Ep 3041814 B1

Total Page:16

File Type:pdf, Size:1020Kb

Ep 3041814 B1 (19) TZZ¥Z___T (11) EP 3 041 814 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 29/62 (2006.01) 08.11.2017 Bulletin 2017/45 (86) International application number: (21) Application number: 14790356.1 PCT/IT2014/000227 (22) Date of filing: 01.09.2014 (87) International publication number: WO 2015/033365 (12.03.2015 Gazette 2015/10) (54) PROCESS FOR THE PRODUCTION OF DICHLOROHYDRINS VERFAHREN ZUR HERSTELLUNG VON DICHLORHYDRINEN PROCÉDÉ DE PRODUCTION DE DICHLORHYDRINES (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SANTACESARIA, Elio GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO I-20139 Milano (IT) PL PT RO RS SE SI SK SM TR • TESSER, Riccardo I-81100 Caserta (IT) (30) Priority: 03.09.2013 IT RM20130488 • VITIELLO, Rosa I-84018 Scafati (SA) (IT) (43) Date of publication of application: • DI SERIO, Martino 13.07.2016 Bulletin 2016/28 I-74013 Cava dei Tirreni (SA) (IT) (73) Proprietors: (74) Representative: Sarpi, Maurizio et al • Eurochem Engineering S.R.L. Studio Ferrario S.r.l. 20139 Milano (IT) Via Collina, 36 • Conser S.P.A. 00187 Roma (IT) 00144 Rome (IT) (56) References cited: WO-A1-2006/020234 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 3 041 814 B1 Printed by Jouve, 75001 PARIS (FR) EP 3 041 814 B1 Description Technical field of the invention 5 [0001] This invention is related to the chlorohydrins production process starting from glycerol as feedstock and hydro- chloric acid in the presence of an opportune catalyst. In particular, the invention deals with a new process for producing dichlorohydrins with a high selectivity in the production of α,γ-dichlorohydrin from glycerol and hydrochloric acid in the presence of a new class of catalysts constituted by acyl chlorides. 10 State of art [0002] Glycerol can be used as raw material for the production of di-chlorohydrins, in particularα ,γ-dichlorohydrin, that is an intermediate for producing epichlorohydrin, useful in the production of epoxy resins [1-7]. The overall reaction scheme in the production of α,γ-dichlorohydrin starting from glycerol and hydrochloric acid is the 15 following one: 20 25 [0003] Actually, the reaction proceeds through two consecutive steps giving place in the first step to monochlorohydrins: mainly α-monochloroydrin with small amounts of β-monochloroydrin. Then a second step of chlorination occurs giving place to the desired productα ,γ-dichlorohydrin together with small amounts ofα ,β-dichlorohydrin. A more detailed 30 reaction scheme is reported below: 35 40 45 50 55 2 EP 3 041 814 B1 5 10 The traditional, very old processes, based on the use of glycerol as raw material proposed the use of aqueous hydrochloric acid and acetic acid as catalyst. The reaction was performed in the temperature range of 80-100°C [8-11]. Some patents describe processes in which an organic solvent, inert to the reaction and immiscibile with water but a good solvent for α,γ-dichlorohydrin, was added. In this case. the boiling temperature of the solvent was the reaction temperature obviously changing with the chosen solvent but never higher than 110°C [12]. 15 Some other patents describe the reaction followed by complicated operations of neutralization, extraction and distillation for recovering α,γ-dichlorohydrin [13,14]. All these processes have some important drawbacks, as: - the loss of catalyst during the reaction considering the low boiling point of acetic acid (117°C), 20 - the slowering of the reaction caused by the accumulation of water in the reaction mixture occurring either when aqueous hydrochloric acid is added as reagent or when water is formed as a consequence of the reaction. - the difficulty of separating the desired product α,γ-dichlorohydrin from the reaction mixture at the end of the reaction. These drawbacks together with the high cost of glycerol hindered in the past a further development of these processes. 25 At the present time, the most practiced process for producing di-chlorohydrins start use propene as raw material and gives place to a mixture of di-chlorohydrins containing 70 % ofα ,β- dichlorohydrin and 30 % α,γ-dichlorohydrin. Also this process has some drawbacks. As a matter of fact, the high content α,β-dichlorohydrin is a problem, because, the dehydrochlorination of α,β- dichlorohydrin to epichlorohydrin is much slower than the one of α,γ-dichlorohydrin. This has a negative impact on both the size of the industrial reactors and on the yields [5,6]. 