(12) United States Patent (10) Patent No.: US 8.481,020 B2 Nouvel Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8.481,020 B2 Nouvel Et Al USOO8481020B2 (12) United States Patent (10) Patent No.: US 8.481,020 B2 Nouvel et al. (45) Date of Patent: Jul. 9, 2013 (54) PHEROMONE COMPOSITIONS AND (58) Field of Classification Search METHODS OF USE None See application file for complete search history. (75) Inventors: Larry Nouvel, Plano, TX (US); Luis Rios, Pembroke Pines, FL (US); Cuong (56) References Cited Tu Ba, Miami, FL (US) U.S. PATENT DOCUMENTS (73) Assignee: Sergeant's Pet Care Products, Inc., 6,077,867 A 6/2000 Pageat Omaha, NE (US) 6,169,113 B1 1/2001 Pageat 6,384.252 B1* 5/2002 Pageat ... 554.223 (*) Notice: Subject to any disclaimer, the term of this 2009/0275670 A1* 11/2009 Marshall . 514,772.3 patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS International Search Report and Opinion issued in PCT/US 10/61564 (21) Appl. No.: 12/974,565 dated Mar. 3, 2011. (22) Filed: Dec. 21, 2010 * cited by examiner Prior Publication Data (65) Primary Examiner — Neil Levy US 2011 FO150822 A1 Jun. 23, 2011 (74) Attorney, Agent, or Firm — Polsinelli PC Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 61/288,643, filed on Dec. 21, 2009. Pheromone compositions based on a combination of squalene, linoleic acid and 1-docosanol are described. The (51) Int. C. compositions are useful for behavior modification in mam AOIN 25/02 (2006.01) mals that exhibit undesirable or harmful stress-related behav (52) U.S. C. 1O.S. USPC ............. 424/84; 424/405; 424/406; 514/560; 514/724:514/760 8 Claims, 2 Drawing Sheets Behavior improvement Feliway diffuser Cat Collar Feliway diffuser Cat Collar U.S. Patent Jul. 9, 2013 Sheet 1 of 2 US 8.481,020 B2 60% 53% O c Marked improvement Some improvement No change FIG. U.S. Patent Jul. 9, 2013 Sheet 2 of 2 US 8.481,020 B2 Behavior improvement Feliway diffuser Cat Collar Cat Colar US 8,481,020 B2 1. 2 PHEROMONE COMPOSITIONS AND newborn mammals. Newborns, including humans, can iden METHODS OF USE tify the mother from her scent. This process may be crucial to bonding and Survival and is thought a likely candidate for CROSS REFERENCE TO RELATED involving pheromone mechanisms in mammals. Thus grow APPLICATION ing evidence is consistent with an important role for phero mones in controlling mammalian behavior, and particularly This application claims the benefit of U.S. Provisional those behaviors associated with bonding, Socialization, Application Ser. No. 61/288,643 filed on Dec. 21, 2009, the aggression and stress. disclosure of which is hereby incorporated by reference in its In domestic, farm, and Zoo animals, including dogs, cats, entirety. 10 horses, Swine, cattle, tigers, lions, bears, elephants, etc., fear and anxiety arising from various sources frequently result in THE NAMES OF THE PARTIES TO AJOINT harmful or annoying behaviors that are not well tolerated by RESEARCH AGREEMENT the affected animal, other animals or human owners/handlers. For example, separation anxiety in dogs frequently results in The presently claimed invention was made by or on behalf 15 Soiling, excessive chewing or licking, property destruction, of the below listed parties to a joint research agreement. The constant barking, and hyperactivity. Pet cats under stress, for joint research agreement was in effect on or before the date instance, from the introduction of a new cat to the household, the claimed invention was made and the claimed invention will often spray, Scratch, claw, and make other displays of was made as a result of the activities undertaken within the aggression. Generally, a need is recognized for compositions Scope of the joint research agreement. The parties to the joint and methods that can be used on any affected domestic, farm, research agreement are Sergeant's Pet Care Products, Inc. and or Zoo animal to control such undesirable behaviors. Gerald Marshall. SUMMARY OF THE INVENTION FIELD OF THE INVENTION 25 The inventors have discovered novel pheromone composi This invention relates generally to the field of animal tions that are useful for modifying behavior in mammals, and behavior and more particularly to pheromone compositions are particularly useful for modifying objectionable behaviors and methods of use for modifying animal behavior. in domestic animals that result from stress or anxiety. The compositions are based in part on the Surprising finding that BACKGROUND 30 squalene-based compositions (i.e. compositions comprising at least 30% by weight of squalene) are effective at modifying A pheromone is a chemical signaling compound naturally stress- or anxiety-related behaviors in domestic animals. produced by many animals that elicits a predictable and spe Accordingly, in one aspect there is provided a pheromone cific behavioral response in another member of the same composition for modifying behavior of a mammal, the com species. Pheromone compounds and functions vary and are 35 position comprising a mixture of at least 30% (% w/w) thought