Nucleation from Α- Pinene Ozonolysis Superviso
Total Page:16
File Type:pdf, Size:1020Kb
M.Sc. Bartłomiej Witkowski Investigation of the secondary organic aerosol (SOA) nucleation from α- pinene ozonolysis Supervisor: Dr hab. Tomasz Gierczak 1 Dedication This thesis is dedicated to my loving wife, Anna, who has always put up with me for reasons not always obvious. Acknowledgements I would like to thank my supervisor, Dr hab. Tomasz Gierczak for support, guidance and providing wonderful opportunities for professional development. I would like to thank Dr hab. Magdalena Biesaga for support, guidance and helping me to develop the skills needed to complete this thesis. I would like to thank prof. dr hab. Jan Niedzielski for final proof-reading and language corrections. I would like to thank Dr Ranajit K. Talukdar for guidance and helping me to develop the skills needed to complete this thesis. I would like to thank Dr Ranajit K. Talukdar, Dr James B. Burholder and prof. A.R Ravishankara for their hospitality during my international training in NOAA, Boulder, CO. I would like to thank the Structural Research Laboratory (SRL) at the Department of Chemistry of University of Warsaw for making LC/MS measurements possible. SRL has been established with financial support from European Regional Development Found in the Sectoral Operational Programme “Improvement of the Competitiveness of Enterprises, years 2004 –2005” project no: WPK_1/ 1.4.3./1/2004/72/72/165/2005/U. This work was also financed by 501/68-BW- 172101 project. This work was supported by the European Science Foundation 2007/03-LCNANOP project co-operated with the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund. Fragments of the already published material were used under the license agreement number 3147151193702 between Bartlomiej M Witkowski and John Wiley and Sons, granting the author permission to use the whole published material for the purpose of writing this thesis. 2 Project operated within the Foundation for Polish Science MPD Programme MPD/2008/1 "International Scholarship Program for Graduate Studies in Faculty of Chemistry University of Warsaw" co-financed by the EU European Regional Development Fund. Economical support from the PhD grant number N~N204~116539 is gratefully acknowledged. 3 Abstract Composition of the newly formed secondary organic aerosol (SOA) generated by ozonolysis of the cyclohexene (model precursor) and α-pinene was studied using liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI/MSn). SOA was generated in the flow-tube reactor under standard conditions: 20°C and 1 atm. and the reaction time less than 1 min. In an attempt to resolve the current ambiguities, regarding the structure of the α-pinene SOA nucleating agents, analytical methods for analysis of α-acyloxyhydroperoxy aldehydes and high molecular weight (HMW) compounds containing carboxylic group were developed. Both groups of those compounds are currently considered as the potential nucleating agents. However, no analytical evidence proving the presence of α-acyloxyhydroperoxy aldehydes in the SOA samples have been presented. Also, very limited experimental data, indicating that the nucleating agents are acidic oligomers is currently available. The α-acyloxyhydroperoxy aldehydes were analyzed with LC-ESI/MSn for the first time. Analysis of the tandem mass spectra of the α- acyloxyhydroperoxy aldehydes ammonia adducts was used to propose the general fragmentation mechanism, supported by the analysis of the isotopically labeled analogs. The proposed mechanism was used to predict the mass spectrum of the α-acyloxyhydroperoxy aldehydes that could not be synthesized. After analyzing the SOA samples, generated in the flow-tube reactor, it was concluded that α-acyloxyhydroperoxy aldehydes were not formed in significant quantities, and are unlikely to participate in the aerosol nucleation. Direct analytical evidence was found, arguing against the gas-phase nucleation and proving that acidic oligomers are formed in the early stages of SOA formation. Also, based on the acquired experimental data, it was concluded that the reactive uptake of carbonyl compounds is an important growth mechanism for the freshly formed SOA. For the first time, isotopically labeled analog of cyclohexene (cyclohexene-d10) was used to propose the structures for the up-to-date unknown oligomers. The acquired experimental data point out the need for revision of the current α-pinene SOA nucleation mechanism. 