Glossary of Terms

Total Page:16

File Type:pdf, Size:1020Kb

Glossary of Terms Glossary of Terms Hydrate science is rapidly evolving. Both new terms and different terminology for the same gas hydrate related objects and mechanisms are commonly found in the literature and in discussions. Commercial terms may differ somewhat from scientific usage.for descriptions of the same objects or processes. Geophysical and gas hydrate terminology is current usage, mining terms are common usage and taken largely from AGI (1997) and Jackson (1997). Also see the on-line Schumberger glossary <http://www.glossary. oilfield.slb.com/> for more detailed terms relating to hydrocarbon exploration and exploitation. American usage (meter, kilometer) is used. AAPG: American Association of Petroleum Geologists. AGC: Automatic gain control: A system to automatically control the increase in amplitude of an electrical signal from the original input to the amplified output. AGC is commonly used in seismic processing to improve visibility of late-arriving events in which attenuation or wavefront divergence has caused amplitude decay. API: American Petroleum Institute. Aquifer: An underground formation of permeable rock or sediment that can hold water in pore space. Aquifers can be limited in aerial extent or very large, underlying thousands of square kilometers of the earth's surface. With relation to hydrate and related gas deposits, those marine sediments which can either host hydrate and related gas or can provide the hydrate forming gas by flow or diffusion through the pores. A water-bearing layer of rock or sediment capable of yielding water flow. (Confined) Aquifer: An aquifer whose upper, and perhaps lower, boundary is defined by a layer of natural material that does not transmit water readily. Often a gas or petroleum reservoir. (Unconfined) Aquifer: An aquifer which is not bounded by an impermeable layer in at least one, and possibly two directions. See Chapter 7. The terms open or communicating aquifer may also be used. Atm, atm: Pressure measured in atmospheres (1 bar or 14.7 lb/in2) Attribute: A measurable property of seismic data, such as amplitude, dip, frequency, phase and polarity. Attribute analysis includes assessment of various reservoir parameters, including hydrocarbon indicators, using techniques such as amplitude variation with offset (AVO) analysis. Authigenic: Rock or sediment constituents and minerals that have formed place and have not been transported form elsewhere. Applies specifically to minerals that have crystallized locally at the spot where they are 297 298 Glossary of Terms now found. The term often refers to minerals formed during diagenesis following deposition of the original sediment. AVO: Amplitude Variation with Offset is a seismic attribute for the variation in seismic reflection amplitude with change in distance between shotpoint and receiver. It indicates differences in lithology and fluid content in rocks above and below a reflector. Barrel: One petroleum barrel = 159 liters or 42 U.S. Gallons. Bcf: Billion cubic feet (of gas). BGR: Base of Gas Reflector. This is sometimes a strong positive impedance contrast at the base of a gas-rich zone that may be trapped below hydrate. Where a free gas zone occupies pore space, there may be a sharp contact with subjacent water flooded sediments. BHT: Bottom Hole Temperature. Biogenic methane: Methane formed by microbial processes. With respect to oceanic hydrate, the source is deep biosphere acting upon buried organic material within the marine sediments. Blanking: Blanking refers to a decreased reflection strength on reflection seismic records that display true reflection amplitude. It is often located in the lower third of the GHSZ. Blanking is attributed to: hydrate filling of pore spaces replacing water. This reduces the acoustic impedance contrasts found in the original sedimentary bedding. Some apparent blanking may have causes that are unrelated to gas hydrate accumulations. Bm3 Billion cubic meters BGHS: Base of Gas Hydrate Stability. Also: BOH, Base of hydrate. This refers to the actual base of naturally occurring hydrate stability. Normally, this occurs more or less uniformly at some depth in the sediments depending on water depth, seafloor temperature, geothermal gradient and for any particular HFG or mixture of HFGs (which have different stability fields). In abnormal circumstances, for instance where there is a local high heatflow (see 3.2.1; 4.7.2; 4.8), the BGHS may be pushed up to the seafloor. In this instance, cooling of the HFG-enriched vent water by seafloor water has the potential to produce highly HFG-saturated water that will cause rapid growth of seafloor hydrate near the vent. The BGHS may be difficult to identify when there is no BSR, especially where marine sediment bedding is parallel with the seafloor. BOP: Blow out preventer. Usually installed at the wellhead and part of a stack of BOPs. These are optimized to provide maximum pressure control in the event of a well control incident. BSR: Bottom-Simulating Reflector. Seismic reflection from a negative impedance contrast at the contact between