Musculoskeletal Diagnostic Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Musculoskeletal Diagnostic Imaging Musculoskeletal Diagnostic Imaging Vivek Kalia, MD MPH October 02, 2019 Course: Sports Medicine for the Primary Care Physician Department of Radiology University of Michigan @VivekKaliaMD [email protected] Objectives • To review anatomy of joints which commonly present for evaluation in the primary care setting • To review basic clinical features of particular musculoskeletal conditions affecting these joints • To review key imaging features of particular musculoskeletal conditions affecting these joints Outline • Joints – Shoulder – Hip • Rotator Cuff Tendinosis / • Osteoarthritis Tendinitis • (Greater) Trochanteric bursitis • Rotator Cuff Tears • Hip Abductor (Gluteal Tendon) • Adhesive Capsulitis (Frozen Tears Shoulder) • Hamstrings Tendinosis / Tears – Elbow – Knee • Lateral Epicondylitis • Osteoarthritis • Medical Epicondylitis • Popliteal / Baker’s cyst – Hand/Wrist • Meniscus Tear • Rheumatoid Arthritis • Ligament Tear • Osteoarthritis • Cartilage Wear Outline • Joints – Ankle/Foot • Osteoarthritis • Plantar Fasciitis • Spine – Degenerative Disc Disease – Wedge Compression Deformity / Fracture Shoulder Shoulder Rotator Cuff Tendinosis / Tendinitis • Rotator cuff comprised of 4 muscles/tendons: – Supraspinatus – Infraspinatus – Teres minor – Subscapularis • Theory of rotator cuff degeneration / tearing with time: – Degenerative partial-thickness tears allow superior migration of the humeral head in turn causes abrasion of the rotator cuff tendons against the undersurface of the acromion full-thickness tears may progress to complete (i.e. full- thickness and full-width) tears • When tendinosis / tear suspected, ultrasound and MRI are both viable options to consider – Ultrasound often can be scheduled quicker – MRI provides more “complete” picture of shoulder area Morag Y, Jacobson JA, Miller B, De Maeseneer M, Girish G, Jamadar D. MR imaging of rotator cuff injury: what the clinician needs to know. Radiographics. 2006 Jul-Aug;26(4):1045-65. Shoulder Normal Anatomy SST SST IST SSc TMin Case courtesy of Brendan Cullinane, Radiopaedia.org, rID: 12939 Sagittal T1-weighted MR image shows the Coronal T1-weighted MR image shows the four rotator cuff muscles: supraspinatus tendon traversing the SST = supraspinatus subacromial space and inserting on the IST = infraspinatus greater tuberosity of the humerus Tmin = teres minor SSc = subscapularis Morag Y, Jacobson JA, Miller B, De Maeseneer M, Girish G, Jamadar D. MR imaging of rotator cuff injury: what the clinician needs to know. Radiographics. 2006 Jul-Aug;26(4):1045-65. IMAIOS eAnatomy. Shoulder Normal Radiographic Anatomy Radiology Masterclass, Department of Radiology, New Hall Hospital, Salisbury, Wiltshire, UK, SP5 4EY. Available online at: https://www.radiologymasterclass.co.uk/ Shoulder Normal Radiographic Anatomy Radiology Masterclass, Department of Radiology, New Hall Hospital, Salisbury, Wiltshire, UK, SP5 4EY. Available online at: https://www.radiologymasterclass.co.uk/ Shoulder Normal Radiographic Anatomy Radiology Masterclass, Department of Radiology, New Hall Hospital, Salisbury, Wiltshire, UK, SP5 4EY. Available online at: https://www.radiologymasterclass.co.uk/ Shoulder Rotator Cuff Tendinosis / Tear Coronal T2 fat-saturated MR image shows intermediate Coronal T2 fat-saturated MR image shows fluid-signal hyperintensity (red signal intensity (white arrow) at the supraspinatus tendon arrow) just proximal to the supraspinatus tendon insertion on the greater insertion on the greater tuberosity, consistent with tuberosity, consistent with a high-grade, nearly-full-thickness bursal-sided tendinosis. No fluid defect to suggest an acute tear. tear. Awh, Mark H. RadSource MRI Web Clinic — February 2013. Rotator Cuff Pitfalls. Available