Sugawara Operators for Classical Lie Algebras

Total Page:16

File Type:pdf, Size:1020Kb

Sugawara Operators for Classical Lie Algebras Mathematical Surveys and Monographs Volume 229 Sugawara Operators for Classical Lie Algebras Alexander Molev 10.1090/surv/229 Sugawara Operators for Classical Lie Algebras Mathematical Surveys and Monographs Volume 229 Sugawara Operators for Classical Lie Algebras Alexander Molev EDITORIAL COMMITTEE Robert Guralnick Benjamin Sudakov Michael A. Singer, Chair Constantin Teleman MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 17B35, 17B63, 17B67, 17B69, 16S30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-229 Library of Congress Cataloging-in-Publication Data Names: Molev, Alexander, 1961- author. Title: Sugawara operators for classical Lie algebras / Alexander Molev. Description: Providence, Rhode Island : American Mathematical Society, [2018] | Series: Mathe- matical surveys and monographs ; volume 229 | Includes bibliographical references and index. Identifiers: LCCN 2017041529 | ISBN 9781470436599 (alk. paper) Subjects: LCSH: Lie algebras. | Affine algebraic groups. | Kac-Moody algebras. | AMS: Nonas- sociative rings and algebras – Lie algebras and Lie superalgebras – Universal enveloping (su- per)algebras. msc | Nonassociative rings and algebras – Lie algebras and Lie superalgebras – Poisson algebras. msc | Nonassociative rings and algebras – Lie algebras and Lie superalgebras – Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras. msc | Nonas- sociative rings and algebras – Lie algebras and Lie superalgebras – Vertex operators; vertex operator algebras and related structures. msc | Associative rings and algebras – Rings and algebras arising under various constructions – Universal enveloping algebras of Lie algebras. msc Classification: LCC QA252.3 .M6495 2018 | DDC 512/.482–dc23 LC record available at https://lccn.loc.gov/2017041529 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes. c 2018 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 232221201918 Oruenoscu Kaxke Contents Preface xi Chapter 1. Idempotents and traces 1 1.1. Primitive idempotents for the symmetric group 1 1.2. Primitive idempotents for the Brauer algebra 6 1.3. Traces on the Brauer algebra 14 1.4. Tensor notation 17 1.5. Action of the symmetric group and the Brauer algebra 19 1.6. Bibliographical notes 21 Chapter 2. Invariants of symmetric algebras 23 2.1. Invariants in type A 23 2.2. Invariants in types B,C and D 28 2.3. Symmetrizer and extremal projector 39 2.4. Bibliographical notes 41 Chapter 3. Manin matrices 43 3.1. Definition and basic properties 43 3.2. Identities and invertibility 45 3.3. Bibliographical notes 51 Chapter 4. Casimir elements for glN 53 4.1. Matrix presentations of simple Lie algebras 53 4.2. Harish-Chandra isomorphism 55 4.3. Factorial Schur polynomials 58 4.4. Schur–Weyl duality 60 4.5. A general construction of central elements 61 4.6. Capelli determinant 63 4.7. Permanent-type elements 65 4.8. Gelfand invariants 66 4.9. Quantum immanants 67 4.10. Bibliographical notes 69 Chapter 5. Casimir elements for oN and spN 71 5.1. Harish-Chandra isomorphism 71 5.2. Brauer–Schur–Weyl duality 74 5.3. A general construction of central elements 76 5.4. Symmetrizer and anti-symmetrizer for oN 78 5.5. Symmetrizer and anti-symmetrizer for spN 83 5.6. Manin matrices in types B, C and D 89 5.7. Bibliographical notes 90 vii viii CONTENTS Chapter 6. Feigin–Frenkel center 91 6.1. Center of a vertex algebra 91 6.2. Affine vertex algebras 93 6.3. Feigin–Frenkel theorem 96 6.4. Affine symmetric functions 101 6.5. From Segal–Sugawara vectors to Casimir elements 103 6.6. Center of the completed universal enveloping algebra 104 6.7. Bibliographical notes 106 Chapter 7. Generators in type A 107 7.1. Segal–Sugawara vectors 107 7.2. Sugawara operators in type A 114 7.3. Bibliographical notes 117 Chapter 8. Generators in types B, C and D 119 8.1. Segal–Sugawara vectors in types B and D 119 8.2. Low degree invariants in trace form 128 8.3. Segal–Sugawara vectors in type C 134 8.4. Low degree invariants in trace form 142 8.5. Sugawara operators in types B, C and D 145 8.6. Bibliographical notes 147 