30 Therefore, the reaction using glycerol instead of propene as raw material would be potentially more convenient provided that glycerol is available at low cost. At this purpose, it is useful to remember that the production of biodiesel gives place to 10% b.w. of glycerol as by-product. As a consequence, the glycerol availability increases and the cost decreases. Moreover, considering that the cost of glycerol is strongly affected by the purification it must be pointed out that hydro- chlorination can be made also by using unrefined glycerol. 35 [0004] Some patents have recently been published claiming the production of chlorohydrins from glycerol using an- hydrous gaseous hydrochloric acid. All these patents suggest the use of carboxylic acids as catalysts promoting the reaction and the difference between the mentioned patents is related to the type of carboxylic acid used and/or for the adopted operative conditions. One of the advantages of producing chlorohydrins from glycerol and gaseous hydrochloric acid in the presence of carboxylic acids as catalysts with respect to the route via propene is the high selectivity to α,γ- 40 dichlorohydrin that is normally obtained. This means the possibility to reduce the volume of the dehydrochlorination reactors for obtaining epichlorohydrin and for the same volume an increase of productivity. One of the aspects much considered in the different published patents is the adoption of carboxylic acids, as catalyst, less volatile than acetic acid having a boiling point (117°C) near to the reaction temperature. In the patent proposed by Solvay [15], for example, the use of adipic acid is proposed. In the patent published by Eurochem Engineering [16] the 45 use of the following carboxylic acids is proposed: propionic acid, malonic acid, levulinic acid, citric acid, succinic acid and is suggested the possibilità of recovering by stripping α,γ-dichlorohydrin. In the patent published by DOW Global Technologies [17] an exhaustive very long list of carboxylic acids as possible catalysts is reported but in particular the advantage of operating under pressure is stressed being the reaction rate and yields strongly affected by the partial pressure of HCl [18,19]. In the patent by CONSER SpA [20] it has been suggested the opportunità to operate by using 50 two different catalysts in sequence, adding malic acid at low pressure (1-2 bars) initially, adding then succinic acid at higher pressure (8-10 bars). The performances of the carboxylic acid as catalysts have been intensively studied [18,21,22] and a rough correlation has been found between the pKa of the acid (must be comprised in the range 4-5) and the catalytic activity. For example, the sequence acetic acid, mono-, di- and tri-chloroacetic shows a decreasing activity, because, the acid strength of the 55 mentioned acids increases with the content of chlorine [22]. Some carboxylic acids resulted selective in producing monochlorohydrins [21-23]. A reaction mechanism has been suggested to explain the observed kinetic behaviour [23]. In the frame of the studies performed with the objective to find the optimal catlayst for promoting the glycerol hydrochlo- rination, surprisingly we have discovered a new class of very active and selective catalysts never proposed in the past 3 EP 3 041 814 B1 constituted by acyl chlorides. Summary of the invention 5 [0005] The object of this invention is the process for the production of chlorohydrins starting from glycerol and gaseous hydrochloric acid using acyl chloride as catalysts for promoting the reaction. The catalysts of this invention have the following general formula RCOC1 and the following structure: 10 15 20 Where R is an alkyl chain with from 2 to 10 carbon atoms having a structure linear, branched or cyclic, eventually containing one or more R’ groups, if more equal or different. R’ groups are chosen between: linear alifatic groups, 25 branched or cyclic with C1-C10. carbon atoms or aromatic (C1-C10), another or more than one acylic group. By comparing the behavior of the acyl chlorides with the corresponding carboxylic acids it is possible to observe, in the same operative conditions, much greater reaction rates and final yields in α,γ-dichlorohydrin. By using acyl chloride the reaction time is strongly reduced as it will be seen in the examples reported later. This kinetic advantage becomes more and more evident by increasing the partial pressure of HCl. At last, it has been observed that inorganic salts, in particular 30 inorganic chloride like sodium or potassium chloride have a further positive effect on the activity of the acyl chloride. This is very important for industrial purpose, because, allows the use of the crude glycerol coming from the biodiesel plants without any expensive purification step. It is known, in fact, that in biodiesel production NaOH or KOH are used as catalysts and at the end of the reaction the catalyst remains dissolved in the polar phase containing a mixture of methanol and glycerol.