higher Vp hydrate-rich sediment zone and sediments containing gas in pores below which have much slower acoustic Glossary of Terms 299 velocities. The BSR is commonly taken as is a remotely sensed reflection that marks the base of the hydrate stability zone and is used as a first-order indicator of the presence of gas hydrate. BSR push-up: Occurs where the BGHSZ is pushed up toward the seafloor by, 1. An anomalous subjacent heatflow, such as over a salt plug, 2. In the vicinity of a usually near vertical fluid-gas flow passage through the HSZ where lateral heat flow results in sub-hydrate stability conditions extending laterally from the passage. Often associated with seafloor vents and seafloor hydrate. Push rather than pull is used because the effect is caused by warmer fluids moving up. btu or (BTU): British thermal unit, A measure of heat energy required to raise the temperature of one pound of water by one degree Fahrenheit. 1 btu = 1055J, 2.973x1-4 kWh. Compound hydrate: A species of gas hydrate with more than one type of HFG occupying guest sites within the same crystal lattice. For example, natural gas hydrate with methane and ethane present. Condensate: Light hydrocarbons that condense when cooled to surface temperature. Also known as natural gas liquids. Connate water: Water that has been entrapped during sedimentation along with the sediments. During compaction of marine sediments, connate water may be expelled into porous strata or secondary porosity from which it may migrate upward into the sea. Darcy: A measurement of the ability of a fluid to pass through a porous material. The permeability that will allow a fluid of 1 centipoise (cP) viscosity to flow at a 1 cm/s velocity for a pressure drop of 1 atm/cm. The millidarcy (md) is the common unit for hydrocarbon reservoirs. Depressurization: The gas hydrate gasification technique whereby pressure in the immediate vicinity of hydrate is lowered, causing ambient conditions of hydrate instability. Diagenesis: The sum of all chemical and physical changes in minerals during and after their initial accumulation. Diagenesis involves addition and removal of material, transformation by dissolution and recrystallization or replacement, or both, and by phase changes. Authigenic refers to minerals formed in place. It is also applied to minerals that are clearly the result of new crystal growth on older crystals. Diagenesis embraces those processes such as compaction, cementation, authigenesis, replacement, crystallization, hydration, etc., that occur under conditions of pressure up to 1 kb and temperature in a range that encompasses gas hydrate stability conditions on Earth. Diffusional pressure: The tendency for a material to be transported through a given medium. A strong tendency, or high diffusional pressure, leads 300 Glossary of Terms to faster diffusion. A weak tendency, or low diffusional pressure, leads to slower diffusion. Dissociation. The breakdown of the hydrate crystal structure or 'melting' of hydrate into its water and gas components owing to rising temperature and/or diminishing pressure (2.6). Dissociation feedback: Gas hydrate contains within it a self- moderating or feedback system which act as a rate-controlling mechanism during dissociation. Whatever the cause of dissociation, heat is absorbed. This cools the system and may cause dissociation to slow or cease. Run-away dissociation feedback may take place when hydrate is brought to near- atmospheric pressures which usually will initiate dissociation; the system may absorb enough heat under this condition to freeze the local water. When a sample becomes coated with ice, the rate of dissociation slows (see Self- preservation). Dissociation point: The temperature, at a constant pressure, or the pressure, at a common temperature, at which a compound or mineral breaks up reversibly to form two or more other substances. For instance, CaCO3 becomes CaO plus CO2 and gas hydrate becomes water and gas. Dissolution: The process of dissolving into a homogeneous solution, as when a gas disperses into its component molecules in a fluid or other gas or where a hydrate structure becomes unstable owing to the diffusion of gas molecules from the hydrate into surrounding gas or fluid. Maximum concentrations of dissolved solids (TDS) are governed by the solubility for each species. Dry gas: Gas with no condensate, generally almost pure thermogenic methane. Effective porosity: That portion of the porosity that is available for storing recoverable gas or fluid. Endothermic: Gas hydrate dissociation is endothermic. It absorbs heat when it dissociates about equal to the heat produced during crystallization. Exothermic: Gas hydrate formation is exothermic. It produces heat when it forms. Fraccing (Frac): Industrial term for the artificial fracturing of rock in an oil or gas reservoir for the purpose of increasing permeability. Fracturing can be caused in a number of ways in the vicinity of a drilled hole but hydraulic fracturing is most common. In this method, high pressure fluid is forced into the reservoir materials so that cracks propagate, often along bedding planes.