Chapter 9. Commutative subalgebras of U(g) 149 9.1. Mishchenko–Fomenko subalgebras 149 9.2. Vinberg’s quantization problem 155 9.3. Generators of commutative subalgebras of U(glN ) 157 9.4. Generators of commutative subalgebras of U(oN )andU(spN ) 165 9.5. Bibliographical notes 167 Chapter 10. Yangian characters in type A 169 10.1. Yangian for glN 169 10.2. Dual Yangian for glN 177 10.3. Double Yangian for glN 180 10.4. Invariants of the vacuum module over the double Yangian 183 10.5. From Yangian invariants to Segal–Sugawara vectors 185 10.6. Screening operators 186 10.7. Bibliographical notes 190 Chapter 11. Yangian characters in types B, C and D 191 11.1. Yangian for gN 191 11.2. Dual Yangian for gN 202 11.3. Screening operators 206 11.4. Bibliographical notes 211 Chapter 12. Classical W-algebras 213 12.1. Poisson vertex algebras 213 12.2. Generators of W(g) 216 12.3. Chevalley projection 226 12.4. Screening operators 228 12.5. Bibliographical notes 241 CONTENTS ix Chapter 13. Affine Harish-Chandra isomorphism 243 13.1. Feigin–Frenkel centers and classical W-algebras 243 13.2. Yangian characters and classical W-algebras 255 13.3. Harish-Chandra images of Sugawara operators 259 13.4. Harish-Chandra images of Casimir elements 263 13.5. Bibliographical notes 268 Chapter 14. Higher Hamiltonians in the Gaudin model 269 14.1. Bethe ansatz equations 269 14.2. Gaudin Hamiltonians and eigenvalues 271 14.3. Bibliographical notes 275 Chapter 15. Wakimoto modules 277 15.1. Free field realization of glN 277 15.2. Free field realization of oN 280 15.3. Free field realization of sp2n 284 15.4. Wakimoto modules in type A 287 15.5. Wakimoto modules in types B and D 289 15.6. Wakimoto modules in type C 292 15.7. Bibliographical notes 294 Bibliography 295 Index 303 Preface In representation theory of Lie algebras, Casimir operators are commonly un- derstood as certain expressions constructed from generators of a Lie algebra which commute with its action. Their spectra are useful for understanding the represen- tation. In particular, finite-dimensional irreducible representations of a simple Lie algebra g over the field of complex numbers are characterized by the eigenvalues of the Casimir operators. This fact is based on a theorem of Harish-Chandra describ- ing the center Z(g) of the associated universal enveloping algebra U(g). The center is isomorphic to an algebra of polynomials via the Harish-Chandra isomorphism ∼ (0.1) Z(g) = C L1,...,Ln . Here n is the rank of g and L1,...,Ln are polynomial functions in the highest weights of the representations, each Li is invariant under a certain action of the Weyl group of g. The isomorphism (0.1) relies on a theorem of Chevalley which can also be recovered as a ‘classical limit’ of (0.1). Namely, the symmetric algebra S(g) is isomorphic to the graded algebra gr U(g), and the subalgebra of g-invariants in S(g) is isomorphic to gr Z(g). Taking the symbols Mi of the polynomials Li,we get the Chevalley isomorphism g ∼ (0.2) S(g) = C M1,...,Mn . The respective degrees d1,...,dn of the Weyl group invariants M1,...,Mn coincide with the exponents of g increased by 1. A vast amount of literature both in mathematical physics and representation theory has been devoted to understanding the correspondence in (0.1) in terms of concrete generators on both sides, especially for the Lie algebras g of classical types A, B, C and D. Various families of generators of the center Z(g) were discovered together with their Harish-Chandra images. The simple Lie algebras g can be regarded as a part of the family of Kac–Moody algebras parameterized by generalized Cartan matrices. Of particular importance is the class of affine Kac–Moody algebras which admits a simple presentation. The (untwisted) affine Kac–Moody algebra g is the central extension g[t, t−1] ⊕ CK of the Lie algebra of Laurent polynomials with coefficients in g. Basic results of representation theory of these Lie algebras together with applications to conformal field theory, modular forms and soliton equations can be found in the book by V. Kac [86]. Motivated by the significance of the Lie algebras g,onecomesto wonder what the center of U(g) looks like.