at: http://radsource.us/rotator-cuff-pitfalls/ Shoulder Ultrasound vs. MRI for rotator cuff tears? • Both have their advantages and disadvantages • Both sensitive for rotator cuff pathology • One study – 114 patients who underwent arthroscopic repair of a full-thickness rotator cuff tear over a 1-year period – Of these patients, 61 had both preoperative MRI and ultrasound for review – Independent observers agree on findings on MRI more than on ultrasound – More variability on U/S – As tear size increases, the 2 image modalities show greater differences in measurement of tear size and retraction status. – Compared with MRI, ultrasound shows consistently lower reliability in detecting subtle, but clinically important, degeneration of the soft tissue envelope. • Ultrasound may be best used to identify a tear • MRI is superior for use in surgical planning for larger tears Okoroha KR, Mehran N, Duncan J, Washington T, Spiering T, Bey MJ, Van Holsbeeck M, Moutzouros V. Characterization of Rotator Cuff Tears: Ultrasound Versus Magnetic Resonance Imaging. Orthopedics. 2017 Jan 1;40(1):e124-e130. Shoulder Adhesive Capsulitis • AKA Frozen Shoulder • Thickening and contraction of shoulder joint capsule and surrounding synovium • 3 stages: – Freezing (Painful) • Often pts try OTC pain medications at this stage • Pain worsens with time with loss of active and passive ROM • Lasts 3 – 9 months • Associated with acute GH joint synovitis Lateral Medial – Frozen (Transitional) • Most patients progress to this stage • Main feature is loss of ROM, which may cause muscular disuse • Lasts 4 – 12 months – Thawing • Lasts from 12 – 42 months • Gradual return of shoulder mobility Coronal T1-weighted shoulder MR image shows marked thickening and signal hyperintensity of the IGHL (inferior glenohumeral ligament) as well as tendinosis of the supraspinatus tendon. Shoulder Rotator Interval Adhesive Capsulitis • Imaging Diagnosis – Typically done by MRI – IV contrast not required, but does increase specificity – Thickening of the inferior glenohumeral ligament [IGHL] (synonymous with the inferior joint capsule at the axillary Anterior recess) Posterior – Signal alteration in the rotator interval (an anatomic space between the supraspinatus and subscapularis tendons) which the long head biceps tendon traverses through – Thickening of the coracohumeral Sagittal T1-weighted shoulder MR image shows infiltration / replacement of ligament (CHL) the normal expected fat in the rotator interval with intermediate signal tissue Elbow Elbow Lateral Epicondylitis • AKA Tennis Elbow • An overuse syndrome involving the lateral (extensor) tendons of the forearm (i.e. the common extensor tendon, CET) • Predominantly affects the extensor carpi radialis brevis (ECRB) tendon • Imaging Findings: – XR: Up to 25% pts have calcification within soft tissues adjacent to lateral epicondyle – US: Thickening and hypoechogenicity of the CET, possible intra-tendinous calcification, bony irregularity at insertion – MRI: Medial Medial (Ulnar) Side • Thickening of CET and signal hyperintensity at the CET (Radial) Lateral Side origin from the lateral epicondyle • Abnormal thickening and separation of the CET from the radial collateral ligament (RCL) • Partial-thickness or full-thickness tearing of the ECRB tendon • Peritendinous edema and focal bone marrow edema at tendon attachment site Coronal STIR elbow MR image shows marked signal hyperintensity and thickening of the common extensor tendon along the radial (lateral) side of the elbow. Elbow Medial Epicondylitis • AKA Golfer’s Elbow • An overuse syndrome involving the medial (flexor) tendons of the elbow, also known as the common flexor- pronator mass • Less common than lateral epicondylitis • Imaging Findings: – XR: not well defined on XR normally – US: Outward bowing, heterogeneous Medial Medial (Ulnar) Side