4 Abstrakt Skład świeżo powstałego wtórnego aerozolu organicznego (secondary organic aerosol, SOA) został przeanalizowany za pomocą chromatografii cieczowej połączonej z tandemową spektrometrią mas z jonizacją przez elektrorozpylanie (LC-ESI/MSn). SOA został wytworzony w reaktorze przepływowym w standardowych warunkach temperatury i ciśnienia: 20°C i 1 atm. a czas reakcji wynosił < 1 min. Aby rozstrzygnąć obecne niepewności dotyczące struktury zalążków nukleacji SOA powstałego w wyniku ozonolizy α-pinenu, zostały opracowane metody analizy α- acyloksyhydroperoxy aldehydów oraz oligomerów zawierających grupę karboksylową. Obydwa typy związków są obecnie rozważane, jako potencjalne zalążki nukleacji. Jednak, do tej pory nie zostały przedstawione żadne bezpośrednie dowody potwierdzające obecność α- acyloksyhydroperoxy aldehydów w próbkach SOA. Ponadto, tylko niewielka ilość danych wskazuje, iż zalążkami nukleacji są kwasowe oligomery. α-Acyloksyhydroperoxy aldehydy po raz pierwszy zostały przeanalizowane za pomocą LC-ESI/MSn. W wyniku analizy widm fragmentacyjnych został zaproponowany ogólny mechanizm fragmentacji adduktów amonowych α-acyloksyhydroperoxy aldehydów; mechanizm ten został potwierdzony za pomocą analizy izotopowo znaczonych analogów. Zaproponowany mechanizm fragmentacji został wykorzystany żeby przewidzieć widmo masowe α-acyloksyhydroperoxy aldehydów, które nie mogły być zsyntezowane. W próbkach SOA wytworzonych w reaktorze przepływowym, α-acyloxyhydroperoxy aldehydy nie zostały wykryte w znaczących ilościach i prawdopodobnie nie brały udziału w procesie nukleacji aerozolu. Otrzymane wyniki wskazują, iż nukleacja prawdopodobnie nie zachodzi w fazie gazowej. Jednocześnie, zostało udowodnione, że kwasowe oligomery są wytwarzane już na wczesnych etapach formowania SOA. Stwierdzono także, iż absorpcja związków karbonylowych w wyniku formowania się oligomerów jest ważnym mechanizmem wzrostu cząstek aerozolu na czesnych etapach jego powstawania. Po raz pierwszy, izotopowo znaczony prekursor (cykloheksen-d10) został wykorzystany do zaproponowania struktur do tej pory nieznanych oligomerów. Zidentyfikowane oligomery najprawdopodobniej powstały w wyniku reakcji związków karbonylowych. Wyniki przedstawione w tej pracy wskazują, iż obecnie zaproponowany mechanizm nukleacji powinien zostać zaktualizowany. 5 Table of contents 1. Introduction…………………………………………………………………………………………..……..………..……..9 1.1. Atmospheric aerosols – basic definitions historical outline…………………………….....….………9 1.1.1. Size distribution, density and concentration…………………………………………………..…………....13 1.2. Global overview of aerosols properties…………………………………………………………..………….…15 1.2.1. Sources……………………………………………………………………………………………………………..……….….15 1.2.1.1. Primary aerosols…………………………………………………………………………………....…….…..16 1.2.1.2. Secondary aerosols…………………………………………………………………………..……...……….16 1.2.2. Composition ……………………………………………………………………………………………………...…..…….17 1.2.3. Deposition mechanisms and lifetimes…………………………………………………………………………...18 1.2.3.1. Wet deposition………………………………………………………………………………………...………..18 1.2.3.2. Dry deposition…………………………………………………………………………………………...……….19 1.2.4. Aerosols climate influence……………………………………………………………………………………………..19 1.2.4.1. Direct effects……………………………………………………………………………………………...………20 1.2.4.2. Indirect and semi-direct effects..…………………………………………………………..…...……..20 1.2.5. Health effects of atmospheric aerosols..…………………………………………………………..…………..21 1.2.5.1. Epidemiological studies.……………………………………………………..………………….…….……21 1.2.5.2. Toxicological studies…………………………………………………………………………………..………23 1.3. Secondary organic aerosols (SOA’s) ……………………………………………………………………..……….24 1.3.1. Emission of biogenic secondary organic aerosols (BSOAs) precursors .……………….….…….26 1.3.2. Ozone in the atmosphere..…………………………………………………………………………………..….…….28 1.3.3. Alkene ozonolsis……………………………………………………………………………………………….….……….32 1.3.4. Liquid phase ozonolysis of the alkenes..……………………………………………………………..….………38 1.4. SOA formation from the α-pinene ozone-initiated oxidation……………………..…..….….…….41 1.4.1. α-pinene ozone-initiated oxidation mechanism…………………………………………….…...………….42 1.4.2. Laboratory studies of the α-pinene SOA formation………………………………………..…...………...46 1.4.2.1. Smog chamber experiments……………………………………………………………..….…..…………46 1.4.2.2. Flow – tube reactors…………………………………………………………………………..……..…….….50 1.4.2.3. OH radicals scavengers………………………………………………………………………...………..……54 1.4.3. SOA composition analysis………………………………………………………………………………..………..…...56 1.4.3.1. Low – molecular weight (LMW) compounds ……………………………….……..…….……..…57 1.4.3.2. Oligomers and other high-molecular weight (HMW) compounds…….…..….…….……59 1.4.3.3. Identification of the HMW α-pinene SOA components…………………………………….….65 1.4.3.3.1. Mass spectra interpretation and elemental formula assignment…………….…..…..…65 1.4.3.3.2. The use of standard synthesis for the identification of the HMW α-pinene SOA components………………………………………………………………………………………………………………………….……..69 1.4.3.4. Formation mechanisms of the high molecular weight (HMW) compounds formed during the SOA formation