Recommended publications
  • The Unbroken Spectrum of Frobenius Seaweeds II: Type-B and Type-C
    The unbroken spectrum of Frobenius seaweeds II: type-B and type-C Alex Cameron∗, Vincent E. Coll, Jr.∗∗, Matthew Hyatt†, and Colton Magnant†† July 23, 2019 ∗Department of Mathematics, Lehigh University, Bethlehem, PA, USA: [email protected] ∗∗Department of Mathematics, Lehigh University, Bethlehem, PA, USA: [email protected] †FactSet Research Systems, New York, NY, USA: [email protected] †† Department of Mathematics, Clayton State University, Morrow, GA, USA: [email protected] Abstract Analogous to the Type-An−1 = sl(n) case, we show that if g is a Frobenius seaweed subalgebra of Bn = so(2n +1) or Cn = sp(2n), then the spectrum of the adjoint of a principal element consists of an unbroken set of integers whose multiplicities have a symmetric distribution. Mathematics Subject Classification 2010 : 17B20, 05E15 Key Words and Phrases: Frobenius Lie algebra, seaweed, biparabolic, principal element, Dynkin diagram, spectrum, regular functional, Weyl group 1 Introduction Notation: All Lie algebras will be finite dimensional over C, and the Lie multiplication will be denoted by [-,-]. The index of a Lie algebra is an important algebraic invariant and, for seaweed algebras, is bounded by the algebra’s rank: ind g ≤ rk g, (see [11]). More formally, the index of a Lie algebra g is given by arXiv:1907.08775v1 [math.RT] 20 Jul 2019 ind g = min dim(ker(BF )), F ∈g∗ where F is a linear form on g, and BF is the associated skew-symmetric bilinear Kirillov form, defined by BF (x,y) = F ([x,y]) for x,y ∈ g. On a given g, index-realizing functionals are called regular and exist in profusion, being dense in both the Zariski and Euclidean topologies of g∗.
    [Show full text]
  • (Bi)Parabolic Subalgebras in the Reductive Lie Algebras. Karin Baur, Anne Moreau
    Quasi-reductive (bi)parabolic subalgebras in the reductive Lie algebras. Karin Baur, Anne Moreau To cite this version: Karin Baur, Anne Moreau. Quasi-reductive (bi)parabolic subalgebras in the reductive Lie algebras.. 2008. hal-00348974v1 HAL Id: hal-00348974 https://hal.archives-ouvertes.fr/hal-00348974v1 Preprint submitted on 22 Dec 2008 (v1), last revised 30 Jun 2010 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. QUASI-REDUCTIVE (BI)PARABOLIC SUBALGEBRAS IN THE REDUCTIVE LIE ALGEBRAS. KARIN BAUR AND ANNE MOREAU Abstract. Let g be a finite dimensional Lie algebra, and z its center. We say that g is quasi- reductive if there is f ∈ g∗ such that g(f)/z is a reductive Lie algebra whose center consists of semisimple elements, where g(f) denotes the stabilizer of f in g for the coadjoint action. If g is reductive, then g is quasi-reductive itself, and also every Borel or Levi subalgebra of g. However the parabolic subalgebras of g are not always quasi-reductive (except in types A or C, see [P03]). Biparabolic (or seaweed) subalgebras are the intersection of two parabolic subalgebras whose sum is g.
