Nilpotent Orbits and Theta-Stable Parabolic Subalgebras
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nilpotent Orbits and Weyl Group Representations, I
Nilpotent Orbits and Weyl Group Representations, I O.S.U. Lie Groups Seminar April 12, 2017 1. Introduction Today, G will denote a complex Lie group and g the complexification of its Lie algebra. Moreover, to keep matters simple, and in particular amenable to finite computations, we may as well restrict G to be the prototypical class of simple complex Lie groups. Then the relatively simple linear algebraic object g determines G up to isogeny (a choice of covering groups). In fact, an even simpler datum determines g up to isomorphism; that is its corresponding root system ∆; which in turn can be reduced to a even simpler combinatorial datum; a set Π of mutually obtuse linearly independent vectors in a real Euclidean space such that 2 hα; βi f2g if a = β hα_; βi ≡ 2 ; α; β 2 Π hα; αi f0; −1; −2; −3g if α 6= β Such simple systems are then reduced to simple weighted planar diagrams constructed by the following algorithm: • each vertex corresponds to a particular simple root α 2 Π • if hα_; βi= 6 0, then an edge is drawn between α and β. This edges are drawn between vertices whenever hα; βi 6= 0 according to the following rules { There is an undirected edge of weight 1 connecting α and β whenever hαv; βi = hβv; αi = −1 { There is a direced edge of weight 2 from α to β whenever hαv; βi = −1 and β_; α = −2 { There is a directed edge of weight 3 from α to β whenever hα_; βi = −1 and β_; α = −3 (The edge possibilities listed above are actually the only possibilities that occur when ha; βi 6= 0) If we demand further that for each α 2 Π, there is also a β 2 Π such that hα_; βi 2 {−1; −2; −3g (so that we consider only connected Dynkin diagrams), then one has only a set of five exceptional possibilities (G2;F4;E6;E7 and E8) and four infinite families (An;Bn;Cn;Dn) of simple systems. -
Introduction to Lie Theory Homework #6 1. Let G = G 1 ⊕ G2 Be a Direct
Introduction to Lie Theory Homework #6 1. Let g = g1 ⊕ g2 be a direct sum of two Lie algebras. Let V be a finite-dimensional g-module. Prove that V is completely reducible as a g-module if and only it is completely reducible both as a g1-module and as a g2-module. (Hint. Consider the finite-dimensional algebra A that is the image of U(g) under the induced algebra homomorphism ρ : U(g) ! EndC(V ), use Wedderburn theorem.) 2. Let g be a finite-dimensional semisimple Lie algebra with Killing form κ. We showed in L6-2 that g is the direct sum g1 ⊕· · ·⊕gn of its simple ideals, with gi ?κ gj for i 6= j. Let β be some other invariant bilinear form on g. Prove: (a) βjgi is a multiple of the Killing form κjgi for each i = 1; : : : ; n. (b) gi ?β gi for i 6= j. (c) β is a symmetric bilinear form. The remaining questions require the notion of a toral subalgebra t of a finite- dimensional semisimple Lie algebra g. Recall that this is a subalgebra con- sisting entirely of semisimple elements of g. As established in L7-1, such a subalgebra is necessarily Abelian. Hence, there is a root space decomposition M g = g0 ⊕ gα α2R ∗ where R = f0 6= α 2 t j gα 6= 0g is the set of roots of g with respect to t. Here, gα = fx 2 t j [t; x] = α(t)x for all t 2 tg for any α 2 t∗. -
LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0. -
Orbital Varieties and Unipotent Representations of Classical
Orbital Varieties and Unipotent Representations of Classical Semisimple Lie Groups by Thomas Pietraho M.S., University of Chicago, 1996 B.A., University of Chicago, 1996 Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2001 °c Thomas Pietraho, MMI. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part and to grant others the right to do so. Author ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Department of Mathematics April 25, 2001 Certified by :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: David A. Vogan Professor of Mathematics Thesis Supervisor Accepted by :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Tomasz Mrowka Chairman, Department Committee on Graduate Students 2 Orbital Varieties and Unipotent Representations of Classical Semisimple Lie Groups by Thomas Pietraho Submitted to the Department of Mathematics on April 25, 2001, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Let G be a complex semi-simple and classical Lie group. The notion of a Lagrangian covering can be used to extend the method of polarizing a nilpotent coadjoint orbit to obtain a unitary representation of G. W. Graham and D. Vogan propose such a construction, relying on the notions of orbital varieties and admissible orbit data. The first part of the thesis seeks to understand the set of orbital varieties contained in a given nipotent orbit. Starting from N. Spaltenstein’s parameterization of the irreducible components of the variety of flags fixed by a unipotent, we produce a parameterization of the orbital varieties lying in the corresponding fiber of the Steinberg map. -