Recommended publications
  • HSU-THESIS-2019.Pdf
    EFFECTS OF PRODUCT REMOVAL USING ION-EXCHANGE RESIN AND SODIUM HYDROXIDE PRETREATMENT IN MIXED-CULTURE FERMENTATION A Thesis by SHEN-CHUN HSU Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Mark T. Holtzapple Committee Members, Ahmad K. Hilaly Zivko Nikolov Head of Department, M. Nazmul Karim May 2019 Major Subject: Chemical Engineering Copyright 2019 Shen-Chun Hsu ABSTRACT In mixed-culture fermentations of lignocellulosic biomass, periodical product removal has proven to reduce product inhibition and thereby increase biomass digestion. Previously, ion-exchange resin (Amberlite IRA-67) was employed in countercurrent fermentation, and different amounts of resin loadings (10–40 g wet resin per 1.38 L total liquid volume) were studied. Using the pre-established culture (office paper and oven-dried chicken manure), this research used higher resin loadings (50, 60, and 80 g wet resin per 1.34 L total liquid volume). The 0.3-L resin column was sustained by CO2 (gas flow rate: 1.5 L/min). Compared to 30 g resin loading, when higher loadings were introduced, biomass conversion dropped by 0.05–0.09 g NAVSdigested/g NAVSfeed. Furthermore, the yield plateaued at resin loadings greater than 40 g. Overall, the optimal resin loading for both biomass conversion and acid yield was 30–40 resin loading per 1.34 L total liquid volume, which corresponded to 21.74–29.20 g wet resin/Lliq. As indicators of digestibility, cellulase (Ctec3) and hemicellulose (Htec3) were used to saccharify pretreated corn stover.
    [Show full text]
  • Naming Carboxylic Acids Worksheet
    1 / 4 Naming Carboxylic Acids Worksheet Learn to recognize the carboxylic acid, ester, and related functional groups. •. Learn the IUPAC system for naming carboxylic acids and esters.. Esters are named on the basis of the alcohol and the carboxylic acid from which they are formed. The naming system is a little complex , but once.. ORGANIC CHEMISTRY 3540. CARBOXYLIC ACIDS. (AND DERIVATIVES). NOMENCLATURE. PHYSICAL PROPERTIES. ACIDITY. CARBOXYLIC ACIDS RCOOH OR RCO2H.. Organic Chemistry Worksheet – Organic Functional Group Nomenclature . ... Quiz ppt has been included on alcohols and carboxylic acids; the answers to the .... Give the name of the compound shown below. This page may take several seconds to load fully. Questions Remaining. Topic Index | Previous | Next Quiz .... This organic chemistry video tutorial shows you how to name carboxylic acids including IUPAC ... names of aldehydes, ketones and carboxylic acids;. • write the structures of the compounds containing functional groups namely carbonyl and carboxyl groups;.. 2017. 3. 26. — naming carboxylic acids worksheet. Scanpan Haptiq Vs Ctx, 0000017565 00000 n Draw the following alcohols heptan-2-ol.. A worksheet is included on the CD-ROM. ... Hence the names of the alcohols and carboxylic acids are as shown in Tables 10.4 and 10.6 (pages 265 and 270).. 2021. 5. 11. — Naming carboxylates. Salts of carboxylic acids are named by writing the name of the cation followed by the name of the acid with the –ic acid .... What do we call the reverse reaction to give back alcohol and carboxylic acid which is used in the preparation of soap ? U [Board Term II, Delhi, .... Provide IUPAC names for everything (that you can).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8.481,020 B2 Nouvel Et Al
    USOO8481020B2 (12) United States Patent (10) Patent No.: US 8.481,020 B2 Nouvel et al. (45) Date of Patent: Jul. 9, 2013 (54) PHEROMONE COMPOSITIONS AND (58) Field of Classification Search METHODS OF USE None See application file for complete search history. (75) Inventors: Larry Nouvel, Plano, TX (US); Luis Rios, Pembroke Pines, FL (US); Cuong (56) References Cited Tu Ba, Miami, FL (US) U.S. PATENT DOCUMENTS (73) Assignee: Sergeant's Pet Care Products, Inc., 6,077,867 A 6/2000 Pageat Omaha, NE (US) 6,169,113 B1 1/2001 Pageat 6,384.252 B1* 5/2002 Pageat ... 554.223 (*) Notice: Subject to any disclaimer, the term of this 2009/0275670 A1* 11/2009 Marshall . 