    [Show full text]
  • The Derived Algebra of a Stabilizer, Families of Coadjoint Orbits, and Sheets, Arxiv:1202.1135V2 (2012)
    The derived algebra of a stabilizer, families of coadjoint orbits, and sheets Anton Izosimov∗ Abstract Let g be a finite-dimensional real or complex Lie algebra, and let µ ∈ g∗. In the first part of the paper, the relation is discussed between the derived algebra of the stabilizer of µ and the set of coadjoint orbits which have the same dimension as the orbit of µ. In the second part, semisimple Lie algebras are considered, and the relation is discussed between the derived algebra of a centralizer and sheets. 1 Introduction Let g be a finite-dimensional real or complex Lie algebra. The group G acts on the dual space g∗ via the coadjoint action, and g∗ is foliated into the orbits of this action. Consider the union of all orbits ∗ ∗ which have the same codimension k. Denote this union by gk. Each of the sets gk is a quasi-affine ∗ algebraic variety. The study of the varieties gk was initiated by A.Kirillov in connection with the orbit method [6], which relates the unitary dual of G to the set of coadjoint orbits g∗/G. The sets ∗ ∗ gk/G appear in this picture as natural strata of g /G, therefore it is important to understand the ∗ geometry of gk for each k. ∗ So, consider a finite-dimensional real or complex Lie algebra g. Let gµ = {x ∈ g | ad x(µ)=0} be the stabilizer of an element µ ∈ g∗ with respect to the coadjoint representation of g. In the present note, the following simple geometric fact is proved: any element ξ ∈ g∗ which is tangent ∗ ∗ to the variety gk at a point µ ∈ g vanishes on the derived algebra of gµ.
    [Show full text]
  • Periodic Automorphisms of Takiff Algebras, Contractions, and Θ-Groups
    October 15, 2007 PERIODIC AUTOMORPHISMS OF TAKIFF ALGEBRAS, CONTRACTIONS, AND θ-GROUPS DMITRI I. PANYUSHEV INTRODUCTION Let G be a connected reductive algebraic group with Lie algebra g. The ground field | is algebraically closed and of characteristic zero. Fundamental results in invariant theory of the adjoint representation of G are primarily associated with C. Chevalley and B. Kostant. Especially, one should distinguish the ”Chevalley restriction theorem” and seminal article of Kostant [5]. Later, Kostant and Rallis extended these results to the isotropy representa- tion of a symmetric variety [6]. In 1975, E.B. Vinberg came up with the theory of θ-groups. This theory generalises and presents in the most natural form invariant-theoretic results previously known for the adjoint representation and isotropy representations of the sym- metric varieties. Let us remind the main construction and results of Vinberg's article [15]. Let θ Aut(g) 2 be a periodic (= finite order) automorphism of g. The order of θ is denoted by θ . Fix a jθj j j primitive root of unity ζ = p1 and consider the periodic grading (or Zjθj-grading) g = gi ; i Z M2 jθj i θ where gi is the ζ -eigenspace of θ. In particular, g0 = g is the fixed point subalgebra for θ. Let G0 be the connected subgroup of G with Lie algebra g0. The restriction of the adjoint representation yields the natural homomorphism G GL(g ). The linear groups 0 ! 1 obtained in this way are called θ-groups, and the point is that they have the best possible invariant-theoretic properties: |[g ]G0 is a polynomial algebra; • 1 the quotient morphism π : g g ==G = Spec(|[g ]G0 ) is flat; • 1 ! 1 0 1 each fibre of π contains finitely many G -orbits.
    [Show full text]
  • Coadjoint Orbits of Lie Algebras and Cartan Class
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 15 (2019), 002, 20 pages Coadjoint Orbits of Lie Algebras and Cartan Class Michel GOZE y and Elisabeth REMM z y Ramm Algebra Center, 4 rue de Cluny, F-68800 Rammersmatt, France E-mail: [email protected] z Universit´ede Haute-Alsace, IRIMAS EA 7499, D´epartement de Math´ematiques, F-68100 Mulhouse, France E-mail: [email protected] Received September 13, 2018, in final form December 31, 2018; Published online January 09, 2019 https://doi.org/10.3842/SIGMA.2019.002 Abstract. We study the coadjoint orbits of a Lie algebra in terms of Cartan class. In fact, the tangent space to a coadjoint orbit O(α) at the point α corresponds to the characteristic space associated to the left invariant form α and its dimension is the even part of the Cartan class of α. We apply this remark to determine Lie algebras such that all the nontrivial orbits (nonreduced to a point) have the same dimension, in particular when this dimension is 2 or 4. We determine also the Lie algebras of dimension 2n or 2n + 1 having an orbit of dimension 2n. Key words: Lie algebras; coadjoint representation; contact forms; Frobenius Lie algebras; Cartan class 2010 Mathematics Subject Classification: 17B20; 17B30; 53D10; 53D05 1 Introduction Let G be a connected Lie group, g its Lie algebra and g∗ the dual vector space of g. We identify g with the Lie algebra of left invariant vector fields on G and g∗ with the vector space of left invariant Pfaffian forms on G.
