used to study the evolutionary tracks for stars of various masses. The observational results were found to be in reasonably good agreement with recent theoretical computations. The composite color-magnitude diagrams were found to be strikingly different from those of the rich open clusters in the Magellanic Clouds. At a given age the red giants in the Small Magellanic Cloud and the Large Magellanic Cloud clusters are brighter and bluer than their galactic counterparts. It is suggested that these effects may be accounted for by differences in metal abundance. Subject headings: clusters: open — galaxies: Magellanic Clouds — radial velocities — stars : evolution — stars : late-type — stars : spectral classification 1.
    [Show full text]
  • Sky & Telescope
    Eclipse from the See Sirius B: The Nearest Spot the Other EDGE OF SPACE p. 66 WHITE DWARF p. 30 BLUE PLANETS p. 50 THE ESSENTIAL GUIDE TO ASTRONOMY What Put the Bang in the Big Bang p. 22 Telescope Alignment Made Easy p. 64 Explore the Nearby Milky Way p. 32 How to Draw the Moon p. 54 OCTOBER 2013 Cosmic Gold Rush Racing to fi nd exploding stars p. 16 Visit SkyandTelescope.com Download Our Free SkyWeek App FC Oct2013_J.indd 1 8/2/13 2:47 PM “I can’t say when I’ve ever enjoyed owning anything more than my Tele Vue products.” — R.C, TX Tele Vue-76 Why Are Tele Vue Products So Good? Because We Aim to Please! For over 30-years we’ve created eyepieces and telescopes focusing on a singular target; deliver a cus- tomer experience “...even better than you imagined.” Eyepieces with wider, sharper fields of view so you see more at any power, Rich-field refractors with APO performance so you can enjoy Andromeda as well as Jupiter in all their splendor. Tele Vue products complement each other to pro- vide an observing experience as exquisite in performance as it is enjoyable and effortless. And how do we score with our valued customers? Judging by superlatives like: “in- credible, truly amazing, awesome, fantastic, beautiful, work of art, exceeded expectations by a mile, best quality available, WOW, outstanding, uncom- NP101 f/5.4 APO refractor promised, perfect, gorgeous” etc., BULLSEYE! See these superlatives in with 110° Ethos-SX eye- piece shown on their original warranty card context at TeleVue.com/comments.
    [Show full text]
  • Proto-Planetary Nebula Observing Guide
    Proto-Planetary Nebula Observing Guide www.reinervogel.net RA Dec CRL 618 Westbrook Nebula 04h 42m 53.6s +36° 06' 53" PK 166-6 1 HD 44179 Red Rectangle 06h 19m 58.2s -10° 38' 14" V777 Mon OH 231.8+4.2 Rotten Egg N. 07h 42m 16.8s -14° 42' 52" Calabash N. IRAS 09371+1212 Frosty Leo 09h 39m 53.6s +11° 58' 54" CW Leonis Peanut Nebula 09h 47m 57.4s +13° 16' 44" Carbon Star with dust shell M 2-9 Butterfly Nebula 17h 05m 38.1s -10° 08' 33" PK 10+18 2 IRAS 17150-3224 Cotton Candy Nebula 17h 18m 20.0s -32° 27' 20" Hen 3-1475 Garden-sprinkler Nebula 17h 45m 14. 2s -17° 56' 47" IRAS 17423-1755 IRAS 17441-2411 Silkworm Nebula 17h 47m 13.5s -24° 12' 51" IRAS 18059-3211 Gomez' Hamburger 18h 09m 13.3s -32° 10' 48" MWC 922 Red Square Nebula 18h 21m 15s -13° 01' 27" IRAS 19024+0044 19h 05m 02.1s +00° 48' 50.9" M 1-92 Footprint Nebula 19h 36m 18.9s +29° 32' 50" Minkowski's Footprint IRAS 20068+4051 20h 08m 38.5s +41° 00' 37" CRL 2688 Egg Nebula 21h 02m 18.8s +36° 41' 38" PK 80-6 1 IRAS 22036+5306 22h 05m 30.3s +53° 21' 32.8" IRAS 23166+1655 23h 19m 12.6s +17° 11' 33.1" Southern Objects ESO 172-7 Boomerang Nebula 12h 44m 45.4s -54° 31' 11" Centaurus bipolar nebula PN G340.3-03.2 Water Lily Nebula 17h 03m 10.1s -47° 00' 27" PK 340-03 1 IRAS 17163-3907 Fried Egg Nebula 17h 19m 49.3s -39° 10' 37.9" Finder charts measure 20° (with 5° circle) and 5° (with 1° circle) and were made with Cartes du Ciel by Patrick Chevalley (http://www.ap-i.net/skychart) Images are DSS Images (blue plates, POSS II or SERCJ) and measure 30’ by 30’ (http://archive.stsci.edu/cgi- bin/dss_plate_finder) and STScI Images (Hubble Space Telescope) Downloaded from www.reinervogel.net version 12/2012 DSS images copyright notice: The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S.