Recommended publications
  • Seismic Reflection Methods in Offshore Groundwater Research
    geosciences Review Seismic Reflection Methods in Offshore Groundwater Research Claudia Bertoni 1,*, Johanna Lofi 2, Aaron Micallef 3,4 and Henning Moe 5 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK 2 Université de Montpellier, CNRS, Université des Antilles, Place E. Bataillon, 34095 Montpellier, France; johanna.lofi@gm.univ-montp2.fr 3 Helmholtz Centre for Ocean Research, GEOMAR, 24148 Kiel, Germany; [email protected] 4 Marine Geology & Seafloor Surveying, Department of Geosciences, University of Malta, MSD 2080 Msida, Malta 5 CDM Smith Ireland Ltd., D02 WK10 Dublin, Ireland; [email protected] * Correspondence: [email protected] Received: 8 April 2020; Accepted: 26 July 2020; Published: 5 August 2020 Abstract: There is growing evidence that passive margin sediments in offshore settings host large volumes of fresh and brackish water of meteoric origin in submarine sub-surface reservoirs. Marine geophysical methods, in particular seismic reflection data, can help characterize offshore hydrogeological systems and yet the existing global database of industrial basin wide surveys remains untapped in this context. In this paper we highlight the importance of these data in groundwater exploration, by reviewing existing studies that apply physical stratigraphy and morpho-structural interpretation techniques to provide important information on—reservoir (aquifer) properties and architecture, permeability barriers, paleo-continental environments, sea-level changes and shift of coastal facies through time and conduits for water flow. We then evaluate the scientific and applied relevance of such methodology within a holistic workflow for offshore groundwater research. Keywords: submarine groundwater; continental margins; offshore water resources; seismic reflection 1.
    [Show full text]
  • Technical Barriers and R&D Opportunities for Offshore, Sub-Seabed Geologic Storage of Carbon Dioxide
    Technical Barriers and R&D Opportunities for Offshore, Sub-Seabed Geologic Storage of Carbon Dioxide Report Prepared for the Carbon Sequestration Leadership Forum (CSLF) Technical Group By the Offshore Storage Technologies Task Force September 14, 2015 1 ACKNOWLEDGEMENTS This report was prepared by participants in the Offshore Storage Task Force: Mark Ackiewicz (United States, Chair); Katherine Romanak, Susan Hovorka, Ramon Trevino, Rebecca Smyth, Tip Meckel (all from the University of Texas at Austin, United States); Chris Consoli (Global CCS Institute, Australia); Di Zhou (South China Sea Institute of Oceanology, Chinese Academy of Sciences, China); Tim Dixon, James Craig (IEA Greenhouse Gas R&D Programme); Ryozo Tanaka, Ziqui Xue, Jun Kita (all from RITE, Japan); Henk Pagnier, Maurice Hanegraaf, Philippe Steeghs, Filip Neele, Jens Wollenweber (all from TNO, Netherlands); Philip Ringrose, Gelein Koeijer, Anne-Kari Furre, Frode Uriansrud (all from Statoil, Norway); Mona Molnvik, Sigurd Lovseth (both from SINTEF, Norway); Rolf Pedersen (University of Bergen, Norway); Pål Helge Nøkleby (Aker Solutions, Norway) Brian Allison (DECC, United Kingdom), Jonathan Pearce, Michelle, Bentham (both from the British Geological Survey, United Kingdom), Jeremy Blackford (Plymouth Marine Laboratory, United Kingdom). Each individual and their respective country has provided the necessary resources to enable the development of this work. The task force members would like to thank John Huston of Leonardo Technologies, Inc. (United States), for coordinating and managing the information contained in the report. i EXECUTIVE SUMMARY This report provides an overview of the current technology status, technical barriers, and research and development (R&D) opportunities associated with offshore, sub-seabed geologic storage of carbon dioxide (CO2).
