Archaeal and Bacterial Hyperthermophiles Archaeal and Bacterial Hyperthermophiles Horizontal Gene Exchange Or Common Ancestry?

Total Page:16

File Type:pdf, Size:1020Kb

Archaeal and Bacterial Hyperthermophiles Archaeal and Bacterial Hyperthermophiles Horizontal Gene Exchange Or Common Ancestry? Outlook GENOME ANALYSIS Archaeal and bacterial hyperthermophiles Archaeal and bacterial hyperthermophiles horizontal gene exchange or common ancestry? ravind and colleagues1 recently concluded that massive thermal tolerance to the archaeal hyperthermophiles and Agene transfer has occurred from Archaea to the bac- Aquifex by vertical inheritance. Consistent with this, we terial ancestors of the hyperthermophile Aquifex aeolicus. have identified presumptive homologs of at least a third of Their analyses were based primarily on similarity searches these genes in the incomplete genome of another deeply of all complete bacterial genomes against the non- diverging bacterial hyperthermophile, Thermotoga redundant protein sequence database, showing that the maritima (see below). genome of A. aeolicus2 has a much larger fraction of pro- We also find methodological problems in the analysis teins with best hits to archaeal proteins than any other of Aravind et al.1 The 246 Aquifex proteins reported as bacterium. In particular, they reported that 246 Aquifex ‘reliable best hits’ with their archaeal homologs were proteins are most similar to archaeal proteins, with 26 of defined by having an E-value (expected number of these proteins belonging to families found only in Archaea matches at least this good in random data) of at least 100 and Aquifex. Thus, the authors suggested that at least times lower than that obtained with any bacterial or 10% of the Aquifex genes have been horizontally trans- eukaryotic protein, which is not a particularly stringent ferred from Archaea. Although we agree that gene transfer criterion. In reality there is no simple relationship between has played an important role in the history of life3,4, we do differences in expectation and being significantly more not agree with the conclusions that Aravind et al.1 reach. related. Nor is there any translation of this measure into In particular, limitations imposed by their assumptions relative phylogenetic distances (amino acid replacements and flaws in the analyses and conclusions drawn will be per position), or even into a difference in percentage discussed. amino acid identity. Because they did not compare all The two most fundamental problems with the con- pairs of sequences within a family, these data are not even clusions of the work cited of Aravind et al.1 are that the sufficient for a cluster analysis, but the authors have authors (1) ignore the evidence that Aquifex is the most drawn conclusions about the histories of genes (phylo- deeply branching eubacterium with a complete genome genetic analyses). For statements about the histories of sequence5 (Fig. 1) and (2) assume that hyperthermophilic- these genes, it would be more appropriate to use explicit ity in Bacteria and Archaea are independent inventions. phylogenetic analysis, supported by bootstrap analysis of Firstly, ancestral genes passed vertically through the bac- confidence. Of the 60 protein families (27% of the 220 terial lineage could be transmitted to Aquifex (and poss- families that go beyond Archaea and Aquifex) for which ibly to other early diverging bacterial lineages) but are Aravind et al.1 report such analyses, they find bootstrap lost in the common ancestor of the more recently diverg- support for an Aquifex–Archaea grouping in only 26 ing bacterial lineages for which genome sequences are families. Thus, only 43% of the cases they examined available. Neither the data nor the discussion of Aravind (12% of these 220 ‘reliable best hits’ with the Archaea) are et al.1 deals with this simple explanation of genes that are actually demonstrated to support their suggestion. shared by Aquifex and the Archaea but are absent in other Finally, because of our own interest in the set of pro- bacterial genomes. teins uniquely shared between Aquifex and Archaea, we *Nikos C. Kyrpides Secondly, hyperthermophiles are represented among all repeated this analysis comparing our results with those of 1 [email protected]. of the deepest and least diverged lineages both in Bacteria Aravind et al. Although there were a number of differ- 6 6,7 uiuc.edu and Archaea (Fig. 1), leading many workers but not ences in the genes identified, the real importance of this all8 to argue that the last universal common ancestor analysis lies in the fact that the majority of these genes are Gary J. Olsen (cenancestor) was a hyperthermophile. Aravind et al.1 found in only one or two of the four complete archaeal [email protected]. uiuc.edu ignored this possibility when they interpreted their data. genomes. Thus, even if these genes have been horizontally Regardless of whether the root of the tree of life is placed transferred, we cannot possibly infer whether the transfer Department of in the bacterial branch9,10 or in the eukaryotic branch11, occurred from Archaea to Aquifex (as the authors sug- Microbiology, University and regardless of whether life originated at a hot