Algorithms for Finite-Dimensional Lie Algebras
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Unbroken Spectrum of Frobenius Seaweeds II: Type-B and Type-C
The unbroken spectrum of Frobenius seaweeds II: type-B and type-C Alex Cameron∗, Vincent E. Coll, Jr.∗∗, Matthew Hyatt†, and Colton Magnant†† July 23, 2019 ∗Department of Mathematics, Lehigh University, Bethlehem, PA, USA: [email protected] ∗∗Department of Mathematics, Lehigh University, Bethlehem, PA, USA: [email protected] †FactSet Research Systems, New York, NY, USA: [email protected] †† Department of Mathematics, Clayton State University, Morrow, GA, USA: [email protected] Abstract Analogous to the Type-An−1 = sl(n) case, we show that if g is a Frobenius seaweed subalgebra of Bn = so(2n +1) or Cn = sp(2n), then the spectrum of the adjoint of a principal element consists of an unbroken set of integers whose multiplicities have a symmetric distribution. Mathematics Subject Classification 2010 : 17B20, 05E15 Key Words and Phrases: Frobenius Lie algebra, seaweed, biparabolic, principal element, Dynkin diagram, spectrum, regular functional, Weyl group 1 Introduction Notation: All Lie algebras will be finite dimensional over C, and the Lie multiplication will be denoted by [-,-]. The index of a Lie algebra is an important algebraic invariant and, for seaweed algebras, is bounded by the algebra’s rank: ind g ≤ rk g, (see [11]). More formally, the index of a Lie algebra g is given by arXiv:1907.08775v1 [math.RT] 20 Jul 2019 ind g = min dim(ker(BF )), F ∈g∗ where F is a linear form on g, and BF is the associated skew-symmetric bilinear Kirillov form, defined by BF (x,y) = F ([x,y]) for x,y ∈ g. On a given g, index-realizing functionals are called regular and exist in profusion, being dense in both the Zariski and Euclidean topologies of g∗. -
(Bi)Parabolic Subalgebras in the Reductive Lie Algebras. Karin Baur, Anne Moreau
Quasi-reductive (bi)parabolic subalgebras in the reductive Lie algebras. Karin Baur, Anne Moreau To cite this version: Karin Baur, Anne Moreau. Quasi-reductive (bi)parabolic subalgebras in the reductive Lie algebras.. 2008. hal-00348974v1 HAL Id: hal-00348974 https://hal.archives-ouvertes.fr/hal-00348974v1 Preprint submitted on 22 Dec 2008 (v1), last revised 30 Jun 2010 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. QUASI-REDUCTIVE (BI)PARABOLIC SUBALGEBRAS IN THE REDUCTIVE LIE ALGEBRAS. KARIN BAUR AND ANNE MOREAU Abstract. Let g be a finite dimensional Lie algebra, and z its center. We say that g is quasi- reductive if there is f ∈ g∗ such that g(f)/z is a reductive Lie algebra whose center consists of semisimple elements, where g(f) denotes the stabilizer of f in g for the coadjoint action. If g is reductive, then g is quasi-reductive itself, and also every Borel or Levi subalgebra of g. However the parabolic subalgebras of g are not always quasi-reductive (except in types A or C, see [P03]). Biparabolic (or seaweed) subalgebras are the intersection of two parabolic subalgebras whose sum is g. -
The Derived Algebra of a Stabilizer, Families of Coadjoint Orbits, and Sheets, Arxiv:1202.1135V2 (2012)
The derived algebra of a stabilizer, families of coadjoint orbits, and sheets Anton Izosimov∗ Abstract Let g be a finite-dimensional real or complex Lie algebra, and let µ ∈ g∗. In the first part of the paper, the relation is discussed between the derived algebra of the stabilizer of µ and the set of coadjoint orbits which have the same dimension as the orbit of µ. In the second part, semisimple Lie algebras are considered, and the relation is discussed between the derived algebra of a centralizer and sheets. 1 Introduction Let g be a finite-dimensional real or complex Lie algebra. The group G acts on the dual space g∗ via the coadjoint action, and g∗ is foliated into the orbits of this action. Consider the union of all orbits ∗ ∗ which have the same codimension k. Denote this union by gk. Each of the sets gk is a quasi-affine ∗ algebraic variety. The study of the varieties gk was initiated by A.Kirillov in connection with the orbit method [6], which relates the unitary dual of G to the set of coadjoint orbits g∗/G. The sets ∗ ∗ gk/G appear in this picture as natural strata of g /G, therefore it is important to understand the ∗ geometry of gk for each k. ∗ So, consider a finite-dimensional real or complex Lie algebra g. Let gµ = {x ∈ g | ad x(µ)=0} be the stabilizer of an element µ ∈ g∗ with respect to the coadjoint representation of g. In the present note, the following simple geometric fact is proved: any element ξ ∈ g∗ which is tangent ∗ ∗ to the variety gk at a point µ ∈ g vanishes on the derived algebra of gµ. -