echogenicity, and thickening of the CFT (Radial) Lateral Side – MRI: • Thickening and signal hyperintensity in the CFT • Soft tissue edema around the CFT Coronal STIR elbow MR image shows marrow edema at the common flexor-pronator mass attachment on the medial epicondyle as well as edema deep to the ulnar collateral ligament Wrist / Hand Wrist Normal Radiographic Anatomy Radiology Masterclass, Department of Radiology, New Hall Hospital, Salisbury, Wiltshire, UK, SP5 4EY. Available online at: https://www.radiologymasterclass.co.uk/ Wrist Normal Radiographic Anatomy Radiology Masterclass, Department of Radiology, New Hall Hospital, Salisbury, Wiltshire, UK, SP5 4EY. Available online at: https://www.radiologymasterclass.co.uk/ Wrist Normal Radiographic Anatomy Radiology Masterclass, Department of Radiology, New Hall Hospital, Salisbury, Wiltshire, UK, SP5 4EY. Available online at: https://www.radiologymasterclass.co.uk/ Wrist Normal Radiographic Anatomy Radiology Masterclass, Department of Radiology, New Hall Hospital, Salisbury, Wiltshire, UK, SP5 4EY. Available online at: https://www.radiologymasterclass.co.uk/ Hand Normal Radiographic Anatomy Radiology Masterclass, Department of Radiology, New Hall Hospital, Salisbury, Wiltshire, UK, SP5 4EY. Available online at: https://www.radiologymasterclass.co.uk/ Hand / Wrist Arthritis • Arthritis is complicated… • Some general guidelines: – CMC = carpometacarpal – CCMC = common CMC – ST = scaphotrapezial – MC = midcarpal – RC = radiocarpal – DRUJ = distal radioulnar joint University of Washington Department of Radiology – “Appendicular Arthritis.” Available at https://rad.washington.edu/about-us/academic-sections/musculoskeletal-radiology/teaching-materials/online-musculoskeletal-radiology-book/appendicular-arthritis/ While we’re at it with arthritis… Knee Hip University of Washington Department of Radiology – “Appendicular Arthritis.” Available at https://rad.washington.edu/about-us/academic-sections/musculoskeletal-radiology/teaching-materials/online-musculoskeletal-radiology-book/appendicular-arthritis/
Recommended publications
  • Evaluation of the Inferior Calcaneal Spurs Influence on Plantar Fascia
    Evaluation of the Inferior Calcaneal Spurs Influence on Plantar Fascia Thickness Clint Jiroux, PMS-II ; Kyle Schwickerath, PMS-II; Frank Felix, PMS-II; Chad Smith, PMS-II; Matt Greenblatt, PMS-II Arizona School of Podiatric Medicine – Midwestern University Printing: This poster is 48” wide by 36” high. It’s STATEMENT OF PURPOSE ANALYSIS & DISCUSSION designed to be printed on a large • Plantar fasciitis is a common pathology associated with plantar heel pain. It is Through ultrasound, our research revealed the spur does not show a reported that in the United States, two million patients are treated for plantar relationship to the thickness of the plantar fascia. Thus, based on our data, printer. fasciitis annually, and accounts for 15% of all foot disorders (1). A frequent diagnostic measurements of the fascia band thickness should not take into association with plantar fasciitis is the presence of an inferior calcaneal heel consideration the presence of a heel spur. This data is supportive to the spur. Often debated by medical professionals; Is the heel spur an incidental or consensus of 4mm being the diagnostic value for plantar fasciitis. Additionally, causation of plantar fasciitis (2-4)? Using ultrasound imaging, the plantar fascia this strengthens support of the heel spur being an incidental finding with plantar Figure 1. Type A inferior calcaneal spur that extends above the plantar fascia. (A) Type B inferior calcaneal Figure 2. Longitudinal ultrasound of the plantar fascia with the presence of an inferior calcaneal spur. (A) A fasciitis. thickness can be quantifiably measured to determine plantar fasciitis. An spur that extends into the plantar fascia.
