Importance of Electrostatically Driven Non-Covalent

Total Page:16

File Type:pdf, Size:1020Kb

Importance of Electrostatically Driven Non-Covalent IMPORTANCE OF ELECTROSTATICALLY DRIVEN NON-COVALENT INTERACTIONS IN ASYMMETRIC CATALYSIS A Dissertation by RAJAT MAJI Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Steven E. Wheeler Co-Chair of Committee, Daniel A Singleton Committee Members, David C Powers Lei Fang Head of Department, Simon W. North August 2018 Major Subject: Chemistry Copyright 2018 Rajat Maji ABSTRACT Computational chemistry has become a powerful tool for understanding the principles of physical organic chemistry and rationalizing and even predicting the outcome of catalytic and non-catalytic organic reactions. Non-covalent interactions are prevalent in organic systems and accurately capturing their impact is vital for the reliable description of myriad chemical phenomena. These interactions impact everything from molecular conformations and stability to the outcome of stereoselective organic reactions and the function of biological macromolecules. Driven by the emergence of density functional theory (DFT) methods that can account for dispersion-driven noncovalent interactions, there has been a renaissance in terms of computational chemistry shaping modern organic chemistry. DFT Studies of the origins of stereoselectivity in asymmetric organocatalytic reactions can not only provide key information on the mode of asymmetric induction, but can also guide future rational catalyst design. We start with an overview of weak intermolecular interactions and aromatic interactions. Special emphasis is given to the methods that one can use to study these ephemeral interactions. We next provide a brief account how computational chemistry has aided our understanding of chiral phosphoric acid (CPA) catalyzed reactions. Thereafter, three case studies showcasing the importance of non-covalent interactions in chiral NHC catalysis, CPA catalysis, and chiral nucleophilic catalysis has been elaborated. Each of these studies highlights the importance of electrostatically-driven non-covalent interactions in controlling reactivity and selectivity. Moreover, ii unprecedented activation modes are identified and new predictive selectivity models developed that can be used to rationalize the outcome of future reactions. Studying these reactions using state of art DFT methods, we aimed not only to contribute to the understanding of their selectivity and the importance of noncovalent interactions in catalysis, but also to bring a sound understanding that will enable the design of new reactions and better catalysts. Overall, this dissertation highlights the underappreciated role of electrostatic interactions in controlling reactivity and selectivity in asymmetric catalysis. iii DEDICATION To my parents, family, teachers, friends! iv ACKNOWLEDGEMENTS I would like to take this opportunity to thank everyone who had left a memorable mark in my journey. First and foremost, I would like to thank my advisor, Prof. Steven Wheeler, for giving me the opportunity to work in his group. He knew I had no formal exposure to computational chemistry and was still kind enough to welcome me in his group when I decided to switch in my 3rd year of grad school. In retrospect, I can proudly say that this was certainly the best decision I have taken to date. Steven spent an enormous amount of time working with me, teaching me how to run calculations. There are far too many things to enumerate in this page, for which I owe him this gratitude. His attention to promote students’ scientific and career development via custom-tailored research topics contributes a lot to creating a well-rounded experience and preparing for life after graduation. He was more than a research advisor to me. Not only he is an excellent guide and a nice and approachable person whom I really I enjoyed working with but also he has provided me a terrific role model of what an advisor should be. If you are reading this, Boss, I hope you know how grateful I am to you. Although I am sad to be leaving, I am looking forward to see exciting science from our lab in future. I also want to thank his wife Margaret for her friendly presence and discussions during my time in the Wheeler group. I owe a great debt to Prof. Daniel A Singleton, who is also my co-supervisor. DAS is a stalwart in this area and it has been a privilege to have him in my committee. I am extremely grateful for the time and effort he has put into scrutinizing my work with a fine-toothed comb for the last four years! I have also thoroughly enjoyed countless v stimulating conversation with him and his insightful comments have been useful over the years in helping me develop my intuition as a chemist. Most of all, I value his highly interactive teaching style and the philosophical