    [Show full text]
  • A Complete Bibliography of Publications in Linear Algebra and Its Applications: 2010–2019
    A Complete Bibliography of Publications in Linear Algebra and its Applications: 2010{2019 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 12 March 2021 Version 1.74 Title word cross-reference KY14, Rim12, Rud12, YHH12, vdH14]. 24 [KAAK11]. 2n − 3[BCS10,ˇ Hil13]. 2 × 2 [CGRVC13, CGSCZ10, CM14, DW11, DMS10, JK11, KJK13, MSvW12, Yan14]. (−1; 1) [AAFG12].´ (0; 1) 2 × 2 × 2 [Ber13b]. 3 [BBS12b, NP10, Ghe14a]. (2; 2; 0) [BZWL13, Bre14, CILL12, CKAC14, Fri12, [CI13, PH12]. (A; B) [PP13b]. (α, β) GOvdD14, GX12a, Kal13b, KK14, YHH12]. [HW11, HZM10]. (C; λ; µ)[dMR12].(`; m) p 3n2 − 2 2n3=2 − 3n [MR13]. [DFG10]. (H; m)[BOZ10].(κ, τ) p 3n2 − 2 2n3=23n [MR14a]. 3 × 3 [CSZ10, CR10c]. (λ, 2) [BBS12b]. (m; s; 0) [Dru14, GLZ14, Sev14]. 3 × 3 × 2 [Ber13b]. [GH13b]. (n − 3) [CGO10]. (n − 3; 2; 1) 3 × 3 × 3 [BH13b]. 4 [Ban13a, BDK11, [CCGR13]. (!) [CL12a]. (P; R)[KNS14]. BZ12b, CK13a, FP14, NSW13, Nor14]. 4 × 4 (R; S )[Tre12].−1 [LZG14]. 0 [AKZ13, σ [CJR11]. 5 Ano12-30, CGGS13, DLMZ14, Wu10a]. 1 [BH13b, CHY12, KRH14, Kol13, MW14a]. [Ano12-30, AHL+14, CGGS13, GM14, 5 × 5 [BAD09, DA10, Hil12a, Spe11]. 5 × n Kal13b, LM12, Wu10a]. 1=n [CNPP12]. [CJR11]. 6 1 <t<2 [Seo14]. 2 [AIS14, AM14, AKA13, [DK13c, DK11, DK12a, DK13b, Kar11a].
    [Show full text]
  • Invariant Nijenhuis Tensors and Integrable Geodesic Flows
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 15 (2019), 056, 30 pages Invariant Nijenhuis Tensors and Integrable Geodesic Flows Konrad LOMPERT y and Andriy PANASYUK z y Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland E-mail: [email protected] z Faculty of Mathematics and Computer Science, University of Warmia and Mazury, ul. Sloneczna 54, 10-710 Olsztyn, Poland E-mail: [email protected] Received December 19, 2018, in final form August 02, 2019; Published online August 07, 2019 https://doi.org/10.3842/SIGMA.2019.056 Abstract. We study invariant Nijenhuis (1; 1)-tensors on a homogeneous space G=K of a reductive Lie group G from the point of view of integrability of a Hamiltonian system of differential equations with the G-invariant Hamiltonian function on the cotangent bun- ∗ ∗ dle T (G=K). Such a tensor induces an invariant Poisson tensor Π1 on T (G=K), which is Poisson compatible with the canonical Poisson tensor ΠT ∗(G=K). This Poisson pair can be reduced to the space of G-invariant functions on T ∗(G=K) and produces a family of Poisson commuting G-invariant functions. We give, in Lie algebraic terms, necessary and sufficient conditions of the completeness of this family. As an application we prove Liouville integra- bility in the class of analytic integrals polynomial in momenta of the geodesic flow on two series of homogeneous spaces G=K of compact Lie groups G for two kinds of metrics: the normal metric and new classes of metrics related to decomposition of G to two subgroups G = G1 · G2, where G=Gi are symmetric spaces, K = G1 \ G2.