    [Show full text]
  • Bioarchaeological Implications of Calcaneal Spurs in the Medieval Nubian Population of Kulubnarti
    Bioarchaeological Implications of Calcaneal Spurs in the Medieval Nubian Population of Kulubnarti Lindsay Marker Department of Anthropology Primary Thesis Advisor Matthew Sponheimer, Department of Anthropology Defense Committee Members Douglas Bamforth, Department of Anthropology Patricia Sullivan, Department of English University of Colorado at Boulder April 2016 1 Table of Contents List of Figures ............................................................................................................................. 4 Abstract …................................................................................................................................... 6 Chapter 1: Introduction …........................................................................................................... 8 Chapter 2: Anatomy …................................................................................................................ 11 2.1 Chapter Overview …................................................................................................. 11 2.2 Bone Composition …................................................................................................ 11 2.3 Plantar Foot Anatomy …........................................................................................... 12 2.4 Posterior Foot Anatomy …........................................................................................ 15 Chapter 3: Literature Review and Background of Calcaneal Enthesophytes ............................. 18 3.1 Chapter Overview …................................................................................................
    [Show full text]
  • The Painful Heel Comparative Study in Rheumatoid Arthritis, Ankylosing Spondylitis, Reiter's Syndrome, and Generalized Osteoarthrosis
    Ann Rheum Dis: first published as 10.1136/ard.36.4.343 on 1 August 1977. Downloaded from Annals of the Rheumatic Diseases, 1977, 36, 343-348 The painful heel Comparative study in rheumatoid arthritis, ankylosing spondylitis, Reiter's syndrome, and generalized osteoarthrosis J. C. GERSTER, T. L. VISCHER, A. BENNANI, AND G. H. FALLET From the Department of Medicine, Division of Rheumatology, University Hospital, Geneva, Switzerland SUMMARY This study presents the frequency of severe and mild talalgias in unselected, consecutive patients with rheumatoid arthritis, ankylosing spondylitis, Reiter's syndrome, and generalized osteoarthosis. Achilles tendinitis and plantar fasciitis caused a severe talalgia and they were observed mainly in males with Reiter's syndrome or ankylosing spondylitis. On the other hand, sub-Achilles bursitis more frequently affected women with rheumatoid arthritis and rarely gave rise to severe talalgias. The simple calcaneal spur was associated with generalized osteoarthrosis and its frequency increased with age. This condition was not related to talalgias. Finally, clinical and radiological involvement of the subtalar and midtarsal joints were observed mainly in rheumatoid arthritis and occasionally caused apes valgoplanus. copyright. A 'painful heel' syndrome occurs at times in patients psoriasis, urethritis, conjunctivitis, or enterocolitis. with inflammatory rheumatic disease or osteo- The antigen HLA B27 was present in 29 patients arthrosis, causing significant clinical problems. Very (80%O). few studies have investigated the frequency and characteristics of this syndrome. Therefore we have RS 16 PATIENTS studied unselected groups of patients with rheuma- All of our patients had the complete triad (non- toid arthritis (RA), ankylosing spondylitis (AS), gonococcal urethritis, arthritis, and conjunctivitis).