environ- gested) or vice versa. In addition, we identified homologs of Illinois at Urbana- ment or started cool and later adapted to high tempera- of at least a third of these genes in the partial genome of Champaign, IL 61801, tures12, it is possible – even likely – that hyperthermo- Thermotoga maritima, another bacterial hyperthermo- USA. *Also at the Mathematics philicity was invented once (prior to the last prokaryotic phile, suggesting that vertical inheritance via a thermo- and Computer Science common ancestor stage; Fig. 1), and not independently at philic lineage from the archaeal–bacterial common ances- Division, Argonne two or more later times (as explicitly assumed by Aravind tor (Fig. 1) will be a more parsimonious explanation National Laboratory, et al.1). If the cenancestor was a hyperthermophile, it than independent lateral transfers as suggested by IL 60439, USA. would be natural for it to pass genes contributing to Aravind et al.1 298 TIG August 1999, volume 15, No. 8 0168-9525/99/$ – see front matter © 1999 Elsevier Science All rights reserved. PII: S0168-9525(99)01811-9 Archaeal and bacterial hyperthermophiles GENOME ANALYSIS Outlook FIGURE 1. A rooted phylogenetic tree of Bacteria, Eukarya and Archaea In summary, we find the ideas expressed by Aravind et al.1 to be very Escherichia interesting, but we also argue that these Agrobacterium authors have made assumptions (with- Planctomyces out offering justification) that led them Flavobacterium to conclusions that do not follow from Chlamydia the data per se. In particular, alternative Leptonema hypotheses on the history of extreme Synechocystis thermophilicity would suggest (regard- Bacillus less of the rooting of the tree) that sub- Thermomicrobium Thermus stantial numbers of the genes discussed Thermotoga could be vertically inherited from the Aquifex cenancestor. Giardia Tritrichomonas Physarum References Entamoeba 1 Aravind, L. et al. (1998) Evidence for massive gene Dictyostelium exchange between archaeal and bacterial Trypanosoma hyperthermophiles. Trends Genet. 14, 442–444 2 Deckert, G. et al. (1998) The complete genome of the Paramecium hyperthermophilic bacterium Aquifex aeolicus. Nature Zea 392, 353–358 Coprinus 3 Médigue, C. et al. (1991) Evidence for horizontal gene transfer in Escherichia coli speciation. J. Mol. Biol. Homo 222, 851–856 Desulfurococcus 4 Woese, C.R. (1998) The universal ancestor. Proc. Natl. Sulfolobus Acad. Sci. U. S. A. 95, 6854–6859 5 Burggraf, S. et al. (1992) A phylogenetic analysis of Pyrococcus Aquifex pyrophilus. Syst. Appl. Microbiol. 15, 352–356 Thermoproteus 6 Stetter, K.O. (1996) Hyperthermophilic prokaryotes. Thermophilum FEMS Microbiol. Rev. 18, 149–158 Methanopyrus 7 Pace, N.R. (1991) Origin of life-facing up to the Methanobacterium formicicum physical setting. Cell 65, 531–533 8 Galtier, N. et al. (1999) A nonhyperthermophilic common Methanothermus ancestor to extant life forms. Science 283, 220–221 Thermococcus 9 Iwabe, N. et al. (1989) Evolutionary relationship of Methanococcus vannielii archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Methanococcus jannaschii Natl. Acad. Sci. U. S. A. 86, 9355–9359 Archaeoglobus 10 Brown, J.R. and Doolittle, W.F. (1995) Root of the Thermoplasma universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc. Natl. Acad. Sci. 0.10 Haloferax Methanospirillum U. S. A. 92, 2441–2445 11 Forterre, P. (1995) Thermoreduction, a hypothesis for the origin of prokaryotes. C. R. Acad. Sci. 318, This Maximum Likelihood tree was inferred essentially as described in Ref. 5, and rooted as in Ref. 9. 415–422 The heavy lines trace the evolution of extreme thermophilicity under the assumption that it originated 12 Forterre, P. (1996) A hot topic: the origin of only once. Scale bar: 0.10 amino acid substitutions per site. hyperthermophiles. Cell 85, 789–792 Reply e welcome the discussion of the evolutionary mecha- tral origin of the archaeal genes in Aquifex. The main L. Aravind Wnism(s) underlying the special relationship between reasons for this are simple and have little to do with the [email protected] archaeal and bacterial hyperthermophiles. First of all, to details of the phylogenetic methods used by us, or others, Roman L. Tatusov our satisfaction, we find that Kyrpides and Olsen1 agree but rather stem directly from the nature of the special tatusov@ with us on the critically important issue: such a special relationship. We discuss these reasons briefly below. ncbi.nlm.nih.gov relationship does exist – something that was not at all With respect to the majority of its genes, Aquifex looks Yuri I. Wolf obvious from the original publication on the Aquifex like a ‘garden-variety’ bacterium and does not show any [email protected] genome sequence2. In fact, this was the principal point specific affinity with the Archaea. A significant subset of D. Roland Walker that we tried to convey, as convincingly as we could, in the the Aquifex genes, however, appears to be very different in walker@ 3 article that is discussed . Perhaps we should have been that they show a much greater similarity to archaeal ncbi.nlm.nih.gov more explicit about distinguishing between these basic orthologs than to bacterial ones, and some are (so far) Eugene V.
