WA Hodges (London)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recognizable Sets and Woodin Cardinals: Computation Beyond the Constructible Universe
RECOGNIZABLE SETS AND WOODIN CARDINALS: COMPUTATION BEYOND THE CONSTRUCTIBLE UNIVERSE MERLIN CARL, PHILIPP SCHLICHT AND PHILIP WELCH Abstract. We call a subset of an ordinal λ recognizable if it is the unique subset x of λ for which some Turing machine with ordinal time and tape, which halts for all subsets of λ as input, halts with the final state 0. Equivalently, such a set is the unique subset x which satisfies a given Σ1 formula in L[x]. We prove several results about sets of ordinals recognizable from ordinal parameters by ordinal time Turing machines. Notably we show the following results from large cardinals. • Computable sets are elements of L, while recognizable objects appear up to the level of Woodin cardinals. • A subset of a countable ordinal λ is in the recognizable closure for subsets of λ if and only if it is an element of M 1, 1 where M denotes the inner model obtained by iterating the least measure of M1 through the ordinals, and where the recognizable closure for subsets of λ is defined by closing under relative recognizability for subsets of λ. Contents 1. Introduction1 2. Definitions and basic facts3 3. Recognizable sets5 3.1. Machines with fixed ordinal parameters6 3.2. Different ordinals9 3.3. Arbitrary ordinals 10 3.4. The recognizable closure and HOD 13 4. Recognizable sets and M1 14 4.1. Subsets of countable ordinals 14 4.2. Subsets of !1 17 4.3. Structures which are not recognizable 18 4.4. Generically recognizable sets 20 5. Conclusion and questions 20 References 21 1. -
Ronald Jensen Receives a 2003 Steele Prize Gottfried Wilhelm-Leibniz-Preisträger 2003
Allyn Jackson Ronald Jensen receives a 2003 Steele Prize At the 109th Annual Meeting of the AMS in Baltimore in January 2003, a Steele Prize has been awarded to Ronald Jensen for a Seminal Contribution to Research. The text that follows presents the selection committee’s citation and a brief biographical sketch. (Allyn Jackson) Ronald Jensen’s paper,“The fine structure of the con- of an inner model, in this case G¨odel’s constructible structible hierarchy” (Annals of Mathematical Logic sets, that go far beyond G¨odel’s proof of the general- 4 (1972) 229–308), has been of seminal importance ized continuum hypothesis in this model. for two different directions of research in contempo- The second direction initiated by Jensen’s paper rary set theory: the inner model program and the use involves applying these combinatorial principles to of combinatorial principles of the sort that Jensen es- problems arising in other parts of mathematics. The tablished for the constructible universe. principle, which Jensen proved to hold in the con- The inner model program, one of the most active structible universe, has been particularly useful in parts of set theory nowadays, has as its goals the un- such applications. By now, it has become part of the derstanding of very large cardinals and their use to standard tool kit of several branches of mathematics, measure the consistency strength of assertions about ranging from general topology to module theory. much smaller sets. A central ingredient of this pro- Ronald Jensen received his Ph.D. in 1964 from the gram is to build, for a given large cardinal axiom, a University of Bonn. -
The Semi-Weak Square Principle
The Semi-Weak Square Principle Maxwell Levine Universit¨atWien Kurt G¨odelResearch Center for Mathematical Logic W¨ahringerStraße 25 1090 Wien Austria [email protected] Abstract Cummings, Foreman, and Magidor proved that for any λ < κ, κ,λ implies that ∗ κ carries a PCF-theoretic object called a very good scale, but that κ (which one could write as κ,κ) is consistent with the absence of a very good scale at κ. They asked whether κ,<κ is enough to imply the existence of a very good scale for κ, and we resolve this question in the negative. Furthermore, we sharpen a theorem of Cummings and Schimmerling and show that κ,<κ implies the failure of simultaneous stationary reflection at κ+ for any singular κ. This implies as a corollary that if Martin's Maximum holds, then κ,<κ fails for singular cardinals κ of cofinality !1. Keywords: Set Theory, Forcing, Large Cardinals 