    [Show full text]
  • Rotator Cuff and Subacromial Impingement Syndrome: Anatomy, Etiology, Screening, and Treatment
    Rotator Cuff and Subacromial Impingement Syndrome: Anatomy, Etiology, Screening, and Treatment The glenohumeral joint is the most mobile joint in the human body, but this same characteristic also makes it the least stable joint.1-3 The rotator cuff is a group of muscles that are important in supporting the glenohumeral joint, essential in almost every type of shoulder movement.4 These muscles maintain dynamic joint stability which not only avoids mechanical obstruction but also increases the functional range of motion at the joint.1,2 However, dysfunction of these stabilizers often leads to a complex pattern of degeneration, rotator cuff tear arthropathy that often involves subacromial impingement.2,22 Rotator cuff tear arthropathy is strikingly prevalent and is the most common cause of shoulder pain and dysfunction.3,4 It appears to be age-dependent, affecting 9.7% of patients aged 20 years and younger and increasing to 62% of patients of 80 years and older ( P < .001); odds ratio, 15; 95% CI, 9.6-24; P < .001.4 Etiology for rotator cuff pathology varies but rotator cuff tears and tendinopathy are most common in athletes and the elderly.12 It can be the result of a traumatic event or activity-based deterioration such as from excessive use of arms overhead, but some argue that deterioration of these stabilizers is part of the natural aging process given the trend of increased deterioration even in individuals who do not regularly perform overhead activities.2,4 The factors affecting the rotator cuff and subsequent treatment are wide-ranging. The major objectives of this exposition are to describe rotator cuff anatomy, biomechanics, and subacromial impingement; expound upon diagnosis and assessment; and discuss surgical and conservative interventions.
    [Show full text]
  • MUSCULOSKELETAL MRI Temporomandibular Joints (TMJ) Temporomandibular Joints (TMJ) MRI - W/O Contrast
    MUSCULOSKELETAL MRI Temporomandibular Joints (TMJ) Temporomandibular joints (TMJ) MRI - W/O Contrast . CPT Code 70336 • Arthritis • TMJ disc abnormality • Osteonecrosis (AVN) Temporomandibular joints (TMJ) MRI - W and W/O Contrast . CPT Code 70336 • Arthritis/Synovitis • Mass/Tumor Chest Chest Wall/Rib, Sternum, Bilateral Pectoralis Muscles, Bilateral Clavicles MRI - W/O Contrast . CPT Code 71550 • Rib fracture, costochondral cartilage injury • Muscle, tendon or nerve injury Chest Wall/Rib, Sternum, Bilateral Pectoralis Muscles, Bilateral Clavicles MRI - W and W/O Contrast . CPT Code 71552 • Mass/Tumor • Infection Upper Extremity (Non-Joint) Scapula MRI - W/O Contrast . CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Scapula MRI - W and W/O Contrast . CPT code 73220 • Mass/Tumor • Infection Humerus, Arm MRI - W/O Contrast . CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Humerus, Arm MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection Forearm MRI - W/O Contrast . CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Forearm MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection Hand MRI - W/O Contrast. CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Hand MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection • Tenosynovitis Finger(s) MRI - W/O Contrast. CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Finger(s) MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection • Tenosynovitis Upper Extremity (Joint) Shoulder MRI - W/O Contrast. CPT Code 73221 • Muscle, tendon (rotator cuff) or nerve injury • Fracture • Osteoarthritis Shoulder MRI - W Contrast (Arthrogram only; no IV contrast) . CPT Code 73222 • Labral (SLAP) tear • Rotator cuff tear Shoulder MRI - W and W/O Contrast .
    [Show full text]
  • Meniscus Tear
    291 North Fireweed Soldotna, AK 99669 907-262-6454 www.kenaipeninsulaortho.com ______________________________________________________________________________________ Orthopaedic Surgeon: Hand and Wrist Specialist: Henry G. Krull, M.D. Edwin D. Vyhmeister, M.D. Meniscus Tear The meniscus is the rubbery, soft cartilage cushion in the knee. There are two of the C-shaped cushions in each knee, a medial (inner) and lateral (outer) meniscus. They sit between the two bones that form the knee joint, and function to cushion and support the knee. The meniscus can tear with injury or degeneration, or a combination of both. The medial meniscus is torn about 10X more frequently than the lateral meniscus. In young people, the meniscus usually tears with an injury. In older people, the cartilage can degenerate (weaken) with age, and can tear with or without an injury; spontaneous tears can occur. Meniscal tears can occur in association with other injuries to the knee. Symptoms: Pain is the usual symptom of complaint with a meniscus tear. There is often a noticeable “pop.” Swelling and stiffness can also occur. Mechanical symptoms are common—clicking, popping, and locking. Sometimes there is just a feeling that something is wrong inside the knee. Pain can be sharp, or can be dull and aching. Meniscus tears do not heal, but sometimes the symptoms dissipate. Chronic, intermittent symptoms is very common. Meniscal tears can cause a feeling of instability, or can cause the knee to buckle or give way. Cause: Injuries, particularly with sports, are a common cause of meniscal tears in young people. As people age, the meniscus tissue weakens through the normal degenerative process, and tears can occur spontaneously, or with simple activities, such as getting up from a chair, and changing direction while walking.