discussions that he promotes! Although Prof. Powers and Prof. Fang are new to my committee, I have already gotten to know them quite well, thanks to several departmental events and some close friends. They agreed to serve on my committee within a very short notice and I really appreciate them devoting valuable time. Special thanks to my previous committee members Prof. David Bergbeiter and Prof. W. Liu for all their help. The Wheeler group members, past and present, made every day of research in the lab a happy and exciting experience. It was a pleasure to be a part of a dynamic, supportive and friendly research group. I would like to thank Yi, Trevor, Yanfei, Sharath, Andrea, Drew, Bryan, Stephen, Victoria, Aarya, and Juni for being awesome lab mates…you guys are amazing and I wish you all the best in your respective career. I will treasure the moments that I spent with you all during my time in the Wheeler group. A special shout out goes to Stephen for providing me shelter during my visits to Athens, which meant a lot to me. Thank you! I have to single out Sharath for a second. Not only because he is the only person in the group with whom I have been working in multiple projects but also his excitement about chemistry and eagerness to learn is what I admire the most. This research would not have been possible without a number of other very enthusiastic collaborators like Pier Alexander Champagne and Heena Ugale. I also consider myself lucky to have had a chance to closely work with Prof. Ken Houk’s group at UCLA. vi I was fortunate to have supportive departmental staff during my tenure as a grad student at Texas A & M. I am extremely grateful to Sandy Manning and Julie Zercher in particular for their constant support. I am also thankful to Dr. Amber Schafer for her numerous advice related to teaching. I would like to thank my teachers without whose influence I could have been anything except a chemist. I am grateful to late Dr. Arunava Sen for squandering life- long dream of my parents’ to send their only child in medical school. I can’t thank him ever enough for all his teaching, motivation and of course ruining my parents plans! I also must thank Dr. Chandan Saha and Dr. Atanu Bhattacharya for their passionate teaching in organic chemistry that left an indelible impression in my mind. My roots as a researcher come from working in the labs of Prof. Tanmaya Pathak and Prof. Saumen Hajra at IIT Kharagpur. They not only taught me different synthetic chemistry skills but also the importance of rigorous work in a lab that helped me in my perseverance and consistency in grad school. Life in College Station would not have been nearly as enjoyable as it was without all of my friends. Every time when I found myself lost in the trenches of grad school, their inspiration and support kept me going. I am fortunate to have several great friends in the department whom I had the pleasure of working with in different student organizations: Trang, Courtney, Tan, Peerada, Ryan, Zhengyang to name a few. Brateen and Bibaswan deserve special mention for hosting me when I first arrived in College Station. Yindrila will remain forever one of the most influential people in my life. She was truly a great mentor and this journey would have been a little less interesting if I had vii missed out those opportunities to bully her! Her friendship and compassion is something that I will cherish forever. Shyamalendu was a fantastic roommate over the years in grad school and I really enjoyed discussing politics, making travel plans, and engaging in wild gossip mostly after 3 AM when we finally got a chance to see each other! Arghya, Srobona, Deepika and Vangmayee were great batch mates and we had a lot of fun in our first year. “Parar Maye” Isita epitomizes the art of culinary skills in College Station and fed us numerous times. It was wonderful to have people like Sanjoy, Asim, Anuvab, Indra da who are always willing to engage in scientific discussions and offer some great insights. I am thankful to my surrogate family here at College Station: Sayan Saha, Bacha Sayan, Anushree, Nandini, Nairita, Sagnika, Raka, Sajal, Sougata and the list goes on. I am also fortunate to have several great friends outside chemistry courtesy to Riad, Shahina, Piyali, Farida for their warm friendship. Thank you all for accepting me with open arms and making College Station a home away from home. I could not more proud to have someone like Bakwas in my life. She stood by my side firmly during my darkest time and believed in me. Her patience, love, trust and support means the world to me. I am looking forward to have many more travels, flights and disagreements in rest of our life! Finally, I am eternally thankful to my family and close relatives for their constant love and support and that’s why this work is dedicated to them.
