Dynamic Coordination in the Brain: from Neurons to Mind (Strüngmann
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparison of Bonobo and Chimpanzee Brain Microstructure Reveals Differences in Socio-Emotional Circuits
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328205695 Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits Article in Brain Structure and Function · October 2018 DOI: 10.1007/s00429-018-1751-9 CITATIONS READS 3 585 9 authors, including: Nicky Staes Sophia Diggs-Galligan University of Antwerp Massachusetts Institute of Technology 25 PUBLICATIONS 152 CITATIONS 1 PUBLICATION 3 CITATIONS SEE PROFILE SEE PROFILE Annette Gendron Jared P Taglialatela University of Wisconsin–Madison Kennesaw State University 57 PUBLICATIONS 2,830 CITATIONS 71 PUBLICATIONS 1,167 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Emotion cognition integration in the brain View project Alzheimer's Disease: Why are cerebellum plaques last despite high APP? View project All content following this page was uploaded by Nicky Staes on 12 October 2018. The user has requested enhancement of the downloaded file. Brain Structure and Function https://doi.org/10.1007/s00429-018-1751-9 ORIGINAL ARTICLE Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits Habon A. Issa1 · Nicky Staes1 · Sophia Diggs‑Galligan1 · Cheryl D. Stimpson1 · Annette Gendron‑Fitzpatrick2 · Jared P. Taglialatela3,4 · Patrick R. Hof5 · William D. Hopkins4,6 · Chet C. Sherwood1 Received: 2 May 2018 / Accepted: 9 September 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Despite being closely related, bonobos and chimpanzees exhibit several behavioral differences. For instance, studies indicate that chimpanzees are more aggressive, territorial, and risk-taking, while bonobos exhibit greater social tolerance and higher rates of socio-sexual interactions. -
Section 1: MIT Facts and History
1 MIT Facts and History Economic Information 9 Technology Licensing Office 9 People 9 Students 10 Undergraduate Students 11 Graduate Students 12 Degrees 13 Alumni 13 Postdoctoral Appointments 14 Faculty and Staff 15 Awards and Honors of Current Faculty and Staff 16 Awards Highlights 17 Fields of Study 18 Research Laboratories, Centers, and Programs 19 Academic and Research Affiliations 20 Education Highlights 23 Research Highlights 26 7 MIT Facts and History The Massachusetts Institute of Technology is one nologies for artificial limbs, and the magnetic core of the world’s preeminent research universities, memory that enabled the development of digital dedicated to advancing knowledge and educating computers. Exciting areas of research and education students in science, technology, and other areas of today include neuroscience and the study of the scholarship that will best serve the nation and the brain and mind, bioengineering, energy, the envi- world. It is known for rigorous academic programs, ronment and sustainable development, informa- cutting-edge research, a diverse campus commu- tion sciences and technology, new media, financial nity, and its long-standing commitment to working technology, and entrepreneurship. with the public and private sectors to bring new knowledge to bear on the world’s great challenges. University research is one of the mainsprings of growth in an economy that is increasingly defined William Barton Rogers, the Institute’s founding pres- by technology. A study released in February 2009 ident, believed that education should be both broad by the Kauffman Foundation estimates that MIT and useful, enabling students to participate in “the graduates had founded 25,800 active companies. -
Sten Grillner