to include alarm pheromones, food trail pheromones, squalene, at least 10% (% w/w) linoleic acid, and at least 1% reproductive pheromones, and probably many others affect (% w/w) 1-docosanol. ing animal behavior. Although originally and most well docu In another aspect there is provided a pheromone composi mented in insect species, pheromones are the Subject of tion for modifying behavior of a mammal, the composition increasing study and recognition is growing of the role that 40 comprising 30%-80% (% w/w) squalene, 10-75% (% w/w) pheromones play in modifying the behavior of mammalian linoleic acid, and 1%-10% (% w/w) 1-docosanol. species. In another aspect there is provided a pheromone solution In mammals pheromones are thought to be detected by for modifying behavior of a mammal, the composition com olfactory membranes or by the vomeronasal organ (VNO or prising about 1%-15% by volume of a mixture of 30%-35% Jacobson’s organ), which is positioned between the nose and 45 (% w/w) squalene, 55-65% (% w/w) linoleic acid, 2%-5% (% mouth and functions as the first stage of the accessory olfac w/w) 1-docosanol, and 1%-5% (% w/w) cholesterol, and tory system. However, unlike regular olfactory membranes, about 70%-90% by volume of an organic solvent. the VMO is connected directly to the mid-brain and thus In another aspect there is provided a pheromone solution enjoys the shortest organ-to-brain distance in mammals. This for modifying behavior of a mammal, the composition com feature allows pheromones present in extremely small quan 50 prising about 1%-15% by volume of a mixture of 30%-35% tities to very selectively trigger certain biochemical processes (% w/w) squalene, 55-65% (% w/w) linoleic acid, 2%-5% (% in the animal. Moreover, pheromone signals go directly to w/w) 1-docosanol, and 2%-10% (% w/w) of a mixture of at Subconscious areas of brain without being processed by the least two fatty acids other than linoleic acid, and about 70%- conscious brain, and thus pheromone effects are both rapid 90% by volume of an organic solvent. and Subconscious. While the precise mechanisms underlying 55 In another aspect there is provided a pheromone solution pheromone effects on the mammalian brain remain to be for modifying behavior of a mammal, the composition com further explored and characterized, a growing body of evi prising about 1%-15% by volume of a mixture of 30%-35% dence indicates clear behavioral effects likely involving at (% w/w) squalene, 55-65% (% w/w) linoleic acid, 2%-5% (% least hormonal responses. For example, studies of the house w/w) 1-docosanol, 1%-5% (% w/w) cholesterol and 2%-10% mouse have revealed a complex pheromone communication 60 (% w/w) of a mixture of at least two fatty acids other than system for signaling inter-male aggression and dominance, linoleic acid, and about 70%-90% by volume of an organic mating readiness, and for signaling stress to the other mem solvent. bers of the colony. All of these behaviors have demonstrated In another aspect there is provided a pheromone solution correlations with hormonal pathways. Pheromone effects for modifying behavior of a mammal, the composition com may also be mediated by basic olfactory mechanisms and 65 prising about 1%-15% by volume of a mixture of 65%-70% behavioral effects associated with olfactory processing. For (% w/w) squalene, 18%–21% (% w/w) linoleic acid, 2%-5% example, olfactory processing is known to be important for (% w/w) 1-docosanol, and 7%-9% (% w/w) of a mixture of at US 8,481,020 B2 3 4 least two fatty acids other than linoleic acid, and about 70%- included, contributes 0.1%-10% (% w/w) to the composition, 90% by volume of an organic solvent. and preferably contributes 1%-5% (% w/w) to the composi In another aspect there is provided a pheromone solution tion. Similarly, a mixture of fatty acids, when included, con for modifying behavior of a mammal, the composition com tributes 0.1%-10% (% w/w) to the composition, and prefer prising about 1%-15% by volume of a mixture of 65%-70% ably contributes 2%-9% (% w/w). When both cholesteroland (% w/w) squalene, 18%–21% (% w/w) linoleic acid, 2%-5% a mixture of additional fatty acids are included in the compo (% w/w) 1-docosanol, 7%–9% (% w/w) of a mixture of at least sition, the combined components together contribute no more two fatty acids other than linoleic acid and 1% (% w/w) than about 10% (% w/w) to the composition. cholesterol, and about 70%-90% by volume of an organic Squalene is a natural organic compound originally solvent.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,375.433 B2 Dilly Et Al