    [Show full text]
  • Coadjoint Orbits of Reductive Type of Seaweed Lie Algebras
    COADJOINT ORBITS OF REDUCTIVE TYPE OF SEAWEED LIE ALGEBRAS ANNE MOREAU AND OKSANA YAKIMOVA ABSTRACT. A connected algebraic group Q defined over a field of characteristic zero is quasi-reductive if there is an element of q∗ of reductive type, that is such that the quotient of its stabiliser by the centre of Q is a reductive subgroup of GL(q). Such groups appear in harmonic analysis when unitary representations are studied. In particular, over the field of real numbers they turn out to be the groups with discrete series and their irreducible unitary square integrable representations are parameterised by coadjoint orbits of reductive type. Due to results of M. Duflo, coadjoint representation of a quasi- reductive Q possesses a so called maximal reductive stabiliser and knowing this subgroup, defined up to a conjugation in Q, one can describe all coadjoint orbits of reductive type. In this paper, we consider quasi-reductive parabolic subalgebras of simple complex Lie algebras as well as seaweed subalgebras of gln(C) and describe the classes of their maximal reductive stabilisers. 1. INTRODUCTION 1.1. Suppose that k is a field of characteristic zero and Q a connected algebraic (or Lie) group defined over k. Let q = Lie Q be the Lie algebra of Q. Let Z denote the centre of Q. A linear function γ ∈ q∗ is said to be of reductive type if the quotient Qγ /Z of the stabiliser Qγ ⊂ Q for the coadjoint action is a reductive subgroup of GL(q∗) (or, what is equivalent, of GL(q)). Whenever it makes sense, we will also say that γ is of compact type if Qγ /Z is compact.
    [Show full text]
  • Manin Matrices, Casimir Elements and Sugawara Operators
    Manin matrices, Casimir elements and Sugawara operators Alexander Molev University of Sydney 1 I Origins and motivations. I Basic properties of Manin matrices. I Applications: I Casimir elements for gln. I Segal–Sugawara vectors for gln. Plan 2 I Basic properties of Manin matrices. I Applications: I Casimir elements for gln. I Segal–Sugawara vectors for gln. Plan I Origins and motivations. 2 I Applications: I Casimir elements for gln. I Segal–Sugawara vectors for gln. Plan I Origins and motivations. I Basic properties of Manin matrices. 2 I Segal–Sugawara vectors for gln. Plan I Origins and motivations. I Basic properties of Manin matrices. I Applications: I Casimir elements for gln. 2 Plan I Origins and motivations. I Basic properties of Manin matrices. I Applications: I Casimir elements for gln. I Segal–Sugawara vectors for gln. 2 By the seminal works of V. Drinfeld (1985) and M. Jimbo (1985), the universal enveloping algebra U(g) of a simple Lie algebra g admits a deformation Uq(g) in the class of Hopf algebras. The dual Hopf algebras are quantized algebras of functions Funq(G) on the associated Lie group G [N. Reshetikhin, L. Takhtajan and L. Faddeev 1990]. A detailed review of the theory and applications: V. Chari and A. Pressley, A guide to quantum groups, 1994. Quantum groups 3 The dual Hopf algebras are quantized algebras of functions Funq(G) on the associated Lie group G [N. Reshetikhin, L. Takhtajan and L. Faddeev 1990]. A detailed review of the theory and applications: V. Chari and A. Pressley, A guide to quantum groups, 1994.