BK-SFN-HON_V9-160105-Grillner.indd 108 5/6/2016 4:11:20 PM Sten Grillner BORN: Stockholm, Sweden June 14, 1941 EDUCATION: University of Göteborg, Sweden, Med. Candidate (1962) University of Göteborg, Sweden, Dr. of Medicine, PhD (1969) Academy of Science, Moscow, Visiting Scientist (1971) APPOINTMENTS: Docent in Physiology, Medical Faculty, University of Göteborg (1969–1975) Professor, Department of Physiology III, Karolinska Institute (1975–1986) Director, Nobel Institute for Neurophysiology, Karolinska Institute, Professor (1987) Nobel Committee for Physiology or Medicine, Chair, 1995–1997 (1987–1998) Nobel Assembly at the Karolinska Institutet, Member Chair, 2005 (1988–2008) Chairman Department of Neuroscience, Karolinska Institutet (1993–2000) Distinguished Professor, Karolinska Institutet (2010) HONORS AND AWARDS: Member of Academiae Europaea 1990– Member of Royal Swedish Academy of Science 1993– Chairman Section for Biology and Member of Academy Board, 2004–2010 Member of Norwegian Academy of Science and Letters, 1997– Member American Academy of Arts and Sciences, 2004– Honorary Member of the Spanish Medical Academy, 2006– Foreign Associate of Institute of Medicine of the National Academy, United States, 2006– Foreign Associate of the National Academy, United States, 2010– Associate of the Neuroscience Institute, La Jolla, 1989– Member EMBO, 2014– Florman Award, Royal Swedish Academy of Science, 1977 Grass Lecturer to the Society of Neuroscience, Boston, 1983 Greater Nordic Prize of Eric Fernstrom, Lund, Sweden, 1990 Bristol-Myers -
Tau Prions from Alzheimer's Disease and Chronic Traumatic
Tau prions from Alzheimer’s disease and chronic PNAS PLUS traumatic encephalopathy patients propagate in cultured cells Amanda L. Woermana,b,1, Atsushi Aoyagia,c,1, Smita Patela, Sabeen A. Kazmia, Iryna Lobachd, Lea T. Grinbergb,e, Ann C. McKeef,g,h,i,j, William W. Seeleyb,e, Steven H. Olsona,b, and Stanley B. Prusinera,b,k,2 aInstitute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143; bDepartment of Neurology, University of California, San Francisco, CA 94143; cDaiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan; dDepartment of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143; eDepartment of Pathology, University of California, San Francisco, CA 94143; fChronic Traumatic Encephalopathy Program, Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA 02118; gDepartment of Neurology, Boston University School of Medicine, Boston, MA 02118; hDepartment of Pathology, Boston University School of Medicine, Boston, MA 02118; iVeterans Affairs Boston Healthcare System, US Department of Veterans Affairs, Jamaica Plain, MA 02130; jUS Department of Veterans Affairs Medical Center, Bedford, MA 01730; and kDepartment of Biochemistry and Biophysics, University of California, San Francisco, CA 94143 Contributed by Stanley B. Prusiner, October 6, 2016 (sent for review August 5, 2016; reviewed by Robert H. Brown Jr. and David Westaway) Tau prions are thought to aggregate in the central nervous system, tauopathy, due to the additional presence of Aβ plaques in the resulting in neurodegeneration. Among the tauopathies, Alzheimer’s brains of patients. disease (AD) is the most common, whereas argyrophilic grain disease In FTLDs, tau acquires a β-sheet–rich structure that polymerizes (AGD), corticobasal degeneration (CBD), chronic traumatic encepha- into amyloid fibrils. -
Learning Alters Theta-Nested Gamma Oscillations in Inferotemporal Cortex
Learning alters theta-nested gamma oscillations in inferotemporal cortex Keith M Kendrick1, Yang Zhan1, Hanno Fischer1 Ali U Nicol1 Xuejuan Zhang 2 & Jianfeng Feng3 1Cognitive and Behavioural Neuroscience, The Babraham Institute, Cambridge, CB22 3AT, UK 2Mathematics Department, Zhejiang Normal University, Jinhua 321004, Zhejian Province, PR China 3Department of Computer Science, Warwick University, Coventry CV4 7AL UK and Centre for Computational Systems Biology, Fudan University, Shanghai, PR China. Corresponding authors: [email protected] [email protected] 1 How coupled brain rhythms influence cortical information processing to support learning is unresolved. Local field potential and neuronal activity recordings from 64- electrode arrays in sheep inferotemporal cortex showed that visual discrimination learning increased the amplitude of theta oscillations during stimulus presentation. Coupling between theta and gamma oscillations, the theta/gamma ratio and the regularity of theta phase were also increased, but not neuronal firing rates. A neural network model with fast and slow inhibitory interneurons was developed which generated theta nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity similar learning-evoked changes could be produced. The model revealed that altered theta nested gamma could potentiate downstream neuron responses by temporal desynchronization of excitatory neuron output independent of changes in overall firing frequency. This learning-associated desynchronization was also exhibited by inferotemporal cortex neurons. Changes in theta nested gamma may therefore facilitate learning-associated potentiation by temporal modulation of neuronal firing. The functions of both low and high frequency oscillations in the brain have been the subject of considerable speculation1. Low frequency theta oscillations (4-8Hz) have been observed to increase in terms of power and phase-locked discharge of single neurons in a visual memory task2. -
Measuring Sleep Quality from EEG with Machine Learning Approaches
Measuring Sleep Quality from EEG with Machine Learning Approaches Li-Li Wang, Wei-Long Zheng, Hai-Wei Ma, and Bao-Liang Lu∗ Center for Brain-like Computing and Machine Intelligence Department of Computer Science and Engineering Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Brain Science and Technology Research Center Shanghai Jiao Tong University, Shanghai, 200240, China Abstract—This study aims at measuring last-night sleep quality Index [2], Epworth Sleep Scale [3], and Sleep Diaries [4]. from electroencephalography (EEG). We design a sleep ex- However, we have no way of knowing whether the respondents periment to collect waking EEG signals from eight subjects are honest, conscientious, responsible for self assessment and under three different sleep conditions: 8 hours sleep, 6 hours sleep, and 4 hours sleep. We utilize three machine learning related records and in many cases they may provide false approaches, k-Nearest Neighbor (kNN), support vector machine information or fill in the questionnaire not seriously. Secondly, (SVM), and discriminative graph regularized extreme learning the subjective evaluation method is more troublesome, time- machine (GELM), to classify extracted EEG features of power consuming and laborious, which requires participants to se- spectral density (PSD). The accuracies of these three classi- riously think about, a detailed answer, record relevant infor- fiers without feature selection are 36.68%, 48.28%, 62.16%, respectively. By using minimal-redundancy-maximal-relevance mation in time, in the meantime, experiment personnel also (MRMR) algorithm and the brain topography, the classification need a manual investigation and analysis of the information accuracy of GELM with 9 features is improved largely and in order to give a sleep quality evaluation and judgment of increased to 83.57% in average. -
Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXIX: Cognition
This is a free sample of content from Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXIX: Cognition. Click here for more information on how to buy the book. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME LXXIX Cognition symposium.cshlp.org Symposium organizers and Proceedings editors: Cori Bargmann (The Rockefeller University), Daphne Bavelier (University of Geneva, Switzerland, and University of Rochester), Terrence Sejnowski (The Salk Institute for Biological Studies), and David Stewart and Bruce Stillman (Cold Spring Harbor Laboratory) COLD SPRING HARBOR LABORATORY PRESS 2014 © 2014 by Cold Spring Harbor Laboratory Press. All rights reserved. This is a free sample of content from Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXIX: Cognition. Click here for more information on how to buy the book. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME LXXIX # 2014 by Cold Spring Harbor Laboratory Press International Standard Book Number 978-1-621821-26-7 (cloth) International Standard Book Number 978-1-621821-27-4 (paper) International Standard Serial Number 0091-7451 Library of Congress Catalog Card Number 34-8174 Printed in the United States of America All rights reserved COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY Founded in 1933 by REGINALD G. HARRIS Director of the Biological Laboratory 1924 to 1936 Previous Symposia Volumes I (1933) Surface Phenomena XXXIX (1974) Tumor Viruses II (1934) Aspects of Growth XL (1975) The Synapse III (1935) Photochemical Reactions XLI (1976) Origins -