    US009375433B2 (12) United States Patent (10) Patent No.: US 9,375.433 B2 Dilly et al. (45) Date of Patent: *Jun. 28, 2016 (54) MODULATORS OF ANDROGENSYNTHESIS (52) U.S. Cl. CPC ............. A6 IK3I/519 (2013.01); A61 K3I/201 (71) Applicant: Tangent Reprofiling Limited, London (2013.01); A61 K3I/202 (2013.01); A61 K (GB) 31/454 (2013.01); A61K 45/06 (2013.01) (72) Inventors: Suzanne Dilly, Oxfordshire (GB); (58) Field of Classification Search Gregory Stoloff, London (GB); Paul USPC .................................. 514/258,378,379, 560 Taylor, London (GB) See application file for complete search history. (73) Assignee: Tangent Reprofiling Limited, London (56) References Cited (GB) U.S. PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this 5,364,866 A * 1 1/1994 Strupczewski.......... CO7C 45/45 patent is extended or adjusted under 35 514,254.04 U.S.C. 154(b) by 0 days. 5,494.908 A * 2/1996 O’Malley ............. CO7D 261/20 514,228.2 This patent is Subject to a terminal dis 5,776,963 A * 7/1998 Strupczewski.......... CO7C 45/45 claimer. 514,217 6,977.271 B1* 12/2005 Ip ........................... A61K 31, 20 (21) Appl. No.: 14/708,052 514,560 OTHER PUBLICATIONS (22) Filed: May 8, 2015 Calabresi and Chabner (Goodman & Gilman's The Pharmacological (65) Prior Publication Data Basis of Therapeutics, 10th ed., 2001).* US 2015/O238491 A1 Aug. 27, 2015 (Cecil's Textbook of Medicine pp. 1060-1074 published 2000).* Stedman's Medical Dictionary (21st Edition, Published 2000).* Okamoto et al (Journal of Pain and Symptom Management vol.
    [Show full text]
  • WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 8/37 (2006.01) A61Q 19/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 31/215 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US2016/058591 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 25 October 2016 (25.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/247,803 29 October 20 15 (29. 10.20 15) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: GLAXOSMITHKLINE CONSUMER TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, HEALTHCARE HOLDINGS (US) LLC [US/US]; 271 1 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Centerville Road, Suite 400, Wilmington, DE 19808 (US).
    [Show full text]
  • UC San Diego UC San Diego Previously Published Works
    UC San Diego UC San Diego Previously Published Works Title AMP-activated protein kinase activation ameliorates eicosanoid dysregulation in high-fat- induced kidney disease in mice. Permalink https://escholarship.org/uc/item/3b6163nf Journal Journal of lipid research, 60(5) ISSN 0022-2275 Authors Declèves, Anne-Emilie Mathew, Anna V Armando, Aaron M et al. Publication Date 2019-05-01 DOI 10.1194/jlr.m088690 Peer reviewed eScholarship.org Powered by the California Digital Library University of California AMPK ameliorates eicosanoids in HFD induced-CKD Declèves et al. AMP-activated protein kinase activation ameliorates eicosanoid dysregulation in high-fat–induced kidney disease in mice Anne-Emilie Declèves1,2*, Anna V. Mathew3*, Aaron M. Armando4, Xianlin Han5, Edward Downloaded from A. Dennis4,6, Oswald Quehenberger4,7 and Kumar Sharma1,8. 1Institute of Metabolomic Medicine, University of California San Diego; 2Laboratory of www.jlr.org Metabolic and Molecular Biochemistry, Faculty of Medicine, Université of Mons; 3Division at Univ of California - San Diego Serials/Biomed Lib 0699, on March 18, 2019 of Nephrology, Department of Internal Medicine, University of Michigan; 4Department of Pharmacology, University of California, San Diego; 5Barshop Institute of Aging, Department of Medicine, University of Texas Health San Antonio, 6Department of Chemistry and Biochemistry, University of California, San Diego; 7Department of Medicine, University of California, San Diego; 8Center for Renal Precision Medicine, Division of Nephrology, Department
    [Show full text]
  • Fatty Acid Composition of Oil from Adapted Elite Corn Breeding Materials Francie G
    Food Science and Human Nutrition Publications Food Science and Human Nutrition 9-1995 Fatty Acid Composition of Oil from Adapted Elite Corn Breeding Materials Francie G. Dunlap Iowa State University Pamela J. White Iowa State University, [email protected] Linda M. Pollak United States Department of Agriculture Thomas J. Brumm MBS Incorporated, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/fshn_hs_pubs Part of the Agronomy and Crop Sciences Commons, Bioresource and Agricultural Engineering Commons, Food Science Commons, and the Nutrition Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ fshn_hs_pubs/2. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Food Science and Human Nutrition at Iowa State University Digital Repository. It has been accepted for inclusion in Food Science and Human Nutrition Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Fatty Acid Composition of Oil from Adapted Elite Corn Breeding Materials Abstract The fatty acid composition of corn oil can be altered to meet consumer demands for “healthful” fats (i.e., lower saturates and higher monounsaturates). To this end, a survey of 418 corn hybrids and 98 corn inbreds grown in Iowa was done to determine the fatty acid composition of readily-available, adapted, elite corn breeding materials. These materials are those used in commercial hybrid production. Eighty-seven hybrids grown in France (18 of which also were grown in lowa) were analyzed to determine environmental influence on fatty acid content.