    [Show full text]
  • Open Clusters
    Open Clusters Open clusters (also known as galactic clusters) are of tremendous importance to the science of astronomy, if not to astrophysics and cosmology generally. Star clusters serve as the "laboratories" of astronomy, with stars now all at nearly the same distance and all created at essentially the same time. Each cluster thus is a running experiment, where we can observe the effects of composition, age, and environment. We are hobbled by seeing only a snapshot in time of each cluster, but taken collectively we can understand their evolution, and that of their included stars. These clusters are also important tracers of the Milky Way and other parent galaxies. They help us to understand their current structure and derive theories of the creation and evolution of galaxies. Just as importantly, starting from just the Hyades and the Pleiades, and then going to more distance clusters, open clusters serve to define the distance scale of the Milky Way, and from there all other galaxies and the entire universe. However, there is far more to the study of star clusters than that. Anyone who has looked at a cluster through a telescope or binoculars has realized that these are objects of immense beauty and symmetry. Whether a cluster like the Pleiades seen with delicate beauty with the unaided eye or in a small telescope or binoculars, or a cluster like NGC 7789 whose thousands of stars are seen with overpowering wonder in a large telescope, open clusters can only bring awe and amazement to the viewer. These sights are available to all.
    [Show full text]
  • Summer Sp Target Information
    SUMMER SP TARGET INFORMATION ALGIEBA (g LEO) BASIC INFORMATION OBJECT TYPE: Binary Star CONSTELLATION: Leo BEST VIEW: Late April DISCOVERY: Known to Ancients DISTANCE: 131 ly BINARY SEPARATION: 4” (170 AU) ORBITAL PERIOD: ~500 yr. APPARENT MAGNITUDE: 1.98 DISTANCE DETERMINATION After measuring the shift in position of the star relative to background stars as Earth orbits the Sun, simple trigonometry can yield the distance. The Hipparcos satellite was launched in 1989 to create a comprehensive catalog of trigonometric parallax measurements from space. The distance quoted above is from this catalog. NOTABLE FEATURES/FACTS • William Herschel discovered Algieba’s binary nature in 1782. • Both components of Algieba have evolved beyond the main sequence. They began their lives as B-type stars, and they will end their lives as white dwarfs. • In 2010, a team including former UT astronomer Arte Hatzes discovered a planet orbiting Algieba A. The planet is nine times the mass of Jupiter and orbits the star in 1.2 years at an average distance of 1.2 AU. SUMMER SP TARGET INFORMATION MESSIER 97 (THE OWL NEBULA) BASIC INFORMATION OBJECT TYPE: Planetary Nebula CONSTELLATION: Ursa Major BEST VIEW: Early May DISCOVERY: Pierre Mechain, 1781 DISTANCE: ~2000 ly DIAMETER: 1.8 ly APPARENT MAGNITUDE: +9.9 APPARENT DIMENSIONS: 3.3’ DISTANCE DETERMINATION The distances to most planetary nebulae are very poorly known. A variety of methods can be used, providing mixed results. In many cases, astronomers resort to statistical methods to estimate the distances to planetary nebulae. Although we don’t have accurate distances for most of the planetary nebulae in the Milky Way, we do know exactly how far away the Large Magellanic Cloud is.