2010 Buenos Aires, Argentina
Claiming CME Credit To claim CME credit for your participation in the MDS 14th Credit Designation International Congress of Parkinson’s Disease and Movement The Movement Disorder Society designates this educational Disorders, International Congress participants must complete activity for a maximum of 35 AMA PRA Category 1 Credits™. and submit an online CME Request Form. This form will be Physicians should only claim credit commensurate with the available beginning June 15. extent of their participation in the activity. Instructions for claiming credit: If you need a Non-CME Certificate of Attendance, please tear • After June 15, visit the MDS Web site. out the Certificate in the back of this Program and write in • Log in after reading the instructions on the page. You will your name. need your International Congress File Number which is located on your name badge or e-mail The Movement Disorder Society has sought accreditation from [email protected]. the European Accreditation Council for Continuing Medical • Follow the on-screen instructions to claim CME Credit for Education (EACCME) to provide CME activity for medical the sessions you attended. specialists. The EACCME is an institution of the European • You may print your certificate from your home or office, or Union of Medical Specialists (UEMS). For more information, save it as a PDF for your records. visit the Web site: www.uems.net. Continuing Medical Education EACCME credits are recognized by the American Medical The Movement Disorder Society is accredited by the Association towards the Physician’s Recognition Award (PRA). Accreditation Council for Continuing Medical Education To convert EACCME credit to AMA PRA category 1 credit, (ACCME) to provide continuing medical education for contact the AMA online at www.ama-assn.org. -
Science & Policy Meeting Jennifer Lippincott-Schwartz Science in The
SUMMER 2014 ISSUE 27 encounters page 9 Science in the desert EMBO | EMBL Anniversary Science & Policy Meeting pageS 2 – 3 ANNIVERSARY TH page 8 Interview Jennifer E M B O 50 Lippincott-Schwartz H ©NI Membership expansion EMBO News New funding for senior postdoctoral In perspective Georgina Ferry’s enlarges its membership into evolution, researchers. EMBO Advanced Fellowships book tells the story of the growth and ecology and neurosciences on the offer an additional two years of financial expansion of EMBO since 1964. occasion of its 50th anniversary. support to former and current EMBO Fellows. PAGES 4 – 6 PAGE 11 PAGES 16 www.embo.org HIGHLIGHTS FROM THE EMBO|EMBL ANNIVERSARY SCIENCE AND POLICY MEETING transmissible cancer: the Tasmanian devil facial Science meets policy and politics tumour disease and the canine transmissible venereal tumour. After a ceremony to unveil the 2014 marks the 50th anniversary of EMBO, the 45th anniversary of the ScienceTree (see box), an oak tree planted in soil European Molecular Biology Conference (EMBC), the organization of obtained from countries throughout the European member states who fund EMBO, and the 40th anniversary of the European Union to symbolize the importance of European integration, representatives from the govern- Molecular Biology Laboratory (EMBL). EMBO, EMBC, and EMBL recently ments of France, Luxembourg, Malta, Spain combined their efforts to put together a joint event at the EMBL Advanced and Switzerland took part in a panel discussion Training Centre in Heidelberg, Germany, on 2 and 3 July 2014. The moderated by Marja Makarow, Vice President for Research of the Academy of Finland. -
Metastasis and Invasion 3 – Metastasis Science Cancer