Recommended publications
  • Diversity of Understudied Archaeal and Bacterial Populations of Yellowstone National Park: from Genes to Genomes Daniel Colman
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 7-1-2015 Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes Daniel Colman Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Colman, Daniel. "Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes." (2015). https://digitalrepository.unm.edu/biol_etds/18 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Daniel Robert Colman Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Cristina Takacs-Vesbach , Chairperson Robert Sinsabaugh Laura Crossey Diana Northup i Diversity of understudied archaeal and bacterial populations from Yellowstone National Park: from genes to genomes by Daniel Robert Colman B.S. Biology, University of New Mexico, 2009 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2015 ii DEDICATION I would like to dedicate this dissertation to my late grandfather, Kenneth Leo Colman, associate professor of Animal Science in the Wool laboratory at Montana State University, who even very near the end of his earthly tenure, thought it pertinent to quiz my knowledge of oxidized nitrogen compounds. He was a man of great curiosity about the natural world, and to whom I owe an acknowledgement for his legacy of intellectual (and actual) wanderlust.
    [Show full text]
  • The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
    SUPPLEMENTARY INFORMATIONARTICLES https://doi.org/10.1038/s41559-020-1221-7 In the format provided by the authors and unedited. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Linzhou Li1,2,13, Sibo Wang1,3,13, Hongli Wang1,4, Sunil Kumar Sahu 1, Birger Marin 5, Haoyuan Li1, Yan Xu1,4, Hongping Liang1,4, Zhen Li 6, Shifeng Cheng1, Tanja Reder5, Zehra Çebi5, Sebastian Wittek5, Morten Petersen3, Barbara Melkonian5,7, Hongli Du8, Huanming Yang1, Jian Wang1, Gane Ka-Shu Wong 1,9, Xun Xu 1,10, Xin Liu 1, Yves Van de Peer 6,11,12 ✉ , Michael Melkonian5,7 ✉ and Huan Liu 1,3 ✉ 1State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China. 2Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark. 3Department of Biology, University of Copenhagen, Copenhagen, Denmark. 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China. 5Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany. 6Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium. 7Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany. 8School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China. 9Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. 10Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China. 11College of Horticulture, Nanjing Agricultural University, Nanjing, China. 12Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
    [Show full text]
  • A Virus That Infects a Hyperthermophile Encapsidates A-Form
    RESEARCH | REPORTS we observe sets of regulatory sites that exhibit Illumina, Inc. One or more embodiments of one or more patents SUPPLEMENTARY MATERIALS patterns of coordinated regulation (e.g., LYN, and patent applications filed by Illumina may encompass the www.sciencemag.org/content/348/6237/910/suppl/DC1 encoding a tyrosine kinase involved in B cell methods, reagents, and data disclosed in this manuscript. All Materials and Methods methods for making the transposase complexes are described in signaling) (Fig. 4B), although reproducibility of Figs. S1 to S22 (18); however, Illumina will provide transposase complexes in Tables S1 and S2 these patterns across biological replicates was response to reasonable requests from the scientific community References (24–39) modest (fig. S22). Given the sparsity of the data, subject to a material transfer agreement. Some work in this study identifying pairs of coaccessible DNA elements is related to technology described in patent applications 19 March 2015; accepted 24 April 2015 WO2014142850, 2014/0194324, 2010/0120098, 2011/0287435, Published online 7 May 2015; within individual loci is statistically challenging 2013/0196860, and 2012/0208705. 10.1126/science.aab1601 and merits further development. We report chromatin accessibility maps for >15,000 single cells. Our combinatorial cellular indexing scheme could feasibly be scaled to col- VIROLOGY lect data from ~17,280 cells per experiment by using 384-by-384 barcoding and sorting 100 nu- clei per well (assuming similar cell recovery and A virus that infects a collision rates) (fig. S1) (19). Particularly as large- scale efforts to build a human cell atlas are con- templated (23), it is worth noting that because hyperthermophile encapsidates DNA is at uniform copy number, single-cell chro- matin accessibility mapping may require far fewer A-form DNA reads per single cell to define cell types, relative to single-cell RNA-seq.