Periodic Automorphisms of Takiff Algebras, Contractions, and Θ-Groups
October 15, 2007 PERIODIC AUTOMORPHISMS OF TAKIFF ALGEBRAS, CONTRACTIONS, AND θ-GROUPS DMITRI I. PANYUSHEV INTRODUCTION Let G be a connected reductive algebraic group with Lie algebra g. The ground field | is algebraically closed and of characteristic zero. Fundamental results in invariant theory of the adjoint representation of G are primarily associated with C. Chevalley and B. Kostant. Especially, one should distinguish the ”Chevalley restriction theorem” and seminal article of Kostant [5]. Later, Kostant and Rallis extended these results to the isotropy representa- tion of a symmetric variety [6]. In 1975, E.B. Vinberg came up with the theory of θ-groups. This theory generalises and presents in the most natural form invariant-theoretic results previously known for the adjoint representation and isotropy representations of the sym- metric varieties. Let us remind the main construction and results of Vinberg's article [15]. Let θ Aut(g) 2 be a periodic (= finite order) automorphism of g. The order of θ is denoted by θ . Fix a jθj j j primitive root of unity ζ = p1 and consider the periodic grading (or Zjθj-grading) g = gi ; i Z M2 jθj i θ where gi is the ζ -eigenspace of θ. In particular, g0 = g is the fixed point subalgebra for θ. Let G0 be the connected subgroup of G with Lie algebra g0. The restriction of the adjoint representation yields the natural homomorphism G GL(g ). The linear groups 0 ! 1 obtained in this way are called θ-groups, and the point is that they have the best possible invariant-theoretic properties: |[g ]G0 is a polynomial algebra; • 1 the quotient morphism π : g g ==G = Spec(|[g ]G0 ) is flat; • 1 ! 1 0 1 each fibre of π contains finitely many G -orbits. -
Coadjoint Orbits of Lie Algebras and Cartan Class
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 15 (2019), 002, 20 pages Coadjoint Orbits of Lie Algebras and Cartan Class Michel GOZE y and Elisabeth REMM z y Ramm Algebra Center, 4 rue de Cluny, F-68800 Rammersmatt, France E-mail: [email protected] z Universit´ede Haute-Alsace, IRIMAS EA 7499, D´epartement de Math´ematiques, F-68100 Mulhouse, France E-mail: [email protected] Received September 13, 2018, in final form December 31, 2018; Published online January 09, 2019 https://doi.org/10.3842/SIGMA.2019.002 Abstract. We study the coadjoint orbits of a Lie algebra in terms of Cartan class. In fact, the tangent space to a coadjoint orbit O(α) at the point α corresponds to the characteristic space associated to the left invariant form α and its dimension is the even part of the Cartan class of α. We apply this remark to determine Lie algebras such that all the nontrivial orbits (nonreduced to a point) have the same dimension, in particular when this dimension is 2 or 4. We determine also the Lie algebras of dimension 2n or 2n + 1 having an orbit of dimension 2n. Key words: Lie algebras; coadjoint representation; contact forms; Frobenius Lie algebras; Cartan class 2010 Mathematics Subject Classification: 17B20; 17B30; 53D10; 53D05 1 Introduction Let G be a connected Lie group, g its Lie algebra and g∗ the dual vector space of g. We identify g with the Lie algebra of left invariant vector fields on G and g∗ with the vector space of left invariant Pfaffian forms on G. -
LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0. -
Invariant Nijenhuis Tensors and Integrable Geodesic Flows
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 15 (2019), 056, 30 pages Invariant Nijenhuis Tensors and Integrable Geodesic Flows Konrad LOMPERT y and Andriy PANASYUK z y Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland E-mail: [email protected] z Faculty of Mathematics and Computer Science, University of Warmia and Mazury, ul. Sloneczna 54, 10-710 Olsztyn, Poland E-mail: [email protected] Received December 19, 2018, in final form August 02, 2019; Published online August 07, 2019 https://doi.org/10.3842/SIGMA.2019.056 Abstract. We study invariant Nijenhuis (1; 1)-tensors on a homogeneous space G=K of a reductive Lie group G from the point of view of integrability of a Hamiltonian system of differential