Recommended publications
  • Unhindered Triangulene Salt Pairs: Substitution- Dependent Contact Ion Pairing and Complex Solvent- Separated Discotic Ions in Solution
    University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2015 UNHINDERED TRIANGULENE SALT PAIRS: SUBSTITUTION- DEPENDENT CONTACT ION PAIRING AND COMPLEX SOLVENT- SEPARATED DISCOTIC IONS IN SOLUTION Subrahmanyam Modekrutti University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Modekrutti, Subrahmanyam, "UNHINDERED TRIANGULENE SALT PAIRS: SUBSTITUTION-DEPENDENT CONTACT ION PAIRING AND COMPLEX SOLVENT-SEPARATED DISCOTIC IONS IN SOLUTION" (2015). Theses and Dissertations--Chemistry. 50. https://uknowledge.uky.edu/chemistry_etds/50 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Modification of Resins for Their Use in the Separation, Preconcentration and Determination of Metal Ions
    MODIFICATION OF RESINS FOR THEIR USE IN THE SEPARATION, PRECONCENTRATION AND DETERMINATION OF METAL IONS BY AKIL AHMAD Under the supervision of Dr. Aminul Islam Department of Chemistry Submitted in fulfillment of the requirement of the degree of Doctor of Philosophy DEPARTMENT OF CHEMISTRY ALIGARH MUSLIM UNIVERSITY ALIGARH (INDIA) 2011 DEPARTMENT OF CHEMISTRY ALIGARH MUSLIM UNIVERSITY AMINUL ISLAM ALIGARH– 202002, INDIA PhD E-mail: [email protected] Assistant Professor Ph: (Off) 91-571-2703515 Analytical Chemistry Mob.: 91- 9358979659 DATE- 18th May, 2011 Certificate This is to certify that the thesis entitled “Modification of resins for their use in the separation, preconcentration and determination of metal ions ” being submitted by Mr. Akil Ahmad, for the award of Doctor of Philosophy in Chemistry, is a bonafide research work carried out by him under my supervision. The thesis, to my knowledge, fulfills the requirements for submission for the award of the degree of Doctor of Philosophy in Chemistry. Dr. Aminul Islam Dedicated in the memory of my Abba Acknowledgement At the outset, I wish to pay my most humble obeisance to the almighty Allah for giving me the wisdom and inspiration to take up this task. It has been Thy guiding hand that has brought this task to a successful completion. I express my deepest respect and the most sincere gratitude to my esteemed supervisor Dr. Aminul Islam for his scholastic guidance and ungrudged encouragement throughout the course of research work. His systematic and analytical approach blended with constructive criticism and innovative ideas helped me to understand the basics of research and to overcome many experimental hurdles.
    [Show full text]
  • E-Publications@Marquette C–H/Π and C–H–O Interactions in Concert
    Marquette University e-Publications@Marquette Chemistry Faculty Research and Publications Chemistry, Department of 3-12-2019 C–H/π and C–H–O Interactions in Concert: A Study of the Anisole–Methane Complex using Resonant Ionization and Velocity Mapped Ion Imaging James Makuvaza Damian Kokkin John Loman Scott A. Reid Follow this and additional works at: https://epublications.marquette.edu/chem_fac Part of the Chemistry Commons Marquette University e-Publications@Marquette Chemistry Faculty Research and Publications/College of Arts and Sciences This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation below. Journal of Physical Chemistry : A, Vol. 123, No. 13 (March 12, 2019): 2874-2880. DOI. This article is © American Chemical Society and permission has been granted for this version to appear in e- Publications@Marquette. American Chemical Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from American Chemical Society. C–H/π and C–H–O Interactions in Concert: A Study of the Anisole–Methane Complex using Resonant Ionization and Velocity Mapped Ion Imaging James T. Makuvaza Department of Chemistry, Marquette University, Milwaukee, Wisconsin Damian L. Kokkin Department of Chemistry, Marquette University, Milwaukee, Wisconsin John L. Loman Department of Chemistry, Marquette University, Milwaukee, Wisconsin Scott A. Reid Department of Chemistry, Marquette University, Milwaukee, Wisconsin Abstract Noncovalent forces such as hydrogen bonding, halogen bonding, π–π stacking, and C–H/π and C–H/O interactions hold the key to such chemical processes as protein folding, molecular self-assembly, and drug– substrate interactions.
    [Show full text]
  • Forty-First DOE Solar Photochemistry P.I. Meeting
    Proceedings of the Forty-First DOE Solar Photochemistry P.I. Meeting Gaithersburg Marriott Washingtonian Center Gaithersburg, Maryland June 3-5, 2019 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy FOREWORD The 41st Department of Energy Solar Photochemistry Principal Investigators’ Meeting, sponsored by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, is being held June 3-5, 2019 at the Washingtonian Marriott in Gaithersburg, Maryland. These proceedings include the meeting agenda, abstracts of the formal presentations and posters, and a list of participants. The Solar Photochemistry Program supports fundamental, molecular-level research on solar energy capture and conversion in the condensed phase and at interfaces. This conference is the annual meeting of the grantees who conduct research with support from this Program. The gathering is intended to facilitate the exchange of ideas and foster collaboration among these researchers. The meeting this year features an invited presentation by Harry Atwater, Director of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is the Department of Energy’s Fuels from Sunlight Energy Innovation Hub, a multi-investigator research and development center that was established in 2010 and renewed in 2015. Its mission is currently focused on creating a scientific foundation for the solar-driven conversion of carbon dioxide into renewable transportation fuels. Prof. Atwater will tell us about recent JCAP discoveries and research accomplishments. I would like to express my thanks to Justin Johnson who continues to spend part of his time as a detailee for the Solar Photochemistry Program, assisting with numerous critical behind-the- scenes tasks.