514,772.3 patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS International Search Report and Opinion issued in PCT/US 10/61564 (21) Appl. No.: 12/974,565 dated Mar. 3, 2011. (22) Filed: Dec. 21, 2010 * cited by examiner Prior Publication Data (65) Primary Examiner — Neil Levy US 2011 FO150822 A1 Jun. 23, 2011 (74) Attorney, Agent, or Firm — Polsinelli PC Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 61/288,643, filed on Dec. 21, 2009. Pheromone compositions based on a combination of squalene, linoleic acid and 1-docosanol are described. The (51) Int. C. compositions are useful for behavior modification in mam AOIN 25/02 (2006.01) mals that exhibit undesirable or harmful stress-related behav (52) U.S. C. 1O.S. USPC ............. 424/84; 424/405; 424/406; 514/560; 514/724:514/760 8 Claims, 2 Drawing Sheets Behavior improvement Feliway diffuser Cat Collar Feliway diffuser Cat Collar U.S.
    [Show full text]
  • II Grape Wine
    FACULTY OF SCIENCE DEPARTMENT OF BIOCHEMISTRY Ph.D. Dissertation Biosensors for analysis of drinks Miodrag Milovanović Supervisor: Assoc. Prof. Dr. Petr Skládal Brno, 2019 Masaryk University Biosensors for analysis of drinks Bibliographic Entry Author: Miodrag Milovanović, MSc. Faculty of Science, Masaryk University Department of Biochemistry Title of Thesis: Biosensors for analysis of drinks Degree programme: Biochemistry Field of study: Biochemistry Supervisor: Assoc. Prof. Dr. Petr Skládal Academic Year: 2018/2019 Number of Pages: XIII + 247 Keywords: Wine, Wine analysis, Organic acids, Bioelectronic tongue, Lactate oxidase, Sarcosine oxidase, Fumarase, Capillary electrophoresis, Principal components analysis, Self-organizing map, BioCarboxylic units, Quick Response wine classification, Smart wine classification Author Miodrag Molovanović |Acknowledgements II Masaryk University Biosensors for analysis of drinks Bibliografický záznam Autor: Mgr. Miodrag Milovanović Přírodovědecká fakulta, Masarykova univerzita Ústav biochemie Název práce: Biosenzorová analýza nápojů Studijní program: Biochemie Studijní obor: Biochemie Vedoucí práce: Doc. RNDr. Petr Skládal, CSc. Akademický rok: 2018/2019 Počet stran: XIII + 247 Klíčová slova: Víno, Analýza vína, Organické kyseliny, Bioelektronický jazyk, Laktát oxidasa, Sarkosin oxidasa, Fumarát oxidasa, Kapilární elektroforéza, Analýza hlavních komponent, Kohonenova samoorganizační mapa, BioKarboxylová jednotka, QR klasifikace vína, Smart klasifikace vína Author Miodrag Molovanović |Acknowledgements
    [Show full text]
  • Organic Chemistry/Fourth Edition: E-Text
    CHAPTER 19 CARBOXYLIC ACIDS O X arboxylic acids, compounds of the type RCOH, constitute one of the most fre- quently encountered classes of organic compounds. Countless natural products are Ccarboxylic acids or are derived from them. Some carboxylic acids, such as acetic acid, have been known for centuries. Others, such as the prostaglandins, which are pow- erful regulators of numerous biological processes, remained unknown until relatively recently. Still others, aspirin for example, are the products of chemical synthesis. The therapeutic effects of aspirin, welcomed long before the discovery of prostaglandins, are now understood to result from aspirin’s ability to inhibit the biosynthesis of prostaglandins. O O O (CH2)6CO2H COH CH3COH (CH2)4CH3 OCCH3 HO OH O Acetic acid PGE1 (a prostaglandin; a small amount Aspirin (present in of PGE1 lowers blood pressure vinegar) significantly) The chemistry of carboxylic acids is the central theme of this chapter. The impor- tance of carboxylic acids is magnified when we realize that they are the parent com- pounds of a large group of derivatives that includes acyl chlorides, acid anhydrides, esters, and amides. Those classes of compounds will be discussed in the chapter fol- 736 Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website 19.1 Carboxylic Acid Nomenclature 737 lowing this one. Together, this chapter and the next tell the story of some of the most fundamental structural types and functional group transformations in organic and bio- logical chemistry. 19.1 CARBOXYLIC ACID NOMENCLATURE Nowhere in organic chemistry are common names used more often than with the car- boxylic acids.
