Origin of the Spin-Orbit Interaction
Total Page:16
File Type:pdf, Size:1020Kb
Origin of the spin-orbit interaction B E v s + E Mott 1927 1 1 In a frame associated with the electron: B = E × v = E × p c mc 2 ˆ µB i Zeeman energy in the SO field: H = σ i (E × pˆ ) = − 2 2 σ i (∇V × ∇) mc 2m c 1/c expansion of the Dirac equation pˆ 2 pˆ 4 2 ˆ 2 ˆ H = + eV + 2 2 + 2 2 ∇ V + 2 2 σi(∇V × p) 2m 8mc 8mc 4mc non-relativistic K.E. correction Darwin term SOI All three corection terms are of the same order Smaller by a factor of 2 (“Thomson factor of two”, 1926) Reason: non-inertial frame Landau& Lifshits IV: Berestetskii, Lifshits, Pitaevskii Quantum Electrodynamics, Ch. 33 2 SO coupling (Ze2 / c) 2 2 (Ze / c) Si14 Ga31 Ge32 As33 Bi83 0.01 0.051 0.055 0.058 0.38 Ga32 Ga33 Si14 Ge32 Bi83 Fine structure of atomic levels Hydrogen 2s Runge-Lentz (non-relativistic Coulomb) 2s1/2 +spin degeneracy Johnson-Lippman (relativistic Coulomb) degeneracy lifted by radiation corrections (Lamb shift) Two types of SOI in solids 1) Symmetry-independent: exists in all types of crystals stem from SOI in atomic orbitals 2) Symmetry-dependent: exists only in crystals without inversion symmetry a) Dresselhaus interaction (bulk): Bulk-Induced-Assymetry (BIA) b) Bychkov-Rashba (surface): Surface-Induced-Asymmetry (SIA) Example of symmetry-independent SOI: SO-split-off valence bands Winkler, Ch. 3 I E: j = 1 / 2; jz = ±1 / 2 no I 2 2 2 ⎡(ZGa + ZAs ) / 2 ⎤ ⎛ ZGe ⎞ ⎛ 32⎞ ⎢ ⎥ = ⎜ ⎟ = ⎜ ⎟ = 5.2 ⎣ ZSi ⎦ ⎝ ZSi ⎠ ⎝ 14 ⎠ ΔGaAs / ΔSi = .34/0.044 ≈ 7.7 ΔGaAs / ΔGe = .34/.029 ≈ 1.2 Non-centrosymmetric crystals 7 space group: Oh (non-symmorphic) factor group Oh = Td × I S. Sque (Exter) [111] Diamond (C): Si, Ge 3a 3a / 4 [111] 3a 2 3a / 4 space group: T d (symmorphic) point group: Td (methane CH4 ) Zincblende (ZnS): GaAs, GaP, InAs, InSb, ZnSe, CdTe … Additional band splitting in non-centrosymmetric crystals Kramers theorem: if time-reversal symmetry is not broken, all eigenstates are at least doubly degenerate if ψ is a solution, ψ * is also solution Kramers doublets εs (k), s = ±1 (not necessary spin projection!) Time reversal symmetry: k-k,t-t εs (k) = ε−s (−k) No SOI: ε (k) = ε (−k) regardless of the inversion symmetry With SOI: i) If a crystal is centrosymmetric εs (k) = ε−s (−k) = ε−s (k) ⇒ εs (k) = ε−s (k) t→−t k→−k ii) If a crystal is non-centrosymmetric, εs (k) ≠ ε−s (k) B=0 “spin” splitting Symmetry-dependent SOI: Dresselhaus band splitting in non-centrosymmetric crystals Surface-induced asymmetry: Rashba interaction nˆ z>0 and z<0 half-spaces are not equivalent: k nˆ has a specified direction k,nˆ,σ Three vectors: E. I. Rashba and V. I. Sheka: Fiz. Tverd. Tela 3 (1961) 1735; ibid. 1863; Sov. Phys. Solid State 3 (1961) 1257; ibid. 1357. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984); How to form a scalar? Yu. A. Bychkov and E. I. Rashba, J. Phys. C: Solid State Phys. 17 (1984) 6039. k 2 k 2 ˆ ˆ x y H R = + αni(σ × k) = + α (σ ky − σ kx ) 2m 2m t → −t : k → −k,σ → −σ ⎛ 2 ⎞ 2 k / 2m α (ky + ikx ) k H ⎜ ⎟ R = ⇒ ε± = ± αk ⎜ α k − ik k 2 / 2m ⎟ 2m ⎝ ( y x ) ⎠ Rashba states ε Δ R ε F k 2 k 1 ⎛ 1 ⎞ ε± = ± αk ψ ± = ⎜ iφ ⎟ 2m 2 ⎝ ie k ⎠ 1 S = ψ σ zψ = 0 z,± 2 ± ± 1 x 1 1 y 1 Sx,± = ψ ±σ ψ ± = ± sinφk ; Sy,± = ψ ±σ ψ ± = cosφk 2 2 2 2 k S 0 i ± = Conductance of Rashba wires BSO k 2 2D : Hˆ = + α σ x k − σ yk R 2m ( y x ) k 2 1D : Hˆ = x − ασ yk R 2m x Quay et al. Nature Physics 6, 336 - 339 (2010) Hole wire Dresselhaus+Rashba Dresselhaus Hamiltonian G. Dresselhaus: Phys. Rev. 100(2), 580–586 (1955) zincblende (AIIIBV) lattice H D = DΩ(k)iσ 2 2 2 2 2 2 Ω = kx (ky − kz ),ky (kz − kx ),kz (kx − ky ) ( ) (001) surface (interface) of a AIIIBV semiconductor k = 0, k 2 ~ 1 / d 2 ⎛ z z ⎞ 2 2 2 2 2 Ω = ⎜ kxk y − kx k z ,ky kz − kyk x ,0⎟ = kz −kx ,ky ,0 ( ) ⎝ cubic→0 cubic→0 ⎠ y x H DS = β (σ ky − σ kx ) in general: Rashba+Dresselhaus k 2 k 2 H = + α σ x k − σ yk + β σ yk − σ x k = + σ x αk − βk + σ y αk + βk 2m ( y x ) ( y x ) 2m ( y x ) ( x y ) Datta-Das Spin Transistor k 2 gµ 2α H = + B σiB (k); B k = k × n ≡ Rashba field 2m 2 R R ( ) gµ B even number of π rotations: ON odd number of π rotations: OFF Loss-DiVincenzo Quantum Computer Phys. Rev. A 57, 120 (1998) GaAs: strong spin-orbit coupling; strong hyperfine interaction (Extrinsic) Spin-Hall Effect FSO F J SO Js Spin Hall Effect: the regular current (J) drives a spin current (Js) across the bar resulting in a spin accumulation at the edges. Skew scattering e More spin up electrons are deflected to the right than to the left (and viceversa for spin down) impurity Side Jump For a given deflection, spin up and e spin down electrons make a side- jump in opposite directions. Intrinsic Spin-Hall Effect No observations as of yet unbounded 2D: magnetoelectric effect [V. M. Edelstein, Solid State Comm. 73, 233 (1990). " Can an electric field produce n magnetization? B Drift momentum k R k = eEτ M x k 2 gµ 2α I H = + B σiB (k); B k = k × n ≡ Rashba field 2m 2 R R ( ) gµ B Current induces 2α 2αeEτ M = µ By = k = steady Rashba field y B R g x g Impurities are only necessary to maintain steady state (but forgetting about them leads to incorrect results--”universal spin-Hall conductivity” Murakami et al. Science 301, 1348 (2003) Sinova et al. Phys. Rev. Lett. 92, 126603 (2004) References 1. M. I. Dyakonov, ed. Spin Physics in Semiiconductors, Spinger 2008 http://www.springerlink.com.lp.hscl.ufl.edu/content/g7x071/#section=215878&page=1 available through UF Library Ch. 1 M.I. Dyakonov, Basics of Semiconductor and Spin Physics. Ch. 8 M. I. Dyakonov and A. V. Khaetskii, Spin Hall Effect 2. R. Winkler, Spin-Orbit Coupling Effects in 2D Electron and Hole System, Springer 2003. 3. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer 1999 4. J. Fabian et al. Semiconductor Spintronics, Acta Physica Slovaca 57, 565 (2007) arXiv:0711.1461 5. I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and Applications, Rev. Mod. Phys. 76, 323 (2004) 6. M. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Applications to the Physics of Condensed Matter, Springer 2008. .