    [Show full text]
  • Regenexx Corporate Brochure
    COMMON CONDITIONS TREATED • neck and back bulging, collapsed, herniated, ruptured, slipped, or torn disc; degenerative disc disease; disc extrusion or protrusion; chronic back, neck, disc, or nerve pain • shoulder arthritis, labral tear or degeneration, recurrent shoulder dislocation, rotator cuff tear, rotator cuff tendonitis, joint replacement • elbow arthritis, instability, nerve entrapment (ulnar nerve), tennis elbow or golfer’s elbow • hand and wrist arthritis, carpal tunnel syndrome, instability, trigger finger, cml joint • hip arthritis, osteonecrosis, bursitis, labral/labrum tear, tendinopathy, joint replacement, avascular necrosis • knee arthritis; instability; sprain or tear of the ACL/PCL, MCL/LCL; meniscus tear, tendinopathy, joint replacement • ankle and foot instability, arthritis, bunions, ligament sprain or tear, plantar fasciitis, achilles tendinopathy Regenexx is the pioneer of interventional orthopedic National Clinic Network to Support Client treatments for musculoskeletal conditions in the Needs United States. These non-surgical procedures use a • FDA Compliant (CFR21 Part 1271) patient’s adult stem cells or blood platelets to initiate • Standardized Procedures and Protocol Quality healing of damaged tissues, tendons, ligaments, Assurance Program cartilage, spinal disc and bone. Our orthobiologic • Nationwide network of clinics and physicians to approach is the result of scientific advancements to support corporate client operations heal orthopedic injuries, treat arthritis and repair • Flexible Lab Platform delivering multiple joint degenerative conditions without the need for customized protocols surgery. • Experienced partners with self-funded companies Regenexx procedures use precisely guided, needle Research and Data Driven To Continuously based injections to concentrate healing factors in Improve Efficacy the precise area of damage while leaving a patient’s • Published over 30 times more research than any musculoskeletal structure intact.
    [Show full text]
  • Billing and Coding: Injections - Tendon, Ligament, Ganglion Cyst, Tunnel Syndromes and Morton's Neuroma (A57079)
    Local Coverage Article: Billing and Coding: Injections - Tendon, Ligament, Ganglion Cyst, Tunnel Syndromes and Morton's Neuroma (A57079) Links in PDF documents are not guaranteed to work. To follow a web link, please use the MCD Website. Contractor Information CONTRACTOR NAME CONTRACT TYPE CONTRACT JURISDICTION STATE(S) NUMBER Noridian Healthcare Solutions, A and B MAC 01111 - MAC A J - E California - Entire State LLC Noridian Healthcare Solutions, A and B MAC 01112 - MAC B J - E California - Northern LLC Noridian Healthcare Solutions, A and B MAC 01182 - MAC B J - E California - Southern LLC Noridian Healthcare Solutions, A and B MAC 01211 - MAC A J - E American Samoa LLC Guam Hawaii Northern Mariana Islands Noridian Healthcare Solutions, A and B MAC 01212 - MAC B J - E American Samoa LLC Guam Hawaii Northern Mariana Islands Noridian Healthcare Solutions, A and B MAC 01311 - MAC A J - E Nevada LLC Noridian Healthcare Solutions, A and B MAC 01312 - MAC B J - E Nevada LLC Noridian Healthcare Solutions, A and B MAC 01911 - MAC A J - E American Samoa LLC California - Entire State Guam Hawaii Nevada Northern Mariana Created on 09/28/2019. Page 1 of 33 CONTRACTOR NAME CONTRACT TYPE CONTRACT JURISDICTION STATE(S) NUMBER Islands Article Information General Information Original Effective Date 10/01/2019 Article ID Revision Effective Date A57079 N/A Article Title Revision Ending Date Billing and Coding: Injections - Tendon, Ligament, N/A Ganglion Cyst, Tunnel Syndromes and Morton's Neuroma Retirement Date N/A Article Type Billing and Coding AMA CPT / ADA CDT / AHA NUBC Copyright Statement CPT codes, descriptions and other data only are copyright 2018 American Medical Association.