    [Show full text]
  • Studies in Analytical Chemistry and Chemical Education
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2013 Studies in Analytical Chemistry and Chemical Education. Part 1: Characterization of Complex Organics By Raman Spectroscopy and Gas Chromatography. Part 2: Differential Item Functioning on Multiple-choice General Chemistry Assessments Lisa Kay Kendhammer University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Chemistry Commons Recommended Citation Kendhammer, Lisa Kay, "Studies in Analytical Chemistry and Chemical Education. Part 1: Characterization of Complex Organics By Raman Spectroscopy and Gas Chromatography. Part 2: Differential Item Functioning on Multiple-choice General Chemistry Assessments" (2013). Theses and Dissertations. 253. https://dc.uwm.edu/etd/253 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. STUDIES IN ANALYTICAL CHEMISTRY AND CHEMICAL EDUCATION. PART 1: CHARACTERIZATION OF COMPLEX ORGANICS BY RAMAN SPECTROSCOPY AND GAS CHROMATOGRAPHY. PART 2: DIFFERENTIAL ITEM FUNCTIONING ON MULTIPLE-CHOICE GENERAL CHEMISTRY ASSESSMENTS. by Lisa K. Kendhammer A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry at The University of Wisconsin-Milwaukee August 2013 ABSTRACT STUDIES IN ANALYTICAL CHEMISTRY AND CHEMICAL EDUCATION. PART 1: CHARACTERIZATION OF COMPLEX ORGANICS BY RAMAN SPECTROSCOPY AND GAS CHROMATOGRAPHY. by Lisa Kendhammer The University of Wisconsin-Milwaukee, 2013 Under the Supervision of Professor Joseph H. Aldstadt, III The analytical chemistry component of this thesis focused on instrumentation and methods to address challenges in art conservation, particularly the identification, quantitation, and reactivity of a set of representative varnishes and their degradation products.
    [Show full text]
  • Aqueous Solutions of Organic Acids As Effective Solvents for Levodopa Ex- Traction from Mucuna Pruriens Seeds
    Journal Pre-proofs Aqueous Solutions of Organic Acids as Effective Solvents for Levodopa Ex- traction from Mucuna pruriens Seeds Jordana Benfica, Eduarda S. Morais, Julia S. Miranda, Mara G. Freire, Rita de Cássia Superbi de Sousa, João A.P Coutinho PII: S1383-5866(21)00794-2 DOI: https://doi.org/10.1016/j.seppur.2021.119084 Reference: SEPPUR 119084 To appear in: Separation and Purification Technology Received Date: 4 April 2021 Revised Date: 26 May 2021 Accepted Date: 2 June 2021 Please cite this article as: J. Benfica, E.S. Morais, J.S. Miranda, M.G. Freire, R. de Cássia Superbi de Sousa, J. A.P Coutinho, Aqueous Solutions of Organic Acids as Effective Solvents for Levodopa Extraction from Mucuna pruriens Seeds, Separation and Purification Technology (2021), doi: https://doi.org/10.1016/j.seppur. 2021.119084 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2021 Published by Elsevier B.V. Highlights Highlights Aqueous solutions of organic acids are promising substitutes for organic solvents. Performance in the extraction of L-dopa from the seeds of M.