1. Background Singular cardinals occupy a curious place in set theory. They are amenable to the forcing technique devised by Cohen to establish the independence of the continuum hypothesis, but many of their properties can be proved outright from ZFC using the PCF theory developed by Shelah. The properties of singular cardinals in a given model depend on a fundamental tension between the extent to which the model supports large cardinals, and the extent to which it resembles G¨odel'sconstructible universe L. The square principle, denoted κ if it holds at a cardinal κ, was distilled by Jensen in order to find Suslin trees at successors of singular cardinals in L [8], and it embodies many of the constructions that can be carried out in L. -
The Realm of Ordinal Analysis
The Realm of Ordinal Analysis Michael Rathjen Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, United Kingdom Denn die Pioniere der Mathematik hatten sich von gewissen Grundlagen brauchbare Vorstellungen gemacht, aus denen sich Schl¨usse,Rechnungsarten, Resultate ergaben, deren bem¨achtigten sich die Physiker, um neue Ergebnisse zu erhalten, und endlich kamen die Techniker, nahmen oft bloß die Resultate, setzten neue Rechnungen darauf und es entstanden Maschinen. Und pl¨otzlich, nachdem alles in sch¨onste Existenz gebracht war, kamen die Mathematiker - jene, die ganz innen herumgr¨ubeln, - darauf, daß etwas in den Grundlagen der ganzen Sache absolut nicht in Ordnung zu bringen sei; tats¨achlich, sie sahen zuunterst nach und fanden, daß das ganze Geb¨audein der Luft stehe. Aber die Maschinen liefen! Man muß daraufhin annehmen, daß unser Dasein bleicher Spuk ist; wir leben es, aber eigentlich nur auf Grund eines Irrtums, ohne den es nicht entstanden w¨are. ROBERT MUSIL: Der mathematische Mensch (1913) 1 Introduction A central theme running through all the main areas of Mathematical Logic is the classification of sets, functions or theories, by means of transfinite hierarchies whose ordinal levels measure their ‘rank’ or ‘complexity’ in some sense appropriate to the underlying context. In Proof Theory this is manifest in the assignment of ‘proof the- oretic ordinals’ to theories, gauging their ‘consistency strength’ and ‘computational power’. Ordinal-theoretic proof theory came into existence in 1936, springing forth from Gentzen’s head in the course of his consistency proof of arithmetic. To put it roughly, ordinal analyses attach ordinals in a given representation system to formal theories. -
On Relating Theories: Proof-Theoretical Reduction
This is a repository copy of On Relating Theories: Proof-Theoretical Reduction. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/147184/ Version: Accepted Version Proceedings Paper: Rathjen, M and Toppel, M (2019) On Relating Theories: Proof-Theoretical Reduction. In: Centrone, S, Negri, S, Sarikaya, D and Schuster, PM, (eds.) Mathesis Universalis, Computability and Proof. Humboldt-Kolleg: Proof Theory as Mathesis Universalis, 24-28 Jul 2017, Loveno di Menaggio (Como), Italy. Springer , pp. 311-331. ISBN 978-3-030-20446-4 https://doi.org/10.1007/978-3-030-20447-1_16 © Springer Nature Switzerland AG 2019. This is an author produced version of a paper published in Mathesis Universalis, Computability and Proof. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ On relating theories: Proof-theoretical reduction Michael Rathjen and Michael Toppel Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, United Kingdom E-Mail: [email protected] Abstract The notion of proof-theoretical or finitistic reduction of one theory to another has a long tradition. -
Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions
This is a repository copy of Constructive zermelo-fraenkel set theory, power set, and the calculus of constructions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/75182/ Book Section: Rathjen, M (2012) Constructive zermelo-fraenkel set theory, power set, and the calculus of constructions. In: Dybjer, P, Lindström, S, Palmgren, E and Sundholm, G, (eds.) Epistemology versus ontology: Essays on the philosophy and foundations of mathematics in honour of Per Martin-Löf. Logic, Epistemology, and the Unity of Science, 27 . Springer , Dordrecht, Netherlands , 313 - 349. ISBN 9789400744356 https://doi.org/10.1007/978-94-007-4435-6 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions Michael Rathjen∗ Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, United Kingdom [email protected] May 4, 2012 Abstract Full intuitionistic Zermelo-Fraenkel set theory, IZF, is obtained from constructive Zermelo- Fraenkel set theory, CZF, by adding the full separation axiom scheme and the power set axiom. -