    [Show full text]
  • The Cation-Π Interaction
    NIH Public Access Author Manuscript Acc Chem Res. Author manuscript; available in PMC 2014 March 18. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Acc Chem Res. 2013 April 16; 46(4): 885–893. doi:10.1021/ar300265y. The Cation-π Interaction DENNIS A. DOUGHERTY Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 CONSPECTUS The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author’s perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forgo aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of + + the cation-π interaction – Li binds to benzene with 38 kcal/mol of binding energy; NH4 with 19 kcal/mol– distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2 – 5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions.
    [Show full text]
  • American Chemical Society Division of Organic Chemistry 243Rd ACS National Meeting, San Diego, CA, March 25-29, 2012
    American Chemical Society Division of Organic Chemistry 243rd ACS National Meeting, San Diego, CA, March 25-29, 2012 A. Abdel-Magid, Program Chair; R. Gawley, Program Chair SUNDAY MORNING Ralph F. Hirschmann Award in Peptide Chemistry: Symposium in Honor of Jeffery W. Kelly D. Huryn, Organizer; D. Huryn, Presiding Papers 1-4 Biologically-Related Molecules and Processes A. Abdel-Magid, Organizer; T. Altel, Presiding Papers 5-16 New Reactions and Methodology A. Abdel-Magid, Organizer; N. Bhat, Presiding Papers 17-28 Asymmetric Reactions and Syntheses A. Abdel-Magid, Organizer; D. Leahy, Presiding Papers 29-39 Material, Devices, and Switches A. Abdel-Magid, Organizer; S. Thomas, Presiding Papers 40-49 SUNDAY AFTERNOON James Flack Norris Award in Physical Organic Chemistry: Symposium to Honor Hans J. Reich G. Weisman, Organizer; G. Weisman, Presiding Papers 50-53 Understanding Additions to Alkenes D. Nelson, Organizer; D. Nelson, Presiding Papers 54-61 Biologically-Related Molecules and Processes A. Abdel-Magid, Organizer; B. C. Das, Presiding Papers 62-73 New Reactions and Methodology A. Abdel-Magid, Organizer; T. Minehan, Presiding Papers 74-85 Asymmetric Reactions and Syntheses A. Abdel-Magid, Organizer; A. Mattson, Presiding Papers 86-97 Material, Devices, and Switches A. Abdel-Magid, Organizer; Y. Cui, Presiding Papers 98-107 SUNDAY EVENING Material, Devices, and Switches, Molecular Recognition, Self-Assembly, Peptides, Proteins, Amino Acids, Physical Organic Chemistry, Total Synthesis of Complex Molecules R. Gawley, Organizer Papers 108-257 MONDAY MORNING Herbert C. Brown Award for Creative Research in Synthetic Organic Chemistry: Symposium in Honor of Jonathan A. Ellman S. Sieburth, Organizer; S. Sieburth, Presiding Papers 258-261 Playing Ball: Molecular Recognition and Modern Physical Organic Chemistry C.
    [Show full text]
  • A Medicinal Chemist's Guide to Molecular Interactions
    J. Med. Chem. 2010, 53, 5061–5084 5061 DOI: 10.1021/jm100112j A Medicinal Chemist’s Guide to Molecular Interactions Caterina Bissantz, Bernd Kuhn, and Martin Stahl* Discovery Chemistry, F. Hoffmann-La Roche AG, CH-4070 Basel, Switzerland Received January 27, 2010 Introduction have multiple effects. One can easily fall victim to confirma- tion bias, focusing on what one has observed before and Molecular recognition in biological systems relies on the building causal relationships on too few observations. In existence of specific attractive interactions between two part- reality, the multiplicity of interactions present in a single ner molecules. Structure-based drug design seeks to identify protein-ligand complex is a compromise of attractive and and optimize such interactions between ligands and their host repulsive interactions that is almost impossible to deconvo- molecules, typically proteins, given their three-dimensional lute. By focusing on observed interactions, one neglects a large structures. This optimization process requires knowledge part of the thermodynamic cycle represented by a binding free about interaction geometries and approximate affinity con- energy: solvation processes, long-range interactions, confor- tributions of attractive interactions that can be gleaned from mational changes. Also, crystal structure coordinates give crystal structure and associated affinity data. misleadingly static views of interactions. In reality a macro- Here we compile and review the literature on molecular molecular complex is not characterized by a single structure interactions as it pertains to medicinal chemistry through a but by an ensemble of structures. Changes in the degrees of combination of careful statistical analysis of the large body of freedom of both partners during the binding event have a large publicly available X-ray structure data and experimental and impact on binding free energy.