    [Show full text]
  • Common Disorders of the Knee
    7/27/2017 Common Disorders of Disclosures the Knee Carlin Senter, MD I have nothing to disclose. Associate Professor Primary Care Sports Medicine UCSF Medicine and Orthopaedics UCSF Essentials of Primary Care August 8, 2017 Knee: Top 3 referral diagnoses from Objectives primary care IM to ortho (at UCSF in 2011) 1. Osteoarthritis (OA) Upon completion of this session, participants should be able to: 2. Anterior knee pain 1. List 4 exam maneuvers for meniscus tear • Patellofemoral pain syndrome 2. List the diagnostic criteria for knee OA • Chondromalacia patella 3. Identify 5 non operative treatment options for knee OA • Patellar tendinopathy 4. Identify indications for surgery for patient with meniscus tear 3. Meniscus tear ‒ Without knee OA ‒ With knee OA 5. Generate a differential diagnosis for chronic anterior knee pain 1 7/27/2017 Case #1 All of the following tests, if positive, would raise concern for a meniscus tear except… 25 y/o man with medial-sided pain and swelling of the R knee for 6 A. Joint line tenderness weeks since he twisted the knee playing soccer. No locking, no instability. B. Pain when he stands and pivots on the knee C. Pain when you axially load and rotate the knee D. Pain when you flex the R knee and extend the R hip with the patient lying on his left side. E. Pain when he squats 4 tests for meniscus tear Joint line tenderness 1. Isolated joint line tenderness 2. McMurray 3. Thessaly 4. Squat Medial: Sensitivity 83%, Specificity 76% Lateral: Sensitivity 68%, Specificity 97% (Konan et al.
    [Show full text]
  • Physical Examination of the Knee: Meniscus, Cartilage, and Patellofemoral Conditions
    Review Article Physical Examination of the Knee: Meniscus, Cartilage, and Patellofemoral Conditions Abstract Robert D. Bronstein, MD The knee is one of the most commonly injured joints in the body. Its Joseph C. Schaffer, MD superficial anatomy enables diagnosis of the injury through a thorough history and physical examination. Examination techniques for the knee described decades ago are still useful, as are more recently developed tests. Proper use of these techniques requires understanding of the anatomy and biomechanical principles of the knee as well as the pathophysiology of the injuries, including tears to the menisci and extensor mechanism, patellofemoral conditions, and osteochondritis dissecans. Nevertheless, the clinical validity and accuracy of the diagnostic tests vary. Advanced imaging studies may be useful adjuncts. ecause of its location and func- We have previously described the Btion, the knee is one of the most ligamentous examination.1 frequently injured joints in the body. Diagnosis of an injury General Examination requires a thorough knowledge of the anatomy and biomechanics of When a patient reports a knee injury, the joint. Many of the tests cur- the clinician should first obtain a rently used to help diagnose the good history. The location of the pain injured structures of the knee and any mechanical symptoms were developed before the avail- should be elicited, along with the ability of advanced imaging. How- mechanism of injury. From these From the Division of Sports Medicine, ever, several of these examinations descriptions, the structures that may Department of Orthopaedics, are as accurate or, in some cases, University of Rochester School of have been stressed or compressed can Medicine and Dentistry, Rochester, more accurate than state-of-the-art be determined and a differential NY.