    [Show full text]
  • Extremely Thermophilic Microorganisms As Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals
    REVIEW published: 05 November 2015 doi: 10.3389/fmicb.2015.01209 Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals Benjamin M. Zeldes 1, Matthew W. Keller 2, Andrew J. Loder 1, Christopher T. Straub 1, Michael W. W. Adams 2 and Robert M. Kelly 1* 1 Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA, 2 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point Edited by: that the use of these microorganisms as metabolic engineering platforms has become Bettina Siebers, University of Duisburg-Essen, possible. While in its early days, complex metabolic pathways have been altered or Germany engineered into recombinant extreme thermophiles, such that the production of fuels and Reviewed by: chemicals at elevated temperatures has become possible. Not only does this expand the Haruyuki Atomi, thermal range for industrial biotechnology, it also potentially provides biodiverse options Kyoto University, Japan Phillip Craig Wright, for specific biotransformations unique to these microorganisms. The list of extreme University of Sheffield, UK thermophiles growing optimally between 70 and 100◦C with genetic toolkits currently *Correspondence: available includes archaea and bacteria, aerobes and anaerobes, coming from genera Robert M.
    [Show full text]
  • A Korarchaeal Genome Reveals Insights Into the Evolution of the Archaea
    A korarchaeal genome reveals insights into the evolution of the Archaea James G. Elkinsa,b, Mircea Podarc, David E. Grahamd, Kira S. Makarovae, Yuri Wolfe, Lennart Randauf, Brian P. Hedlundg, Ce´ line Brochier-Armaneth, Victor Kunini, Iain Andersoni, Alla Lapidusi, Eugene Goltsmani, Kerrie Barryi, Eugene V. Koonine, Phil Hugenholtzi, Nikos Kyrpidesi, Gerhard Wannerj, Paul Richardsoni, Martin Kellerc, and Karl O. Stettera,k,l aLehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, D-93053 Regensburg, Germany; cBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; dDepartment of Chemistry and Biochemistry, University of Texas, Austin, TX 78712; eNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; fDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; gSchool of Life Sciences, University of Nevada, Las Vegas, NV 89154; hLaboratoire de Chimie Bacte´rienne, Unite´ Propre de Recherche 9043, Centre National de la Recherche Scientifique, Universite´de Provence Aix-Marseille I, 13331 Marseille Cedex 3, France; iU.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; jInstitute of Botany, Ludwig Maximilians University of Munich, D-80638 Munich, Germany; and kInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, April 2, 2008 (received for review January 7, 2008) The candidate division Korarchaeota comprises a group of uncul- and sediment samples from Obsidian Pool as an inoculum. The tivated microorganisms that, by their small subunit rRNA phylog- cultivation system supported the stable growth of a mixed commu- eny, may have diverged early from the major archaeal phyla nity of hyperthermophilic bacteria and archaea including an or- Crenarchaeota and Euryarchaeota.