equations with the G-invariant Hamiltonian function on the cotangent bun- ∗ ∗ dle T (G=K). Such a tensor induces an invariant Poisson tensor Π1 on T (G=K), which is Poisson compatible with the canonical Poisson tensor ΠT ∗(G=K). This Poisson pair can be reduced to the space of G-invariant functions on T ∗(G=K) and produces a family of Poisson commuting G-invariant functions. We give, in Lie algebraic terms, necessary and sufficient conditions of the completeness of this family. As an application we prove Liouville integra- bility in the class of analytic integrals polynomial in momenta of the geodesic flow on two series of homogeneous spaces G=K of compact Lie groups G for two kinds of metrics: the normal metric and new classes of metrics related to decomposition of G to two subgroups G = G1 · G2, where G=Gi are symmetric spaces, K = G1 \ G2. -
Symmetric Spaces of Hermitian Type
Differential Geometry and its Applications 1 (1991) 195-233 195 North-Holland Symmetric spaces of Hermitian type G. ‘Olafsson Mathematisches Znstitut der Uniuersitit Giittingen, Bunsenstraj?e 3-5, D-3400 Giittingen Received 7 February 1991 ‘Olafsson, G., Symmetric spaces of Hermitian type, Diff. Geom. Appl. 1 (1991) 195-233. Abstract: Let M = G/H be a semisimple symmetric space, r the corresponding involution and D = G/K the Riemannian symmetric space. Then we show that the following are equivalent: M is of Hermitian type; r induces a conjugation on D; there exists an open regular H-invariant cone R in q = h’ such that k n 0 # 0. We relate the spaces of Hermitian type to the regular and parahermitian symmetric spaces, analyze the fine structure of D under r and construct an equivariant Cayley transform. We collect also some results on the classification of invariant cones in q. Finally we point out some applications in representations theory. Keywords: Symmetric spaces, semisimple Lie groups, invariant convex cones, causal orientation, ordering, convexity theorem. MS classification: 53635, 57S25, 22E15, 06AlO. Introduction Bounded symmetric domains and their unbounded counterparts, the Siegel domains, have long been an important part of different fields of mathematics, e.g., number theory, algebraic geometry, harmonic analysis and representations theory. So the holomorphic discrete series and other interesting representations of a group live in spaces of holo- morphic functions on such domains. In the last years some interplays with harmonic analysis on affine symmetric spaces have also become apparent, e.g., a construction of non-zero harmonic forms related to the discrete series of such spaces (see [44] and the literature there). -
Linear Algebraic Groups
Clay Mathematics Proceedings Volume 4, 2005 Linear Algebraic Groups Fiona Murnaghan Abstract. We give a summary, without proofs, of basic properties of linear algebraic groups, with particular emphasis on reductive algebraic groups. 1. Algebraic groups Let K be an algebraically closed field. An algebraic K-group G is an algebraic variety over K, and a group, such that the maps µ : G × G → G, µ(x, y) = xy, and ι : G → G, ι(x)= x−1, are morphisms of algebraic varieties. For convenience, in these notes, we will fix K and refer to an algebraic K-group as an algebraic group. If the variety G is affine, that is, G is an algebraic set (a Zariski-closed set) in Kn for some natural number n, we say that G is a linear algebraic group. If G and G′ are algebraic groups, a map ϕ : G → G′ is a homomorphism of algebraic groups if ϕ is a morphism of varieties and a group homomorphism. Similarly, ϕ is an isomorphism of algebraic groups if ϕ is an isomorphism of varieties and a group isomorphism. A closed subgroup of an algebraic group is an algebraic group. If H is a closed subgroup of a linear algebraic group G, then G/H can be made into a quasi- projective variety (a variety which is a locally closed subset of some projective space). If H is normal in G, then G/H (with the usual group structure) is a linear algebraic group. Let ϕ : G → G′ be a homomorphism of algebraic groups. Then the kernel of ϕ is a closed subgroup of G and the image of ϕ is a closed subgroup of G. -
Complex-Symmetric Spaces Annales De L’Institut Fourier, Tome 39, No 2 (1989), P