Springer Undergraduate Mathematics Series Advisory Board
Springer Undergraduate Mathematics Series Advisory Board M.A.J. Chaplain University of Dundee K. Erdmann Oxford University A.MacIntyre Queen Mary, University of London L.C.G. Rogers University of Cambridge E. Süli Oxford University J.F. Toland University of Bath Other books in this series A First Course in Discrete Mathematics I. Anderson Analytic Methods for Partial Differential Equations G. Evans, J. Blackledge, P. Yardley Applied Geometry for Computer Graphics and CAD, Second Edition D. Marsh Basic Linear Algebra, Second Edition T.S. Blyth and E.F. Robertson Basic Stochastic Processes Z. Brze´zniak and T. Zastawniak Calculus of One Variable K.E. Hirst Complex Analysis J.M. Howie Elementary Differential Geometry A. Pressley Elementary Number Theory G.A. Jones and J.M. Jones Elements of Abstract Analysis M. Ó Searcóid Elements of Logic via Numbers and Sets D.L. Johnson Essential Mathematical Biology N.F. Britton Essential Topology M.D. Crossley Fields and Galois Theory J.M. Howie Fields, Flows and Waves: An Introduction to Continuum Models D.F. Parker Further Linear Algebra T.S. Blyth and E.F. Robertson Geometry R. Fenn Groups, Rings and Fields D.A.R. Wallace Hyperbolic Geometry, Second Edition J.W. Anderson Information and Coding Theory G.A. Jones and J.M. Jones Introduction to Laplace Transforms and Fourier Series P.P.G. Dyke Introduction to Lie Algebras K. Erdmann and M.J. Wildon Introduction to Ring Theory P.M. Cohn Introductory Mathematics: Algebra and Analysis G. Smith Linear Functional Analysis B.P. Rynne and M.A. Youngson Mathematics for Finance: An Introduction to Financial Engineering M. -
Nilpotent Orbits, Normality, and Hamiltonian Group Actions
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 7, Number 2, April 1994 NILPOTENT ORBITS, NORMALITY, AND HAMILTONIAN GROUP ACTIONS RANEE BRYLINSKI AND BERTRAM KOSTANT The theory of coadjoint orbits of Lie groups is central to a number of areas in mathematics. A list of such areas would include (1) group representation theory, (2) symmetry-related Hamiltonian mechanics and attendant physical theories, (3) symplectic geometry, (4) moment maps, and (5) geometric quantization. From many points of view the most interesting cases arise when the group G in question is semisimple. For semisimple G the most familiar of the orbits are orbits of semisimple elements. In that case the associated representation theory is pretty much understood (the Borel-Weil-Bott Theorem and noncom- pact analogs, e.g., Zuckerman functors). The isotropy subgroups are reductive and the orbits are in one form or another related to flag manifolds and their natural generalizations. A totally different experience is encountered with nilpotent orbits of semi- simple groups. Here the associated representation theory (unipotent represen- tations) is poorly understood and there is a loss of reductivity of isotropy sub- groups. To make matters worse (or really more interesting) orbits are no longer closed and there can be a failure of normality for orbit closures. In addition simple connectivity is generally gone but more seriously there may exist no invariant polarizations. The interest in nilpotent orbits of semisimple Lie groups has increased sharply over the last two decades. This perhaps may be attributed to the recurring experience that sophisticated aspects of semisimple group theory often lead one to these orbits (e.g., the Springer correspondence with representations of the Weyl group). -
Contents 1 Root Systems