    [Show full text]
  • And Thermo-Adaptation in Hyperthermophilic Archaea: Identification of Compatible Solutes, Accumulation Profiles, and Biosynthetic Routes in Archaeoglobus Spp
    Universidade Nova de Lisboa Osmo- andInstituto thermo de Tecnologia-adaptation Química e Biológica in hyperthermophilic Archaea: Subtitle Subtitle Luís Pedro Gafeira Gonçalves Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. OH OH OH CDP c c c - CMP O O - PPi O3P P CTP O O O OH OH OH OH OH OH O- C C C O P O O P i Dissertation presented to obtain the Ph.D degree in BiochemistryO O- Instituto de Tecnologia Química e Biológica | Universidade Nova de LisboaP OH O O OH OH OH Oeiras, Luís Pedro Gafeira Gonçalves January, 2008 2008 Universidade Nova de Lisboa Instituto de Tecnologia Química e Biológica Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. This dissertation was presented to obtain a Ph. D. degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. By Luís Pedro Gafeira Gonçalves Supervised by Prof. Dr. Helena Santos Oeiras, January, 2008 Apoio financeiro da Fundação para a Ciência e Tecnologia (POCI 2010 – Formação Avançada para a Ciência – Medida IV.3) e FSE no âmbito do Quadro Comunitário de apoio, Bolsa de Doutoramento com a referência SFRH / BD / 5076 / 2001. ii ACKNOWNLEDGMENTS The work presented in this thesis, would not have been possible without the help, in terms of time and knowledge, of many people, to whom I am extremely grateful. Firstly and mostly, I need to thank my supervisor, Prof. Helena Santos, for her way of thinking science, her knowledge, her rigorous criticism, and her commitment to science.
    [Show full text]
  • Do Ultrastable Proteins from Hyperthermophiles Have High Or Low Conformational Rigidity?
    Commentary Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Rainer Jaenicke* Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany ife on earth has an unbelievable adaptive parisons of their protein inventories with Lcapacity. Except for centers of volcanic those of suitable mesophilic counterparts, a activity, the entire surface of our planet is a wealth of data has been accumulated that biosphere. In this context, the most surpris- indicated that stabilization involves all levels ing discovery in our lifetime was the expan- of the hierarchy of protein structure, i.e., sion from the anthropocentrically defined secondary, supersecondary, tertiary, and ‘‘normal temperature’’ of mesophiles quaternary interactions. The common con- (Ͻ40°C) to the optimum temperature range clusion from model studies was that the of hyperthermophiles around and above the stability of proteins from extremophiles is boiling point of water. That in this class of optimized to maintain corresponding func- microorganisms high temperature is re- tional states under a given set of environ- quired for growth rather than tolerated im- mental conditions. For the standard state at plies that the whole repertoire of their bi- 25°C, enhanced thermal stability of hyper- omolecules must be sufficiently stable to thermophile proteins would then be the allow the cellular microcosm to work. The result of enhanced conformational rigidity Fig. 1. Three-dimensional structure of rubre- strategies nature has used to stabilize the in their folded native state (5). doxin from P. furiosus. Numbered residues mark inventory of the cell, especially proteins, Evidence from recent amide hydrogen the most slowly exchanging hydrogens, close to under extreme conditions are still enig- exchange experiments reported in this is- the two cysteine knuckles (7–9).
    [Show full text]
  • Bhattacharya.1999.Thermophiles.Pdf
    THE PHYLOGENY OF THERMOPHILES AND HYPERTHERMOPHILES AND THE THREE DOMAINS OF LIFE The Phylogeny of Thermophiles DEBASHISH BHATTACHARYA University of Iowa Department of Biological Sciences Biology Building, Iowa City, Iowa 52242-1324 United States THOMAS FRIEDL Department of Biology, General Botany University of Kaiserslautern P.O. Box 3049, D-67653 Kaiserslautern, Germany HEIKO SCHMIDT Deutsches Krebsforschungszentrum Theoretische Bioinformatik Im Neuenheimer Feld 280 , D-69120 Heidelberg, Germany 1. Introduction The nature of the first cells and the environment in which they lived are two of the most interesting problems in evolutionary biology. All living things are descendents of these primordial cells and are divided into three fundamental lineages or domains, Archaea (formerly known as Archaebacteria), Bacteria (formerly known as Eubacteria), and the Eucarya (formerly known as Eukaryotes, Woese et al. 1990). The Archaea and Bacteria are prokaryotic domains whereas the Eucarya includes all other living things that have a nucleus (i.e., the genetic material is separated from the cytoplasm by a nuclear envelope). The observation of the three primary domains, first made on the basis of small subunit (i.e., 16S, 18S) ribosomal DNA (rDNA) sequence comparisons (Woese 1987), has created a framework with which the nature of the last common ancestor (LCA) can be addressed. In this review we present phylogenies of the prokaryotic domains to understand the origin and distribution of the thermophiles (organisms able to grow in temperatures > 45°C) and the hyperthermophiles (organisms able to grow in temperatures > 80°C). Hyperthermophiles are limited to the Archaea and Bacteria. In addition, we inspect the distribution of extremophiles within the cyanobacteria.