    [Show full text]
  • Scrambled Linear Pseudorandom Number Generators∗
    Scrambled Linear Pseudorandom Number Generators∗ DAVID BLACKMAN, Independent researcher, Australia SEBASTIANO VIGNA, Università degli Studi di Milano, Italy Linear pseudorandom number generators are very popular due to their high speed, to the ease with which generators with a sizable state space can be created, and to their provable theoretical properties. However, they suffer from linear artifacts which show as failures in linearity-related statistical tests such as the binary-rank and the linear-complexity test. In this paper, we give three new contributions. First, we introduce two new linear transformations that have been handcrafted to have good statistical properties and at the same time to be programmable very efficiently on superscalar processors, or even directly in hardware. Then, we describe a new test for Hamming-weight dependencies that is able to discover subtle, previously unknown biases in existing generators (in particular, in linear ones). Finally, we describe a number of scramblers, that is, nonlinear functions applied to the state array that reduce or delete the linear artifacts, and propose combinations of linear transformations and scramblers that give extremely fast pseudorandom generators of high quality. A novelty in our approach is that we use ideas from the theory of filtered linear-feedback shift register to prove some properties of our scramblers, rather than relying purely on heuristics. In the end, we provide simple, extremely fast generators that use a few hundred bits of memory, have provable properties and pass very strong statistical tests. CCS Concepts: • Mathematics of computing → Random number generation; Additional Key Words and Phrases: Pseudorandom number generators 1 INTRODUCTION In the last twenty years, in particular since the introduction of the Mersennne Twister [34], linear1 pseudorandom generators have been very popular: indeed, they are often the stock generator provided by several programming languages.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach
    Mathematisches Forschungsinstitut Oberwolfach Report No. 21/2012 DOI: 10.4171/OWR/2012/21 Toric Geometry Organised by Klaus Altmann, Berlin Victor Batyrev, T¨ubingen Yael Karshon, Toronto April 15th – April 21st, 2012 Abstract. Toric Geometry plays a major role where a wide variety of math- ematical fields intersect, such as algebraic and symplectic geometry, algebraic groups, and combinatorics. The main feature of this workshop was to bring people from these area together to learn about mutual, possibly up till now unnoticed similarities in their respective research. Mathematics Subject Classification (2000): 14M25, 53D37, 52B20. Introduction by the Organisers The workshop “Toric Geometry” was attended by 53 people including many young participants. The idea was to shed light on the subject from many different points of view – toric geometry involves methods from algebraic and symplectic geometry, algebraic groups, and discrete mathematics. A major driving force combining all these directions is still provided by the dif- ferent flavours of mirror symmetry. So it is quite natural that related subjects like Lagrangians in symplectic manifolds showed up in many talks (Abreu, Woodward, Ono, Lau, Sjamaar). A very common feature that appeared in many talks was the attempt to weaken assumptions in the setting of algebraic or symplectic toric varieties. This was done by either considering higher complexities of torus actions, or by relaxing the demands on the symplectic forms, or by studying non-algebraic situations or more general algebraic groups than just tori (Timashev, Hausen, S¨uß, Knop, Tolman, Holm, Masuda). Polyhedral methods and their interplay with resolutions and deformations or degenerations is a classical feature of toric geometry.
    [Show full text]
  • Reduction by Stages and the Ra¨Is-Type Formula for the Index of Lie Algebra Extensions
    Noname manuscript No. (will be inserted by the editor) Andriy Panasyuk Reduction by stages and the Ra¨ıs-type formula for the index of Lie algebra extensions 0 Introduction The index of a Lie algebra is defined as the dimension of the stabilizer of a generic element with respect to the coadjoint representation, or equivalently, the codimension of a generic coadjoint orbit. The index is an important characteristic of a Lie algebra, which is used in different applications. The aim of this note is to give a generalization of the so-called Ra¨ıs formula for the index of a semidirect product of a Lie algebra and an abelian ideal. It is well known that the index of a semisimple Lie algebra coincides with its rank. For the nonsemisimple case, one of the most popular in applications related result is the above mentioned Ra¨ıs formula calculating the index of a semidirect product s = g ×ρ V of a Lie algebra g and a vector space V , by means of the representation ρ∗ : g → gl(V ∗) dual to the representation ρ ([Rai78], see also Corollary 1.8). More precisely, the index of s is equal to the sum of the codimension of a generic orbit of ρ∗ and the index of the stabilizer with respect to ρ∗ of a generic element in V ∗. The Ra¨ıs formula, first proved by purely algebraic methods, can be also deduced from Poisson geometric results on semidirect products. Namely, the following theorem could be found in [RSTS94, Section 5]. If s = g ×ρ V is a ∗ ∗ semidirect product and Vν := g × Oν , where Oν ⊂ V is the G-orbit of any ∗ ∗ element ν ∈ V , then: 1) Vν is a Poisson submanifold in (g ×ρ V ) ; 2) Vν is ∗ Poisson diffeomorphic to T G/Gν (here G ⊃ Gν are the Lie groups corre- ∗ sponding to the Lie algebras g, gν, where gν is the stabilizer of ν, T G/Gν is endowed with the Poisson structure being the reduction of the canonical one).
    [Show full text]