    [Show full text]
  • Technical Report 08-05 Skb-Tr-98-05
    SE9900011 TECHNICAL REPORT 08-05 SKB-TR-98-05 The Very Deep Hole Concept - Geoscientific appraisal of conditions at great depth C Juhlin1, T Wallroth2, J Smellie3, T Eliasson4, C Ljunggren5, B Leijon3, J Beswick6 1 Christopher Juhlin Consulting 2 Bergab Consulting Geologists 3 ConterraAB 4 Geological Survey of Sweden 5 Vattenfall Hydropower AB 6 EDECO Petroleum Services Ltd June 1998 30- 07 SVENSK KARNBRANSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO P.O.BOX 5864 S-102 40 STOCKHOLM SWEDEN PHONE +46 8 459 84 00 FAX+46 8 661 57 19 THE VERY DEEP HOLE CONCEPT • GEOSCIENTIFIC APPRAISAL OF CONDITIONS AT GREAT DEPTH CJuhlin1, T Wai froth2, J Smeflie3, TEIiasson4, C Ljunggren5, B Leijon3, J Beswick6 1 Christopher Juhlin Consulting 2 Bergab Consulting Geologists 3 Conterra AB 4 Geological Survey of Sweden 5 Vattenfall Hydropower AB 6 EDECO Petroleum Services Ltd. June 1998 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports froml 977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32), 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64), 1992 (TR 92-46), 1993 (TR 93-34), 1994 (TR 94-33), 1995 (TR 95-37) and 1996 (TR 96-25) is available through SKB.
    [Show full text]
  • Geo V18i2 with Covers in Place.Indd
    VOL. 18, NO. 2 – 2021 GEOSCIENCE & TECHNOLOGY EXPLAINED GEO EDUCATION Geoscientists for the Energy Transition INDUSTRY ISSUES Gas Flaring EXPLORATION Alaska Anxiously Awaits its Fate GEOPHYSICS Nimble Nodes ENERGY TRANSITION Increasing Energy While Decreasing Carbon geoexpro.com GEOExPro May 2021 1 Previous issues: www.geoexpro.com Contents Vol. 18 No. 2 This issue of GEO ExPro focuses on North GEOSCIENCE & TECHNOLOGY EXPLAINED America; New Technologies and the Future for Geoscientists. 30 West Texas! Land of longhorn cattle, 5 Editorial mesquite, and fiercely independent ranchers. It also happens to be the 6 Regional Update: The Third Growth location of an out-of-the-way desert gem, Big Bend National Park. Gary Prost Phase of the Haynesville Play takes us on a road trip and describes the 8 Licencing Update: PETRONAS geology of this beautiful area. Launches Malaysia Bid Round, 2021 48 10 A Minute to Read The effects of contourite systems on deep water 14 Cover Story: Gas Flaring sediments can be subtle or even cryptic. However, in recent years 20 Seismic Foldout: The Greater Orphan some significant discoveries and Basin the availability of high-quality regional scale seismic data, 26 Energy Transition: Critical Minerals has drawn attention to the from Petroleum Fields frequent presence of contourite dominated bedforms. 30 GEO Tourism: Big Bend Country 34 Energy Transition Update: Increasing Energy While Decreasing Carbon 36 Hot Spot: North America 52 Seismic node systems developed in the past 38 GEO Education: Geoscientists for the decade were not sufficiently compact to efficiently Energy Transition acquire dense seismic in any environment. To answer this challenge, BP, in collaboration 42 Seismic Foldout: Ultra-Long Offsets with Rosneft and Schlumberger, developed a new nimble node system, now being developed Signal a Bright Future for OBN commercially by STRYDE.
    [Show full text]
  • Petroleum Geology of Northwest Europe: Proceedings of the 4Th Conference Volume 1 Petroleum Geology of Northwest Europe: Proceedings of the 4Th Conference
    Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference Volume 1 Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference held at the Barbican Centre, London 29 March-1 April 1992 Volume 1 edited by J. R. Parker Shell UK Exploration and Production, London with I. D. Bartholomew Oryx UK Energy Company, Uxbridge W. G. Cordey Shell UK Exploration and Production, London R. E. Dunay Mobil North Sea Limited, London O. Eldholm University of Oslo A. J. Fleet BP Research, Sunbury A. J. Fraser BP Exploration, Glasgow K. W. Glennie Consultant, Ballater J. H. Martin Imperial College, London M. L. B. Miller Petroleum Science and Technology Institute, Edinburgh C. D. Oakman Reservoir Research Limited, Glasgow A. M. Spencer Statoil, Stavanger M. A. Stephenson Enterprise Oil, London B. A. Vining Esso Exploration and Production UK Limited, Leatherhead T. J. Wheatley Total Oil Marine pic, Aberdeen - 1993 Published by The Geological Society London THE GEOLOGICAL SOCIETY The Society was founded in 1807 as The Geological Society of London and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of 'investigating the mineral structure of the Earth'. The Society is Britain's national learned society for geology with a membership of 7500 (1992). It has countrywide coverage and approximately 1000 members reside overseas. The Society is responsible for all aspects of the geological sciences including professional matters. The Society has its own publishing house which produces the Society's international journals, books and maps, and which acts as the European distributor for publications of the American Association of Petroleum Geologists and the Geological Society of America.