    [Show full text]
  • Modern Astronomy: Lives of the Stars
    Modern Astronomy: Lives of the Stars Presented by Dr Helen Johnston School of Physics Spring 2016 The University of Sydney Page There is a course web site, at http://www.physics.usyd.edu.au/~helenj/LivesoftheStars.html where I will put • PDF copies of the lectures as I give them • lecture recordings • copies of animations • links to useful sites Please let me know of any problems! The University of Sydney Page 2 This course is a deeper look at how stars work. 1. Introduction: A tour of the stars 2. Atoms and quantum mechanics 3. What makes a Star? 4. The Sun – a typical Star 5. Star Birth and Protostars 6. Stellar Evolution 7. Supernovae 8. Stellar Graveyards 9. Binaries 10. Late Breaking News The University of Sydney Page 3 There will be an evening of star viewing in the Blue Mountains, run by A/Prof John O’Byrne on Saturday 29 October Details of where to go and how to get there are in a separate handout. John has also offered to show some of the night-sky using our telescope on the roof of this building, during one of the lectures in November (date to be determined). If the weather is good, I will do a short lecture that evening, and we’ll go to the roof around 7:30 pm. The University of Sydney Page 4 Lecture 1: Stars: a guided tour Prologue: Where we are and The nature of science you are here When we look at the night sky, we see a vista dominated by stars.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Navigating the Mid September Night Sky
    Navigating the mid September Night Sky For observers in the middle The stars plotted represent those which northern latitudes, this chart North can be seen from areas suffering is suitable for early Sept. from moderate light pollution. In larger cities, less than at 10:00 p.m. and late Sept. Capella at 9:00 p.m. 100 stars are visible, while from dark, rural areas well over ten times Perseus that amount Double are found. Cluster Polaris, Pointer Stars1 to the North Star the North Star D Andromeda Cepheus Cassiopeia 2 Mars M31 Milky Way + E Moon C 3 Sep 5 M13 D Deneb Arcturus East Vega The The Zenith Northern Great 4 The Crown Square The+ Keystone West Summer Pegasus Cygnus Triangle 5b Coathanger Cluster Great Rift Moon Altair D Sep 20 Aquila 5a B D Numerous star clusters Saturn and nebulae Jupiter M22 Moon M8 Antares Relative sizes Sep 25 Moon Fomalhaut The and distances Sep 24 Teapot in the sky can be deceiving. For The Ecliptic represents Sagittarius instance, 360 "full the plane of the solar moons" can be placed system. The sun, the moon, side by side, extending from and the major planets all lie on or horizon to horizon. near this imaginary line in the sky. South Relative size of the full moon. Navigating the mid September night sky: Simply start with what you know or with what you can easily find. 1 Extend a line north from the two stars at the tip of the Big Dipper's bowl. It passes by Polaris, the North Star.
    [Show full text]
  • Explorethe Impact That Killed the Dinosaursp. 26
    EXPLORE the impact that killed the dinosaurs p. 26 DECEMBER 2016 The world’s best-selling astronomy magazine Understanding cannibal star systems p. 20 How moon dust will put a ring around Mars p. 46 Discover colorful star clusters p. 32 www.Astronomy.com AND MORE BONUS Vol. 44 Astronomy on Tap becomes a hit p. 58 ONLINE • CONTENT Issue 12 Meet the master of stellar vistas p. 52 CODE p. 3 iOptron’s new mount tested p. 62 ÛiÃÌÊÊÞÕÀÊiÞiÌ°°° ...and share the dividends for a lifetime. Tele Vue APO refractors earn a high yield of happy owners. 35 years of hand-building scopes with care and dedication is why we see comments like: “Thanks to all at Tele Vue for such wonderful products.” The care that goes into building every Tele Vue telescope is evident from the first time you focus an image. What goes unseen are the hours of work that led to that moment. Hand-fitted rack & pinion focusers must withstand 10lb. deflection testing along their travel, yet operate buttery-smooth, without gear lash or image TV-60 shift. Optics are fitted, spaced, and aligned using proprietary techniques to form breathtaking low-power views, spectacular high-power planetary performance, or stunning wide-field images. When you purchase a TV-76 Tele Vue telescope you’re not so much buying a telescope as acquiring a lifetime observing companion. Comments from recent warranty cards UÊ­/6Èä®ÊºÊV>ÌÊÌ >ÊÞÕÊiÕ} ÊvÀÊ«ÀÛ`}ÊiÊÜÌ ÊÃÕV ʵÕ>ÌÞtÊ/ ÃÊÃV«iÊÜÊ}ÛiÊiÊ>Êlifetime TV-85 of observing happiness.” —M.E.,Canada U­/6ÇȮʺ½ÛiÊÜ>Ìi`Ê>Ê/6ÊÃV«iÊvÀÊ{äÊÞi>ÀðÊ>ÞtÊ`]ʽÊÛiÀÜ ii`tÊLove, Love, Love Ìtt»p °°]" U­/6nx®ÊºPerfect form, perfect function, perfectÊÌiiÃV«i]Ê>`ÊÊ``½ÌÊ >ÛiÊÌÊÜ>ÌÊxÊÞi>ÀÃÊÌÊ}iÌÊÌt»p,° °]/8 U­/6nx®Êº/ >ÊÞÕÊvÀÊ>}ÊÃÕV Êbeautiful equipment available.
    [Show full text]