    [Show full text]
  • Viewed As an Alternative to Reversed-Phase Liquid Chromatography (RPLC) and Is Able to Separate Aromatic Acids and Bases Well [15–18]
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Ashley E. Richardson Candidate for the Degree Doctor of Philosophy ______________________________________ Dr. Neil Danielson, Director ______________________________________ Dr. Carole Dabney-Smith, Reader ______________________________________ Dr. Richard T. Taylor, Reader ______________________________________ Dr. Jiangjiang Zhu, Reader ______________________________________ Dr. Justin Saul, Graduate School Representative ABSTRACT HYDROPHILIC INTERACTION AND MICELLAR LIQUID CHROMATOGRAPHY APPROACHES FOR THE SEPARATION OF AROMATIC CARBOXYLIC ACID POSITIONAL ISOMERS PLUS ION EXCHANGE CHROMATOGRAPHY FOR THE SEPARATION OF SULFONATED COMPOUNDS by Ashley Elizabeth Richardson Separation of aromatic positional isomers is typically limited to separating a couple of the isomers in a class, not all of them. A novel HILIC method has been developed to separate ten aromatic carboxylic positional isomers, including the hydroxybenzoic acid isomers, hydroxycinnamic acid isomers, syringic, vanillic, ferulic, and sinapic acids, using a ternary mobile phase comprised of acetonitrile, ammonium acetate buffer, and pentane. This method is compatible with mass spectrometry (MS) detection and can separate the analytes in under 45 minutes with baseline resolution of all isomers. Terephthalic acid purity is extremely important during the production of polyethylene terephthalate. There are few methods available that can separate terephthalic acid from eight major impurities. Those impurities include two sets of positional isomers. Using micellar liquid chromatography (MLC), a method has been developed using an acidic sodium dodecyl sulfate (SDS) mobile phase, a C18 column, and a flow rate gradient to separate terephthalic acid from the eight impurities in less than 20 minutes with baseline resolution. Detection limits have been improved when compared to previous methods.
    [Show full text]
  • Chemical Toxicity Prediction Category Formation and Read-Across
    Chemical Toxicity Prediction Category Formation and Read-Across . Published on 23 September 2013 http://pubs.rsc.org | doi:10.1039/9781849734400-FP001 View Online Issues in Toxicology Series Editors: Professor Diana Anderson, University of Bradford, UK Dr Michael D Waters, Integrated Laboratory Systems, Inc, N Carolina, USA Dr Martin F Wilks, University of Basel, Switzerland Dr Timothy C Marrs, Edentox Associates, Kent, UK Titles in the Series: 1: Hair in Toxicology: An Important Bio-Monitor 2: Male-mediated Developmental Toxicity 3: Cytochrome P450: Role in the Metabolism and Toxicity of Drugs and other Xenobiotics 4: Bile Acids: Toxicology and Bioactivity 5: The Comet Assay in Toxicology 6: Silver in Healthcare 7: In Silico Toxicology: Principles and Applications 8: Environmental Cardiology 9: Biomarkers and Human Biomonitoring, Volume 1: Ongoing Programs and Exposures 10: Biomarkers and Human Biomonitoring, Volume 2: Selected Biomarkers of Current Interest 11: Hormone-Disruptive Chemical Contaminants in Food 12: Mammalian Toxicology of Insecticides 13: The Cellular Response to the Genotoxic Insult: The Question of Threshold for Genotoxic Carcinogens 14: Toxicological Effects of Veterinary Medicinal Products in Humans: Volume 1 15: Toxicological Effects of Veterinary Medicinal Products in Humans: . Volume 2 16: Aging and Vulnerability to Environmental Chemicals: Age-related Disorders and their Origins in Environmental Exposures 17: Chemical Toxicity Prediction: Category Formation and Read-Across Published on 23 September 2013 http://pubs.rsc.org | doi:10.1039/9781849734400-FP001 How to obtain future titles on publication: A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.
    [Show full text]
  • Chromatographic Analysis of Low Molecular Weight Polar Compounds in Complex Environmental Matrices and Renewable Materials Jana Rousova
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2017 Chromatographic Analysis Of Low Molecular Weight Polar Compounds In Complex Environmental Matrices And Renewable Materials Jana Rousova Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Rousova, Jana, "Chromatographic Analysis Of Low Molecular Weight Polar Compounds In Complex Environmental Matrices And Renewable Materials" (2017). Theses and Dissertations. 2329. https://commons.und.edu/theses/2329 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CHROMATOGRAPHIC ANALYSIS OF LOW MOLECULAR WEIGHT POLAR COMPOUNDS IN COMPLEX ENVIRONMENTAL MATRICES AND RENEWABLE MATERIALS by Jana Rousová Bachelor of Science, University of Chemical Technology, 2008 Master of Science, University of Chemical Technology, 2011 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota August 2017 Copyright 2017 Jana Rousová ii PERMISSION Title Chromatographic Analysis of Low Molecular Weight Polar Compounds in Complex Environmental Matrices and Renewable Materials. Department Chemistry Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirement for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in her absence, by the chairperson of the department or the dean of the graduate school.