    [Show full text]
  • Integration of Seismic and Petrophysics to Characterize Reservoirs in ‘‘ALA’’ Oil Field, Niger Delta
    Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 421720, 15 pages http://dx.doi.org/10.1155/2013/421720 Research Article Integration of Seismic and Petrophysics to Characterize Reservoirs in ‘‘ALA’’ Oil Field, Niger Delta P. A. Alao, S. O. Olabode, and S. A. Opeloye Department of Applied Geology, Federal University of Technology Akure, P.M.B 704 Akure, Ondo State, Nigeria Correspondence should be addressed to P. A. Alao; [email protected] Received 9 April 2013; Accepted 25 June 2013 Academic Editors: M. Faure and G.-L. Yuan Copyright © 2013 P. A. Alao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential) reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on “ALA” field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6 m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of −2,453 to −3,950 m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • The Study of Fossils: the “Glossary of Geology” Defines a Fossil As “Any
    The Study of Fossils: The “Glossary of Geology” defines a fossil fossils were originally studied by Thomas Jefferson and Benjamin as “any remains, trace, or imprint of a plant or animal that has been Franklin. preserved in the Earth’s crust since some past geologic or prehis- Collecting in Kentucky: The laws governing fossil collecting in toric time.” The study of fossils is called paleontology and is closely Kentucky are the same as in most states: you need permission from associated with geology. Paleontologists use fossils to reconstruct the landowner before you can enter and collect. Native American what the Earth was like in the distant past, to show how life has artifacts are protected by the Kentucky Antiquities Law. Although changed through time, and to correlate rock strata from one area to the Kentucky Geological Survey (KGS) does not publish lists of another to aid in searching for fossil fuels (oil, natural gas, and coal) fossil collecting localities, clubs and organizations can help you get and minerals. started (try the Kentucky Paleontological Society in care of Dan Fossil-Bearing Rocks: Fossils are most commonly found in sedi- Phelps, 606-277-3148). You can find your own collection sites, using mentary rocks. Almost all of Kentucky’s rocks at the surface are geologic quadrangle maps (GQ’s). These maps are available at the sedimentary, so Kentucky is an excellent place to collect fossils. KGS and illustrate the age and types of rocks at the surface of the The types of fossils found across Kentucky vary with the age of the Earth in 7.5-minute areas (approximately 7 x 9 miles).
    [Show full text]
  • Approach Optimizes Well Geosteering
    SEPTEMBER 2018 The “Better Business” Publication Serving the Exploration / Drilling / Production Industry Approach Optimizes Well Geosteering By Christopher Viens When a change in total gamma is not based 3-D geosteering solution rather and Mark Tomlinson associated with an up or down movement than conventional 2-D geosteering soft- through stratigraphy, it indicates faulting, ware. By integrating multiple well and HOUSTON–Geosteering in horizontal a depositional anomaly, heterogeneity, or seismic surface inputs, this approach wells involves correlating logging data bedding that is not laterally continuous gives the geosteering geologist the infor- to a type log from a nearby offset well to or stratified. Because the fundamental mation to confidently resolve abrupt bed characterize the zone of interest. Corre- basis of geosteering is correlating to dip changes, identify faults, identify areas lating against a type log requires the bed- marker beds that have lateral continuity, of lateral continuity/discontinuity, identify ding thickness and gamma character of in situations where lateral continuity is stratified/unstratified zones and understand the target well to be close to that of the absent, only a low level of interpretation formation-related directional drilling tra- type log, which can be offset by miles in confidence can be achieved using tradi- jectory phenomena, etc. some cases. If not, the resulting geosteering tional correlation methods. interpretation will have unreasonable bed To maximize the benefits of azimuthal Laterally Continuous Bedding dips that do not accurately reflect the gamma imaging, a protocol has been de- In areas with laterally continuous target lithology being drilled, leaving the veloped to identify and handle challenging strata, the gamma character in the type geosteering geologist running multiple geosteering situations using a model- well typically will be present at the simultaneous interpretations in the hope that one will start to make sense as new data come in during drilling.