ANNALES DE L’INSTITUT FOURIER RALF LEHMANN Complex-symmetric spaces Annales de l’institut Fourier, tome 39, no 2 (1989), p. 373-416 <http://www.numdam.org/item?id=AIF_1989__39_2_373_0> © Annales de l’institut Fourier, 1989, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 39, 2 (1989), 373-416. COMPLEX-SYMMETRIC SPACES by Ralf LEHMANN 0. Introduction. Let M be a complete complex Hermitian manifold. Then M is called a Hermitian symmetric space, if and only if for every x e M there exists a holomorphic isometry of order two which has x as an isolated fixed point. This condition immediately implies that the group of holomorphic isometries acts transitively on M and that the Hermitian metric is Kahlerian. Moreover, each compact Hermitian symmetric space can be written as a product of a compact torus and a homogeneous projective rational manifold which is Hermitian symmetric. These manifolds are classified by using the classification of semisimple Lie algebras (see e.g. [Hel] and [Ca]). Generalizations of symmetric spaces to the infinite-dimensional case have turned out to be very interesting (see e.g. [K]). We are concerned here with manifolds where the isometry condition is dropped. -
Coadjoint Orbits of Reductive Type of Seaweed Lie Algebras
COADJOINT ORBITS OF REDUCTIVE TYPE OF SEAWEED LIE ALGEBRAS ANNE MOREAU AND OKSANA YAKIMOVA ABSTRACT. A connected algebraic group Q defined over a field of characteristic zero is quasi-reductive if there is an element of q∗ of reductive type, that is such that the quotient of its stabiliser by the centre of Q is a reductive subgroup of GL(q). Such groups appear in harmonic analysis when unitary representations are studied. In particular, over the field of real numbers they turn out to be the groups with discrete series and their irreducible unitary square integrable representations are parameterised by coadjoint orbits of reductive type. Due to results of M. Duflo, coadjoint representation of a quasi- reductive Q possesses a so called maximal reductive stabiliser and knowing this subgroup, defined up to a conjugation in Q, one can describe all coadjoint orbits of reductive type. In this paper, we consider quasi-reductive parabolic subalgebras of simple complex Lie algebras as well as seaweed subalgebras of gln(C) and describe the classes of their maximal reductive stabilisers. 1. INTRODUCTION 1.1. Suppose that k is a field of characteristic zero and Q a connected algebraic (or Lie) group defined over k. Let q = Lie Q be the Lie algebra of Q. Let Z denote the centre of Q. A linear function γ ∈ q∗ is said to be of reductive type if the quotient Qγ /Z of the stabiliser Qγ ⊂ Q for the coadjoint action is a reductive subgroup of GL(q∗) (or, what is equivalent, of GL(q)). Whenever it makes sense, we will also say that γ is of compact type if Qγ /Z is compact. -
Nilpotent Orbits and Theta-Stable Parabolic Subalgebras
REPRESENTATION THEORY An Electronic Journal of the American Mathematical Society Volume 2, Pages 1{32 (February 3, 1998) S 1088-4165(98)00038-7 NILPOTENT ORBITS AND THETA-STABLE PARABOLIC SUBALGEBRAS ALFRED G. NOEL¨ Abstract. In this work, we present a new classification of nilpotent orbits in a real reductive Lie algebra g under the action of its adjoint group. Our classification generalizes the Bala-Carter classification of the nilpotent orbits of complex semisimple Lie algebras. Our theory takes full advantage of the work of Kostant and Rallis on p , the “complex symmetric space associated C with g”. The Kostant-Sekiguchi correspondence, a bijection between nilpotent orbits in g and nilpotent orbits in p , is also used. We identify a fundamental C set of noticed nilpotents in p and show that they allow us to recover all other C nilpotents. Finally, we study the behaviour of a principal orbit, that is an orbit of maximal dimension, under our classification. This is not done in the other classification schemes currently available in the literature. Introduction Let g be a semisimple Lie algebra and G its adjoint group. We say that an C C element x of g is nilpotent if and only if, ad : y [x; y] for all y g ,isa C x C nilpotent endomorphism of g . Kostant (see also Dynkin→ [Dy]) has shown,∈ in his C fundamental 1959 paper [Ko], that the number of nilpotent orbits of G in g is C C finite. The Bala-Carter classification can be expressed as follows: There is a one-to-one correspondence between nilpotent orbits of g and con- C jugacy classes of pairs (m; p ), where m is a Levi subalgebra of g and p is a m C m distinguished parabolic subalgebra of the semisimple algebra [m; m].