    [Show full text]
  • Nucleation from Α- Pinene Ozonolysis Superviso
    M.Sc. Bartłomiej Witkowski Investigation of the secondary organic aerosol (SOA) nucleation from α- pinene ozonolysis Supervisor: Dr hab. Tomasz Gierczak 1 Dedication This thesis is dedicated to my loving wife, Anna, who has always put up with me for reasons not always obvious. Acknowledgements I would like to thank my supervisor, Dr hab. Tomasz Gierczak for support, guidance and providing wonderful opportunities for professional development. I would like to thank Dr hab. Magdalena Biesaga for support, guidance and helping me to develop the skills needed to complete this thesis. I would like to thank prof. dr hab. Jan Niedzielski for final proof-reading and language corrections. I would like to thank Dr Ranajit K. Talukdar for guidance and helping me to develop the skills needed to complete this thesis. I would like to thank Dr Ranajit K. Talukdar, Dr James B. Burholder and prof. A.R Ravishankara for their hospitality during my international training in NOAA, Boulder, CO. I would like to thank the Structural Research Laboratory (SRL) at the Department of Chemistry of University of Warsaw for making LC/MS measurements possible. SRL has been established with financial support from European Regional Development Found in the Sectoral Operational Programme “Improvement of the Competitiveness of Enterprises, years 2004 –2005” project no: WPK_1/ 1.4.3./1/2004/72/72/165/2005/U. This work was also financed by 501/68-BW- 172101 project. This work was supported by the European Science Foundation 2007/03-LCNANOP project co-operated with the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,640,842 May 45 Date of Patent: Feb
    United States Patent (19) 11 Patent Number: 4,640,842 May 45 Date of Patent: Feb. 3, 1987 3,753,730 8/1973 Donnarumma ..................... 426/618 54 INTERNALLY FLAVORED HULLED CEREAL GRAN AND PROCESS FOR 3,961,09 6/1976 Caccavale et al. ................. 426/307 PREPARATION 4,097,613 6/1978 Young et al. ......................... 426/89 (76) Inventor: William A. May, 5 House Wren, FOREIGN PATENT DOCUMENTS Hackettstown, N.J. 07840 202259 11/1955 Australia . 240978 9/1959 Australia . 21 Appl. No.: 764,711 267774 1/1964 Australia . 22 Filed: Aug. 13, 1985 47345/68 12/1968 Australia . 2641767 3/1969 Australia . 476,834 1/1975 Australia . Related U.S. Application Data 47151/79 5/1979 Australia . 63) Continuation-in-part of Ser. No. 697,204, Feb. 1, 1985, 064869 9/1962 Canada ................................ 426/459 which is a continuation-in-part of Ser. No. 547,131, Oct. 31, 1983, abandoned, and a continuation-in-part of OTHER PUBLICATIONS Ser. No. 577,342, Feb. 6, 1984, abandoned, and a con Rice Chemistry and Technology, Chptr. 8, by K. R. tinuation-in-part of Ser. No. 605,466, Apr. 30, 1984, abandoned. Bhattacharya, pp. 289-295, 301, 302, 305, 311 & 35-316. 5) Int. Cl." ........................... A23 1/00; A23L 1/18 52 U.S. Cl. .................................... 426/534; 426/618; Primary Examiner-Raymond N. Jones 426/640; 426/462; 426/507; 426/625; 426/597; Assistant Examiner-Marianne M. Cintins 426/660; 426/650; 426/589 Attorney, Agent, or Firm-John W. Klooster 58 Field of Search ................. 426/93, 103, 244, 250, 426/251, 271, 302,308-310,331, 532–538, 57 ABSTRACT 618-629, 632, 634, 640, 654, 460, 462, 482, 507 Internally flavored hulled cereal grain, especially pop corn is provided along with a method for the prepara 56) References Cited tion of same.
    [Show full text]