    [Show full text]
  • CH-Π Interactions Play a Central Role in Protein Recognition of Carbohydrates
    CH-π interactions play a central role in protein recognition of carbohydrates by Roger Christopher Diehl B.S. Biochemistry University of Wisconsin-Madison, 2012 M.S. Biochemistry University of Wisconsin-Madison, 2017 SUBMITTED TO THE DEPARTMENT OF CHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2021 ©2021 Massachusetts Institute of Technology. All rights reserved. Signature of Author:____________________________________________________ Department of Chemistry January 15, 2021 Certified by:_________________________________________________________ Laura L. Kiessling Novartis Professor of Chemistry Thesis Supervisor Accepted by:_________________________________________________________ Adam Willard Associate Professor Graduate Officer 1 This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Barbara Imperiali…………………………………………………………………………………………………. Thesis Committee Chair Class of 1922 Professor of Chemistry and Biology Professor Laura L. Kiessling…………………………………………………………………………………………………. Thesis Supervisor Novartis Professor of Chemistry Professor Matthew D. Shoulders…………………………………………………………………………………………… Thesis Committee Member Assistant Professor of Chemistry 2 CH-π interactions play a central role in protein recognition of carbohydrates by Roger Christopher Diehl Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy at
    [Show full text]
  • Use of Anion–Aromatic Interactions to Position the General Base in the Ketosteroid Isomerase Active Site
    Use of anion–aromatic interactions to position the general base in the ketosteroid isomerase active site Jason P. Schwansa, Fanny Sundena, Jonathan K. Lassilaa, Ana Gonzalezb, Yingssu Tsaib,c, and Daniel Herschlaga,c,1 Departments of aBiochemistry and cChemistry, Stanford University, Stanford, CA 94305; and bStanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA 94025 Edited* by JoAnne Stubbe, Massachusetts Institute of Technology, Cambridge, MA, and approved May 29, 2013 (received for review April 20, 2012) Although the cation–pi pair, formed between a side chain or sub- the aromatic ring favors positioning oxygen atoms around the ring strate cation and the negative electrostatic potential of a pi system edge (13). Howell and coworkers recently carried out a much on the face of an aromatic ring, has been widely discussed and has larger scale analysis and showed that the anionic oxygen atoms of been shown to be important in protein structure and protein–ligand Asp and Glu carboxylate groups are commonly situated near the interactions, there has been little discussion of the potential structural ring edge of the aromatic residues in protein structures (8, 9). and functional importance in proteins of the related anion–aromatic These results and prior computational studies in small molecule pair (i.e., interaction of a negatively charged group with the positive systems have suggested that anion–aromatic pairs play important electrostatic potential on the ring edge of an aromatic group). We roles in protein stability and ligand binding, with energies similar posited, based on prior structural information, that anion–aromatic to those of cation–pi interactions (8, 9).