Stefan Dawydiak February 19, 2021 Marginalia about roots These notes are an attempt to maintain a overview collection of facts about and relationships between some situations in which root systems and root data appear. They also serve to track some common identifications and choices. The references include some helpful lecture notes with more examples. The author of these notes learned this material from courses taught by Zinovy Reichstein, Joel Kam- nitzer, James Arthur, and Florian Herzig, as well as many student talks, and lecture notes by Ivan Loseu. These notes are simply collected marginalia for those references. Any errors introduced, especially of viewpoint, are the author's own. The author of these notes would be grateful for their communication to [email protected]. Contents 1 Root systems 1 1.1 Root space decomposition . .2 1.2 Roots, coroots, and reflections . .3 1.2.1 Abstract root systems . .7 1.2.2 Coroots, fundamental weights and Cartan matrices . .7 1.2.3 Roots vs weights . .9 1.2.4 Roots at the group level . .9 1.3 The Weyl group . 10 1.3.1 Weyl Chambers . 11 1.3.2 The Weyl group as a subquotient for compact Lie groups . 13 1.3.3 The Weyl group as a subquotient for noncompact Lie groups . 13 2 Root data 16 2.1 Root data . 16 2.2 The Langlands dual group . 17 2.3 The flag variety . 18 2.3.1 Bruhat decomposition revisited . 18 2.3.2 Schubert cells . 19 3 Adelic groups 20 3.1 Weyl sets . 20 References 21 1 Root systems The following examples are taken mostly from [8] where they are stated without most of the calculations. -
Symmetric Spaces of Hermitian Type
Differential Geometry and its Applications 1 (1991) 195-233 195 North-Holland Symmetric spaces of Hermitian type G. ‘Olafsson Mathematisches Znstitut der Uniuersitit Giittingen, Bunsenstraj?e 3-5, D-3400 Giittingen Received 7 February 1991 ‘Olafsson, G., Symmetric spaces of Hermitian type, Diff. Geom. Appl. 1 (1991) 195-233. Abstract: Let M = G/H be a semisimple symmetric space, r the corresponding involution and D = G/K the Riemannian symmetric space. Then we show that the following are equivalent: M is of Hermitian type; r induces a conjugation on D; there exists an open regular H-invariant cone R in q = h’ such that k n 0 # 0. We relate the spaces of Hermitian type to the regular and parahermitian symmetric spaces, analyze the fine structure of D under r and construct an equivariant Cayley transform. We collect also some results on the classification of invariant cones in q. Finally we point out some applications in representations theory. Keywords: Symmetric spaces, semisimple Lie groups, invariant convex cones, causal orientation, ordering, convexity theorem. MS classification: 53635, 57S25, 22E15, 06AlO. Introduction Bounded symmetric domains and their unbounded counterparts, the Siegel domains, have long been an important part of different fields of mathematics, e.g., number theory, algebraic geometry, harmonic analysis and representations theory. So the holomorphic discrete series and other interesting representations of a group live in spaces of holo- morphic functions on such domains. In the last years some interplays with harmonic analysis on affine symmetric spaces have also become apparent, e.g., a construction of non-zero harmonic forms related to the discrete series of such spaces (see [44] and the literature there). -
Linear Algebraic Groups
Clay Mathematics Proceedings Volume 4, 2005 Linear Algebraic Groups Fiona Murnaghan Abstract. We give a summary, without proofs, of basic properties of linear algebraic groups, with particular emphasis on reductive algebraic groups. 1. Algebraic groups Let K be an algebraically closed field. An algebraic K-group G is an algebraic variety over K, and a group, such that the maps µ : G × G → G, µ(x, y) = xy, and ι : G → G, ι(x)= x−1, are morphisms of algebraic varieties. For convenience, in these notes, we will fix K and refer to an algebraic K-group as an algebraic group. If the variety G is affine, that is, G is an algebraic set (a Zariski-closed set) in Kn for some natural number n, we say that G is a linear algebraic group. If G and G′ are algebraic groups, a map ϕ : G → G′ is a homomorphism of algebraic groups if ϕ is a morphism of varieties and a group homomorphism. Similarly, ϕ is an isomorphism of algebraic groups if ϕ is an isomorphism of varieties and a group isomorphism. A closed subgroup of an algebraic group is an algebraic group. If H is a closed subgroup of a linear algebraic group G, then G/H can be made into a quasi- projective variety (a variety which is a locally closed subset of some projective space). If H is normal in G, then G/H (with the usual group structure) is a linear algebraic group. Let ϕ : G → G′ be a homomorphism of algebraic groups. Then the kernel of ϕ is a closed subgroup of G and the image of ϕ is a closed subgroup of G. -