    [Show full text]
  • Terminology of Geological Time: Establishment of a Community Standard
    Terminology of geological time: Establishment of a community standard Marie-Pierre Aubry1, John A. Van Couvering2, Nicholas Christie-Blick3, Ed Landing4, Brian R. Pratt5, Donald E. Owen6 and Ismael Ferrusquía-Villafranca7 1Department of Earth and Planetary Sciences, Rutgers University, Piscataway NJ 08854, USA; email: [email protected] 2Micropaleontology Press, New York, NY 10001, USA email: [email protected] 3Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades NY 10964, USA email: [email protected] 4New York State Museum, Madison Avenue, Albany NY 12230, USA email: [email protected] 5Department of Geological Sciences, University of Saskatchewan, Saskatoon SK7N 5E2, Canada; email: [email protected] 6Department of Earth and Space Sciences, Lamar University, Beaumont TX 77710 USA email: [email protected] 7Universidad Nacional Autónomo de México, Instituto de Geologia, México DF email: [email protected] ABSTRACT: It has been recommended that geological time be described in a single set of terms and according to metric or SI (“Système International d’Unités”) standards, to ensure “worldwide unification of measurement”. While any effort to improve communication in sci- entific research and writing is to be encouraged, we are also concerned that fundamental differences between date and duration, in the way that our profession expresses geological time, would be lost in such an oversimplified terminology. In addition, no precise value for ‘year’ in the SI base unit of second has been accepted by the international bodies. Under any circumstances, however, it remains the fact that geologi- cal dates – as points in time – are not relevant to the SI.
    [Show full text]
  • Oregon Geologic Digital Compilation Rules for Lithology Merge Information Entry
    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OREGON GEOLOGIC DIGITAL COMPILATION RULES FOR LITHOLOGY MERGE INFORMATION ENTRY G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2006 Revisions: Feburary 2, 2005 January 1, 2006 NOTICE The Oregon Department of Geology and Mineral Industries is publishing this paper because the infor- mation furthers the mission of the Department. To facilitate timely distribution of the information, this report is published as received from the authors and has not been edited to our usual standards. Oregon Department of Geology and Mineral Industries Oregon Geologic Digital Compilation Published in conformance with ORS 516.030 For copies of this publication or other information about Oregon’s geology and natural resources, contact: Nature of the Northwest Information Center 800 NE Oregon Street #5 Portland, Oregon 97232 (971) 673-1555 http://www.naturenw.org Oregon Department of Geology and Mineral Industries - Oregon Geologic Digital Compilation i RULES FOR LITHOLOGY MERGE INFORMATION ENTRY The lithology merge unit contains 5 parts, separated by periods: Major characteristic.Lithology.Layering.Crystals/Grains.Engineering Lithology Merge Unit label (Lith_Mrg_U field in GIS polygon file): major_characteristic.LITHOLOGY.Layering.Crystals/Grains.Engineering major characteristic - lower case, places the unit into a general category .LITHOLOGY - in upper case, generally the compositional/common chemical lithologic name(s)
    [Show full text]
  • Introduction to Petroleum Geology and Geophysics
    GEO4210 Introduction to Petroleum Geology and Geophysics Geophysical Methods in Hydrocarbon Exploration About this part of the course • Purpose: to give an overview of the basic geophysical methods used in hydrocarbon exploration • Working Plan: – Lecture: Principles + Intro to Exercise – Practical: Seismic Interpretation excercise Lecture Contents • Geophysical Methods • Theory / Principles • Extensional Sedimentary Basins and its Seismic Signature • Introduction to the Exercise Geophysical methods • Passive: Method using the natural fields of the Earth, e.g. gravity and magnetic • Active: Method that requires the input of artificially generated energy, e.g. seismic reflection • The objective of geophysics is to locate or detect the presence of subsurface structures or bodies and determine their size, shape, depth, and physical properties (density, velocity, porosity…) + fluid content Geophysical methods Method Measured parameter “Operative” physical property Gravity Spatial variations in the Density strength of the gravitational field of the Earth Magnetic Spatial variations in the Magnetic susceptibility strength of the and remanence geomagnetic field Electromagnetic Response to Electric (SeaBed electromagnetic radiation conductivity/resistivity Logging) and inductance Seismic Travel times of Seismic velocity (and reflected/refracted density) seismic waves Further reading • Keary, P. & Brooks, M. (1991) An Introduction to Geophysical Exploration. Blackwell Scientific Publications. • Mussett, A.E. & Khan, M. (2000) Looking into the
    [Show full text]