    [Show full text]
  • Title Genomic Analysis of the Marine Hyperthermophilic Archaeon
    Genomic analysis of the marine hyperthermophilic archaeon Title Aeropyrum( Dissertation_全文 ) Author(s) Daifuku, Takashi Citation 京都大学 Issue Date 2015-03-23 URL https://doi.org/10.14989/doctor.k19034 学位規則第9条第2項により要約公開; 許諾条件により本文 Right は2019-08-01に公開 Type Thesis or Dissertation Textversion ETD Kyoto University 1. General introduction Chapter 1 General introduction Gene repertoires and genome organizations differ between closely related microbial organisms depending on the ecological characteristics of each habitat (Cohan and Koeppel 2008). The cyanobacterial Prochlorococcus spp. account for a significant fraction of primary production in the ocean (Goericke and Welschmeyer 1993) and show physiological features relevant to the different ecological niches within a stratified oceanic water column (Moore et al. 1998; West et al. 2001). The whole-genomic comparisons of the Prochlorococcus spp. strains show gross signatures according to this niche differentiation (Rocap et al. 2003). Alpha-proteobacterium Pelagibacter ubique which belongs to the SAR11 clade in the phylogenetic tree based on the 16S rRNA gene is the most abundant microorganism in the ocean (Morris et al. 2002). The genomes of the SAR11 isolates are highly conserved in the core genes that are common to all strains (Medini et al. 2005) and show synteny (the conservation of DNA sequence and gene order) (Bentley and Parkhill 2004). However, variations exist among genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important for niche partitioning (Grote et al. 2012). This adaptation at the genomic level was also observed in archaea. The members of the genus Pyrococcus are anaerobic and hyperthermophilic archaea (Fiala and Stetter 1 1.
    [Show full text]
  • Being Aquifex Aeolicus: Untangling a Hyperthermophile's Checkered Past
    GBE Being Aquifex aeolicus: Untangling a Hyperthermophile’s Checkered Past Robert J.M. Eveleigh1,2, Conor J. Meehan1,2,JohnM.Archibald1, and Robert G. Beiko2,* 1Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada 2Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada *Corresponding author: E-mail: [email protected]. Accepted: November 22, 2013 Abstract Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyper- thermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Downloaded from Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a http://gbe.oxfordjournals.org/ minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria.
    [Show full text]
  • The Thermal Limits to Life on Earth
    International Journal of Astrobiology 13 (2): 141–154 (2014) doi:10.1017/S1473550413000438 © Cambridge University Press 2014. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/. The thermal limits to life on Earth Andrew Clarke1,2 1British Antarctic Survey, Cambridge, UK 2School of Environmental Sciences, University of East Anglia, Norwich, UK e-mail: [email protected] Abstract: Living organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above *60 °C and most not above 40 °C.
    [Show full text]
  • Tackling the Methanopyrus Kandleri Paradox Céline Brochier*, Patrick Forterre† and Simonetta Gribaldo†
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Open Access Research2004BrochieretVolume al. 5, Issue 3, Article R17 Archaeal phylogeny based on proteins of the transcription and comment translation machineries: tackling the Methanopyrus kandleri paradox Céline Brochier*, Patrick Forterre† and Simonetta Gribaldo† Addresses: *Equipe Phylogénomique, Université Aix-Marseille I, Centre Saint-Charles, 13331 Marseille Cedex 3, France. †Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, 91405 Orsay, France. reviews Correspondence: Céline Brochier. E-mail: [email protected] Published: 26 February 2004 Received: 14 November 2003 Revised: 5 January 2004 Genome Biology 2004, 5:R17 Accepted: 21 January 2004 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2004/5/3/R17 reports © 2004 Brochier et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. ArchaealPhylogeneticsequencedusingrespectively). two phylogeny concatenated genomes, analysis based it of is datasetsthe now on Archaea proteinspossible consisting has ofto been thetest of transcription alternative mainly14 proteins established approach involv and translationed byes in 16S bytranscription rRNAusing machineries: largesequence andsequence 53comparison.tackling ribosomal datasets. the Methanopyrus Withproteins We theanalyzed accumulation(3,275 archaealkandleri and 6,377 of phyparadox comp positions,logenyletely Abstract deposited research Background: Phylogenetic analysis of the Archaea has been mainly established by 16S rRNA sequence comparison. With the accumulation of completely sequenced genomes, it is now possible to test alternative approaches by using large sequence datasets.
    [Show full text]