    [Show full text]
  • HSU-THESIS-2019.Pdf
    EFFECTS OF PRODUCT REMOVAL USING ION-EXCHANGE RESIN AND SODIUM HYDROXIDE PRETREATMENT IN MIXED-CULTURE FERMENTATION A Thesis by SHEN-CHUN HSU Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Mark T. Holtzapple Committee Members, Ahmad K. Hilaly Zivko Nikolov Head of Department, M. Nazmul Karim May 2019 Major Subject: Chemical Engineering Copyright 2019 Shen-Chun Hsu ABSTRACT In mixed-culture fermentations of lignocellulosic biomass, periodical product removal has proven to reduce product inhibition and thereby increase biomass digestion. Previously, ion-exchange resin (Amberlite IRA-67) was employed in countercurrent fermentation, and different amounts of resin loadings (10–40 g wet resin per 1.38 L total liquid volume) were studied. Using the pre-established culture (office paper and oven-dried chicken manure), this research used higher resin loadings (50, 60, and 80 g wet resin per 1.34 L total liquid volume). The 0.3-L resin column was sustained by CO2 (gas flow rate: 1.5 L/min). Compared to 30 g resin loading, when higher loadings were introduced, biomass conversion dropped by 0.05–0.09 g NAVSdigested/g NAVSfeed. Furthermore, the yield plateaued at resin loadings greater than 40 g. Overall, the optimal resin loading for both biomass conversion and acid yield was 30–40 resin loading per 1.34 L total liquid volume, which corresponded to 21.74–29.20 g wet resin/Lliq. As indicators of digestibility, cellulase (Ctec3) and hemicellulose (Htec3) were used to saccharify pretreated corn stover.
    [Show full text]
  • Relationship Between Dietary Intake of Fatty Acids and Disease Activity in Pediatric Inflammatory Bowel Disease Patients
    Relationship between Dietary Intake of Fatty Acids and Disease Activity in Pediatric Inflammatory Bowel Disease Patients A thesis submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science in the Department of Nutrition of the College of Allied Health Sciences by Michael R. Ciresi B.S. The Ohio State University June 2008 Committee Chair: Grace Falciglia, Ph.D. Abstract Background. Crohn’s disease (CD) and ulcerative colitis (UC), collectively known as inflammatory bowel disease (IBD), are chronic illnesses that affect predominately the gastrointestinal tract. The pathogenesis and etiology remain unclear but the importance of environmental factors, in particular diet, is evidenced by the increased incidence rates of the recent decades that genetic inheritance cannot account for. In particular, the quantity of fatty acid consumption has been consistently linked with IBD risk. While several studies have investigated the connections between diet, etiology, signs and symptoms associated with IBD, very few have explored the relationship between disease state and specific fatty acid intake in the pediatric IBD population. Methods. In this cross-sectional study, 100 pediatric patients from Cincinnati Children’s Hospital and the Hospital for Sick Children in Toronto with diagnosed IBD (73 with Crohn’s disease (CD) and 27 with ulcerative colitis (UC)) were included. Three-day diet records were collected from the patients for the assessment of their dietary intake. The abbreviated Pediatric Crohn’s Disease Activity Index (PCDAI), the abbreviated Ulcerative Colitis Activity Index (PUCAI), and markers of inflammation (lipopolysaccharide binding protein (LBP) and S100A12) were used to assess disease severity.