1. Introduction
RICHARDSON ORBITS FOR REAL CLASSICAL GROUPS PETER E. TRAPA Abstract. For classical real Lie groups, we compute the annihilators and asso ciated vari- eties of the derived functor mo dules cohomologically induced from the trivial representation. (Generalizing the standard terminology for complex groups, the nilp otent orbits that arise as such asso ciated varieties are called Richardson orbits.) We show that every complex sp ecial orbit has a real form which is Richardson. As a consequence of the annihilator calculations, we give many new in nite families of simple highest weight mo dules with ir- reducible asso ciated varieties. Finally we sketch the analogous computations for singular derived functor mo dules in the weakly fair range and, as an application, outline a metho d to detect nonnormality of complex nilp otent orbit closures. 1. Introduction Fix a complex reductive Lie group, and consider its adjoint action on its Lie algebra g. If q = l u is a parab olic subalgebra, then the G saturation of u admits a unique dense orbit, and the nilp otent orbits which arise in this way are called Richardson orbits (following their initial study in [R]). They are the simplest kind of induced orbits, and they play an imp ortant role in the representation theory of G. It is natural to extend this construction to the case of a linear real reductive Lie group G . Let g denote the Lie algebra of G , write g for its complexi cation, and G for the R R R complexi cation of G . Let denote the Cartan involution of G , write g = k p for R R the complexi ed Cartan decomp osition, and let K denote the corresp onding subgroup of G. -
Math 222 Notes for Apr. 1
Math 222 notes for Apr. 1 Alison Miller 1 Real lie algebras and compact Lie groups, continued Last time we showed that if G is a compact Lie group with Z(G) finite and g = Lie(G), then the Killing form of g is negative definite, hence g is semisimple. Now we’ll do a converse. Proposition 1.1. Let g be a real lie algebra such that Bg is negative definite. Then there is a compact Lie group G with Lie algebra Lie(G) =∼ g. Proof. Pick any connected Lie group G0 with Lie algebra g. Since g is semisimple, the center Z(g) = 0, and so the center Z(G0) of G0 must be discrete in G0. Let G = G0/Z(G)0; then Lie(G) =∼ Lie(G0) =∼ g. We’ll show that G is compact. Now G0 has an adjoint action Ad : G0 GL(g), with kernel ker Ad = Z(G). Hence 0 ∼ G = Im(Ad). However, the Killing form Bg on g is Ad-invariant, so Im(Ad) is contained in the subgroup of GL(g) preserving the Killing! form. Since Bg is negative definite, this subgroup is isomorphic to O(n) (where n = dim(g). Since O(n) is compact, its closed subgroup Im(Ad) is also compact, and so G is compact. Note: I found a gap in this argument while writing it up; it assumes that Im(Ad) is closed in GL(g). This is in fact true, because Im(Ad) = Aut(g) is the group of automorphisms of the Lie algebra g, which is closed in GL(g); but proving this fact takes a bit of work. -
Complex-Symmetric Spaces Annales De L’Institut Fourier, Tome 39, No 2 (1989), P
ANNALES DE L’INSTITUT FOURIER RALF LEHMANN Complex-symmetric spaces Annales de l’institut Fourier, tome 39, no 2 (1989), p. 373-416 <http://www.numdam.org/item?id=AIF_1989__39_2_373_0> © Annales de l’institut Fourier, 1989, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 39, 2 (1989), 373-416. COMPLEX-SYMMETRIC SPACES by Ralf LEHMANN 0. Introduction. Let M be a complete complex Hermitian manifold. Then M is called a Hermitian symmetric space, if and only if for every x e M there exists a holomorphic isometry of order two which has x as an isolated fixed point. This condition immediately implies that the group of holomorphic isometries acts transitively on M and that the Hermitian metric is Kahlerian. Moreover, each compact Hermitian symmetric space can be written as a product of a compact torus and a homogeneous projective rational manifold which is Hermitian symmetric. These manifolds are classified by using the classification of semisimple Lie algebras (see e.g. [Hel] and [Ca]). Generalizations of symmetric spaces to the infinite-dimensional case have turned out to be very interesting (see e.g. [K]). We are concerned here with manifolds where the isometry condition is dropped.