CANCER SCIENCE 3 Cancer Science 3 – Metastasis and Invasion 3 – Metastasis Science Cancer www.ipsen.com 2FI 0069 Metastasis and Invasion Tuscany, May 20-23, 2007 24, rue Erlanger – 75016 Paris – Tel.: 33(0)1 44 96 10 10 – Fax: 33(0)1 44 96 11 99 COLLOQUES MÉDECINE ET RECHERCHE Fondation Ipsen SCIENTIFIC REPORT BY APOORVA MANDAVILLI 2 Fondation Ipsen is placed under the auspices of Fondation de France MOLECULAR MARKERS 3 4 Foreword by Inder M. Verma 7 Part I: Molecular markers 9 J. Michael Bishop Senescence and metastasis in mouse models of breast cancer 15 Joan Massagué Metastasis genes and functions 21 Zena Werb Transcriptional regulation of the metastatic program 25 Inder M. Verma BRCA1 maintains constitutive heterochromatin formation: a unifying hypothesis of its function 29 Tak Wah Mak The role of RhoC in development and metastasis 35 Part II: Motility and invasiveness 37 Robert Weinberg Mechanisms of malignant progression 43 Daniel Louvard Fascin, a novel target of b-catenin-Tcf signaling, is expressed at the invasive front of human colon cancer 49 Gerhard Christofori Distinct mechanisms of tumor cell invasion and metastasis 55 Douglas Hanahan Multiple parameters influence acquisition by solid tumors CONTENTS of a capability for invasive growth 59 Part III : Mechanisms of metastasis 61 Richard Hynes Cellular mechanisms contributing to metastasis 67 Ann Chambers Novel imaging approaches for studying tumor metastasis 73 Jeffrey Pollard Macrophages are a cellular toolbox that tumors sequester to promote their progression to malignancy 79 Wolf-Hervé Fridman T effector/memory cells, the ultimate control of metastasis in humans 85 Kari Alitalo Inhibition of lymphangiogenesis and metastasis 91 Shahin Rafii Contribution of CXCR4+VEGFR1+ pro-angiogenic hematopoietic cells to tumor oncogenesis 97 Part IV : Cancer stem cells 99 Paolo Comoglio Invasive growth : a MET-driven genetic program for cancer and stem cells 105 Hans Clevers Wnt and Notch cooperate to maintain proliferative compartments in crypts and intestinal neoplasia 111 Owen N. -
Impact Factor: 3.958/ICV: 4.10 ISSN: 0976-7908 306 BRAINWAVES AS
Impact factor: 3.958/ICV: 4.10 ISSN: 0976-7908 306 Pharma Science Monitor 8(2), Apr-Jun 2017 PHARMA SCIENCE MONITOR AN INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES Journal home page: http://www.pharmasm.com BRAINWAVES AS NEUROPHYSIOLOGICAL OUTCOMES IN NEUROSEDATION Nikhil C. Shah1, Srabona Lahiri1 and Dhrubo Jyoti Sen2* 1Bethany Mission School, Near Ashirwad Flat, Behind Hingraj Society, Mehsana-384002, Gujarat, India 2Shri Sarvajanik Pharmacy College, Gujarat Technological University, Arvind Baug, Mehsana-384001, Gujarat, India ABSTRACT Neural oscillation is rhythmic or repetitive neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons. At the level of neural ensembles, synchronized activity of large numbers of neurons can give rise to macroscopic oscillations, which can be observed in an electroencephalogram. Oscillatory activity in groups of neurons generally arises from feedback connections between the neurons that result in the synchronization of their firing patterns. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. A well- known example of macroscopic neural oscillations is alpha activity. Neural oscillations were observed by researchers as early as 1924 (by Hans Berger). More than 50 years later, intrinsic oscillatory behavior was encountered in vertebrate neurons, but its functional role is still not fully understood. The possible roles of neural oscillations include feature binding, information transfer mechanisms and the generation of rhythmic motor output. -
Nutritional and Herbal Therapies for Children and Adolescents
Nutritional and Herbal Therapies for Children and Adolescents A Handbook for Mental Health Clinicians Nutritional and Herbal Therapies for Children and Adolescents A Handbook for Mental Health Clinicians George M. Kapalka Associate Professor, Monmouth University West Long Branch, NJ and Director, Center for Behavior Modifi cation Brick, NJ AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA Copyright © 2010 Elsevier Inc. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (44) (0) 1865 843830; fax (44) (0) 1865 853333; email: [email protected]. Alternatively, visit the Science and Technology Books website at www.elsevierdirect.com/rights for further information Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material