    [Show full text]
  • My Experience Was Fantastic! I Feel Better, and I Can Walk and Bicycle Again.“ –Gary W
    "My experience was fantastic! I feel better, and I can walk and bicycle again.“ –Gary W. Regenerative Injection Therapy (“RIT”) is an orthopedic approach to healing that is different from traditional orthopedic surgery. Using minimally invasive techniques, our certified physician injects specialized, regenerative cells or growth factor into the precise tissues that need repair. Traditional orthopedic surgery can lead to very serious risk and long, painful recovery. Regenerative Injection Therapy promises no surgical risk, no slings or braces, and participation in a comprehensive hyperbaric oxygen and physical therapy program that is significantly less painful and more functional overall for the patient. Regenerative Injection Therapy offers unique treatment Hyperbaric Oxygen Therapy (“HBOT”) strategies for the following injuries: is a medical treatment that uses pressurized - Disc bulge oxygen to aid in healing wounds and treating - Joint replacement other specific illnesses. The treatment is - Rotator cuff tears administered by placing the patient into a - Ulnar Collateral Ligament (UCL) Tears twelve -person pressure “dive” chamber - Anterior Cruciate Ligament (ACL) Tears delivering oxygen at two to three times - Ankle Ligament Tears atmospheric pressure. HBOT significantly - Meniscus Tears of the Knee accelerates the healing power of your Regenerative Injection Therapy! 11501 Hutchison Blvd Suite 109 Panama City Beach FL 32407 www.readytogetbetter.com Office (850) 502-2015 Fax (866) 854-3159 An Introduction to Regenerative Injection Therapy (RIT) in Orthopedics …from a physician’s perspective Regenerative Injection Therapy (RIT) is an orthopedic approach to healing that is different from traditional orthopedic surgery. Learn about all of the differences between RIT and traditional surgery here. Disc Bulge Surgical approach: Is to perform a discectomy (surgically removing the bulge that is pressing on the spinal nerve).
    [Show full text]
  • Feeling No Pain Conditions We Treat | Acute & Chronic TAC Outcome Reporting | Collected at Each Visit & Discharge
    Feeling No Pain Conditions We Treat | Acute & Chronic TAC Outcome Reporting | Collected at Each Visit & Discharge October 1, 2018 – August 31, 2019 761 cases 3.1 visit average per condition 25 recommended surgeries prevented 87.3% conditions fully resolved 95% said Airrosti helped reduce or eliminate need for medications 94% said Airrosti prevented need for further medical care 99.3% said they would refer friends & family to Airrosti 1 | Why Does Lower Body Pain Occur? . Prolonged time in the same position -Standing or sitting . Poor posture . Imbalances . Muscle inhibition . Limited range of motion . Fatigue -Runners/weekend warriors -Repetitive movements 2 | The Low Body Low Down MSK pain/injuries are typically linked to a lack both mobility and stability within your joints, muscles, and connective tissue. •Understanding that all soft tissue is interconnected - ie. Plantar fascia ties up to low back through connective tissue Pain is a symptom of dysfunction and the last thing to set in. •Similar to the “check engine light” on a car 3 | Chief Complaints . Foot Pain -Plantar Fasciitis / Achilles Tendonitis / Ankle . Knee Pain -Meniscus / Patellar Tendonitis / IT Band . Sciatic-like Symptoms . Hip Pain . Low Back Pain 4 | Low Back Pain . Symptoms . Causes • Difficulty sleeping • Weight • Aching • Hip flexor • Stiffness • Posture • Lifting • Shooting pain • Disc issues . Key Players • Dysfunction or weakness in posterior chain • Core weakness 5 | Hip / Sciatic-like Pain . Symptoms . Key Players • Shooting pain • Hip flexors • Numbness / tingling • Weak glutes • Uncomfortable with prolonged sitting • Piriformis syndrome . Causes • Sedentary to active . True Sciatica • Uneven sitting • Refer to an Ortho - Wallet example 6 | Knee Pain . Symptoms . Key Players • Swelling • Meniscus tear • Instability feeling • Patellar tendonitis • Lack of mobility • IT band syndrome • Pain in or around knee - Sharp or shooting - Aching .
    [Show full text]