    [Show full text]
  • ( Vaccinium Myrtillus L . ) And
    Food Chemistry 354 (2021) 129517 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Analysis of composition, morphology, and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant Priyanka Trivedi a,1, Nga Nguyen a,1, Linards Klavins b, Jorens Kviesis b, Esa Heinonen c, Janne Remes c, Soile Jokipii-Lukkari a, Maris Klavins b, Katja Karppinen d, Laura Jaakola d,e, Hely Haggman¨ a,* a Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland b Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia c Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland d Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway e NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway ARTICLE INFO ABSTRACT Keywords: In this study, cuticular wax load, its chemical composition, and biosynthesis, was studied during development of Cuticular wax wild type (WT) bilberry fruit and its natural glossy type (GT) mutant. GT fruit cuticular wax load was comparable Fruit cuticle with WT fruits. In both, the proportion of triterpenoids decreased during fruit development concomitant with Gene expression increasing proportions of total aliphatic compounds. In GT fruit, a higher proportion of triterpenoids in cuticular Glossy type mutant wax was accompanied by a lower proportion of fatty acids and ketones compared to WT fruit as well as lower Triterpenoids Wax composition density of crystalloid structures on berry surfaces. Our results suggest that the glossy phenotype could be caused Chemical compounds studied in this article: by the absence of rod-like structures in GT fruit associated with reduction in proportions of ketones and fatty β-Amyrin (PubChem CID: 73145) acids in the cuticular wax.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,034,441 Nakano Et Al
    United States Patent (19) 11 Patent Number: 5,034,441 Nakano et al. 45 Date of Patent: Jul. 23, 1991 54 STYRENE-BASED RESIN COMPOSITION (56. References Cited AND PROCESS FOR PRODUCING U.S. PATENT DOCUMENTS MOLDING PRODUCTS THEREOF 4,463,113 7/1984 Nakahara et al. ................... 524/117 4,619,959 10/1986 Matsubara et al. .. ... 524/228 75) Inventors: Akikazu Nakano; Takashi Sumitomo, 4,680,353 7/1987 Ishihara et al. .. ... 526/59 both of Ichihara, Japan 4,820,772 4/1989 Goto et al. .......................... 524/117 73 Assignee: Idemitsu Kosan Co., Ltd., Tokyo, Primary Examiner-Joseph L. Schofer Japan Assistant Examiner-Mark D. Sweet Attorney, Agent, or Firm-Frishauf, Holtz, Goodman & (21) Appl. No.: 559,971 Woodward 57 ABSTRACT (22 Filed: Jul. 27, 1990 Disclosed is a styrene-based resin composition which comprises (a) 100 parts by weight of styrene-based poly Related U.S. Application Data mer having a high degree of syndiotactic configuration, 63 Continuation-in-part of Ser. No. 470,975, Jan. 26, 1990, (b) 0.01 to 15 parts by weight of at least one nucleating abandoned. agent selected from an organophosphorus compound and a metal salt of an organic acid, and (c) 0.01 to 15 (30) Foreign Application Priority Data parts by weight of at least one component selected from a polyoxyalkylene compound, a fatty acid and a deriva Feb. 2, 1989 (JP) Japan .................................... 1-22587 tive thereof. 51 Int. Cli................................................ C08K 5/15 The composition can produce various molding prod 52 U.S. C. .................................... 524/117; 524/127; ucts with excellent mold-releasing property, surface 524/377; 524/385; 524/388; 524/307; 524/228; gloss, bending strength, bending modulus and heat resis 524/577; 524/394 tance.