    [Show full text]
  • FAGNANI D.Pdf
    HYDROGEN BOND DIRECTED SELF-ASSEMBLY OF ARENES By DANIELLE ELIZABETH FAGNANI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Danielle Elizabeth Fagnani To the forthcoming peruser ACKNOWLEDGMENTS I first thank my family for their endless cheer and support. My dad, mom, and brother each have been essential in this journey away from home. I am grateful that we can share in all these moments. My sincerest gratitude goes to my advisor, Prof. Ron Castellano. I thank him for sharing his expertise in conducting scientific research, providing a profound and joyful understanding of chemistry, and offering guidance beyond the molecules. The encouragement he provided throughout the entirety of my doctoral studies is truly appreciated beyond words. I thank all my labmates for being an excellent group of people to spend my time with in Sisler Hall and for teaching me something new every day. I thank Drs. Raghida Bou Zerdan and Davita Watkins for their everlasting mentorship and for inspiring me to be a better chemist. I thank Renan for sharing his synthetic prowess, Ashton for her optimism, Asme and Lei for being magnificent teammates, and Ania (and Cher) for always lending a helping hand and never letting a dull moment pass. I thank Dylan for providing me with a wonderful mentoring experience, and Will and Elham for their cheerful energy. I thank all my collaborators, especially Dr. Jiangeng Xue and his student Daken Starkenburg. I thank my committee members, Dr.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Bridging Molecular
    UNIVERSITY OF CALIFORNIA, IRVINE Bridging Molecular Properties to Emergent Bulk Performance for Rational Design of Advanced Dynamic Materials DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry by Jaeyoon Chung Dissertation Committee: Professor Zhibin Guan, Chair Professor Aaron P. Esser-Kahn Professor Kenneth J. Shea 2016 Chapter 2 © 2014 Nature Publishing Groups Chapter 3 © 2015 American Chemical Society All other materials © 2016 Jaeyoon Chung DEDICATION To Ye Pei my better half in every way ii TABLE OF CONTENTS Page LIST OF SCHEMES vii LIST OF FIGURES viii LIST OF TABLES xi ACKNOWLEDGMENTS xii CURRICULUM VITAE xiv ABSTRACT OF THE DISSERTATION xix CHAPTER 1: Dynamic Bonds for Advanced Materials and Their Correlation to Molecular Properties 1.1 Dynamic Molecular Processes in Dynamic Materials 1 1.2 Titin-mimicking Synthetic Materials 4 1.2.1 Titin Nanomechanics demonstrates Molecule Mechanism for its Toughness 4 1.2.2 Synthetic Titin-mimicking Tough Materials 7 1.3 Self-healing Materials 11 1.3.1 Intrinsic Self-healing Materials 13 1.3.2 Capsule-based Self-healing Materials 22 1.3.3 Vascular Self-healing Materials 27 1.4 Vitrimers: Organic Networks with Vitreous Fluidity 31 1.5 Conclusions, Outlook, and Goal of the Thesis 36 1.6 References 40 iii CHAPTER 2: Direct Correlation of Single Molecule Properties with Bulk Mechanical Performance for Biomimetic Design of Advanced Polymers 2.1 Introduction 53 2.1.1 Utilizing Single Molecule Force Spectroscopy for Molecule-to-bulk
    [Show full text]
  • Synthesis and Structural Characterization of 20-Membered Macrocyclic Rings Bearing Trans-Chelating Bis(N-Heterocyclic Carbene)
    Dalton Transactions Synthesis and structural characterization of 20-membered macrocyclic rings bearing trans-chelating bis(N-heterocyclic carbene) ligands and the catalytic activity of their palladium(II) complexes Journal: Dalton Transactions Manuscript ID DT-ART-05-2019-002147.R3 Article Type: Paper Date Submitted by the 18-Jul-2019 Author: Complete List of Authors: Thapa, Rajesh; University of Arkansas Fayetteville, Chemistry and Biochemistry Kilyanek, Stefan; University of Arkansas Fayetteville, Chemistry and Biochemistry Page 1 of 14 PleaseDalton do not Transactions adjust margins ARTICLE Synthesis and structural characterization of 20-membered macrocyclic rings bearing trans-chelating bis(N-heterocyclic carbene) ligands and the catalytic activity of their palladium(II) Received 00th January 20xx, Accepted 00th January 20xx complexes DOI: 10.1039/x0xx00000x Rajesh Thapa and Stefan M. Kilyanek*a Macrocycles consisting of a 20-membered ring containing two imidazolium salt functionalities and of the formula [PhCH2N(CH2CH2CH2)Im(CH2CH2CH2)2][Br]2 (Im = imidazole = 3a, benzimidazole = 3b) were synthesized in 70-75% yields. These salts serve as precursors to macrocycles containing two N-heterocyclic carbene (NHC) moieties. Reaction of the macrocyclic salts 3a and 3b with silver oxide afforded macrocyclic-bis(NHC)silver(I) complexes 4a and 4b. Single-crystal X- ray diffraction studies of macrocyclic-bis(NHC)silver(I) complex 4a revealed a tetranuclear silver core with a short Ag-Ag distance (2.9328 Å). Complexes 4a and 4b serve as carbene transfer reagents to Pd. The treatment of macrocyclic- bis(NHC)silver(I) complexes 4a and 4b with one equivalent of PdCl2(MeCN)2 in methylene chloride afforded square-planar trans-macrocyclic-bis(NHC)Pd(II)X2 complexes 5a and 5b.
    [Show full text]