    [Show full text]
  • Biochemistry Prologue to Lipids
    Paper : 05 Metabolism of Lipids Module: 01 Prologue to Lipids Principal Investigator Dr. Sunil Kumar Khare, Professor, Department of Chemistry, IIT-Delhi Paper Coordinator and Dr. Suaib Luqman, Scientist (CSIR-CIMAP) Content Writer & Assistant Professor (AcSIR) CSIRDr. Vijaya-CIMAP, Khader Lucknow Dr. MC Varadaraj Content Reviewer Prof. Prashant Mishra, Professor, Department of Biochemical Engineering and Biotechnology, IIT-Delhi 1 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids DESCRIPTION OF MODULE Subject Name Biochemistry Paper Name 05 Metabolism of Lipids Module Name/Title 01 Prologue to Lipids 2 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids 1. Objectives To understand what is lipid Why they are important How they occur in nature 2. Concept Map LIPIDS Fatty Acids Glycerol 3. Description 3.1 Prologue to Lipids In 1943, the term lipid was first used by BLOOR, a German biochemist. Lipids are heterogeneous group of compounds present in plants and animal tissues related either actually or potentially to the fatty acids. They are amphipathic molecules, hydrophobic in nature originated utterly or in part by thioesters (carbanion-based condensations of fatty acids and/or polyketides etc) or by isoprene units (carbocation-based condensations of prenols, sterols, etc). Lipids have the universal property of being: i. Quite insoluble in water (polar solvent) ii. Soluble in benzene, chloroform, ether (non-polar solvent) 3 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids Thus, lipids include oils, fats, waxes, steroids, vitamins (A, D, E and K) and related compounds, such as phospholipids, triglycerides, diglycerides, monoglycerides and others, which are allied more by their physical properties than by their chemical assests.
    [Show full text]
  • WO 2016/105530 Al 30 June 2016 (30.06.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/105530 Al 30 June 2016 (30.06.2016) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 47/10 (2006.01) A61K 47/22 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 47/12 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/000302 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 23 December 2015 (23. 12.2015) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/096,148 23 December 2014 (23. 12.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (72) Inventor; and DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant : HOFFMAN, Steven [US/US]; 15 Knichel LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Road, Mahwah, NJ 07430 (US).
    [Show full text]
  • Molecular Tracers and Untargeted Characterization of Water Soluble Organic Compounds in Polar Ice for Climate Change Studies
    PhD Thesis in SCIENCE AND MANAGEMENT OF CLIMATE CHANGE Molecular tracers and untargeted characterization of water soluble organic compounds in polar ice for climate change studies. PhD Candidate Ornela Karroca Supervisor Prof. Andrea Gambaro Co-Supervisor Dr. Roberta Zangrando 1 GLOSSARY 1. ABSTRACT ........................................................................................................................................ 4 2. INTRODUCTION ............................................................................................................................... 5 3. THESIS GOALS ................................................................................................................................ 15 4. EXPERIMENTAL SECTION ............................................................................................................... 16 4.1 Reagents and standard solutions ............................................................................................ 16 4.2 Quantitative analyses .............................................................................................................. 17 4.2.1 Instrumentation and working conditions .......................................................................... 17 4.2.2 Amino acids and phenolic compounds: Method validation .............................................. 21 4.2.2.1 Chromatographic separation ..................................................................................... 21 4.2.2.2 Quality control...........................................................................................................
    [Show full text]
  • Naming Carboxylic Acids Worksheet
    1 / 4 Naming Carboxylic Acids Worksheet Learn to recognize the carboxylic acid, ester, and related functional groups. •. Learn the IUPAC system for naming carboxylic acids and esters.. Esters are named on the basis of the alcohol and the carboxylic acid from which they are formed. The naming system is a little complex , but once.. ORGANIC CHEMISTRY 3540. CARBOXYLIC ACIDS. (AND DERIVATIVES). NOMENCLATURE. PHYSICAL PROPERTIES. ACIDITY. CARBOXYLIC ACIDS RCOOH OR RCO2H.. Organic Chemistry Worksheet – Organic Functional Group Nomenclature . ... Quiz ppt has been included on alcohols and carboxylic acids; the answers to the .... Give the name of the compound shown below. This page may take several seconds to load fully. Questions Remaining. Topic Index | Previous | Next Quiz .... This organic chemistry video tutorial shows you how to name carboxylic acids including IUPAC ... names of aldehydes, ketones and carboxylic acids;. • write the structures of the compounds containing functional groups namely carbonyl and carboxyl groups;.. 2017. 3. 26. — naming carboxylic acids worksheet. Scanpan Haptiq Vs Ctx, 0000017565 00000 n Draw the following alcohols heptan-2-ol.. A worksheet is included on the CD-ROM. ... Hence the names of the alcohols and carboxylic acids are as shown in Tables 10.4 and 10.6 (pages 265 and 270).. 2021. 5. 11. — Naming carboxylates. Salts of carboxylic acids are named by writing the name of the cation followed by the name of the acid with the –ic acid .... What do we call the reverse reaction to give back alcohol and carboxylic acid which is used in the preparation of soap ? U [Board Term II, Delhi, .... Provide IUPAC names for everything (that you can).
    [Show full text]