Ordinal Notation
Dmytro Taranovsky Last Update: December 31, 2018 Ordinal Notation Abstract: We introduce a framework for ordinal notation systems, present a family of strong yet simple systems, and give many examples of ordinals in these systems. While much of the material is conjectural, we include systems with conjectured strength beyond second order arithmetic (and plausibly beyond ZFC), and prove well-foundedness for some weakened versions. Contents: 1 Introduction 1.1 Introduction 1.2 Prior Work 1.3 Goals of Ordinal Analysis 2 A Framework for Ordinal Notations — defines the general structure for the notations. 2.1 Definition of the General Notation 2.2 Basic Properties 2.3 Bachmann-Howard Ordinal 2.4 One Variable C 2.5 Reflection Configurations 3 Degrees of Recursive Inaccessibility — presents a notation system for ATR0 plus "for every ordinal a, there is recursively a-inaccessible ordinal". 3.1 Definition of the Notation 3.2 Comparison Relation 3.3 Examples 4 Degrees of Reflection — presents a notation system for KP + Πn reflection and somewhat stronger systems, with the canonical assignment for nonrecursive ordinals. 4.1 Definition of Degrees of Reflection 4.2 Examples and Additional Properties 4.3 Assignment of Degrees 4.4 A Step towards Second Order Arithmetic 5 Main Ordinal Notation System — presents the main notation system, which plausibly reaches second order arithmetic (Z2) or higher. 5.1 Definition and Basic Properties 5.2 Strength of the Main System 5.3 Old Analysis and Examples 6 Beyond Second Order Arithmetic — gives insights for going beyond second order arithmetic and ZFC 6.1 Old Analysis 6.2 New Analysis 7 Iteration of n-built from below — proposes a strengthening of the main system. -
Replacement Versus Collection and Related Topics in Constructive Zermelo-Fraenkel Set Theory
Replacement versus Collection and related topics in Constructive Zermelo-Fraenkel Set Theory Michael Rathjen¤ Department of Mathematics, Ohio State University Columbus, OH 43210, U.S.A. [email protected] May 29, 2005 Abstract While it is known that intuitionistic ZF set theory formulated with Replacement, IZFR, does not prove Collection it is a longstanding open problem whether IZFR and intuitionistic set theory ZF formu- lated with Collection, IZF, have the same proof-theoretic strength. It has been conjectured that IZF proves the consistency of IZFR. This paper addresses similar questions but in respect of constructive Zermelo-Fraenkel set theory, CZF. It is shown that in the latter con- text the proof-theoretic strength of Replacement is the same as that of Strong Collection and also that the functional version of the Regular Extension Axiom is as strong as its relational version. Moreover, it is proved that, contrary to IZF, the strength of CZF increases if one adds an axiom asserting that the trichotomous ordinals form a set. Unlike IZF, constructive Zermelo-Fraenkel set theory is amenable to ordinal analysis and the proofs in this paper make pivotal use thereof in the guise of well-ordering proofs for ordinal representation systems. MSC: 03F50, 03F35 Keywords: Constructive set theory, replacement, strong collection, proof-theoretic strength, trichotomous ordinals 1 Introduction Zermelo-Fraenkel set theory, ZF, is formulated with Replacement rather than Collection, but it is readily seen that Collection is deducible in ZF. The proof, though, makes essential use of classical logic. On the other hand, it was shown in [12] that intuitionistic ZF set theory formulated ¤This material is based upon work supported by the National Science Foundation under Award No. -
Leroy P. Steele Prize for Mathematical Exposition 1
AMERICAN MATHEMATICAL SOCIETY LEROY P. S TEELE PRIZE FOR MATHEMATICAL EXPOSITION The Leroy P. Steele Prizes were established in 1970 in honor of George David Birk- hoff, William Fogg Osgood, and William Caspar Graustein and are endowed under the terms of a bequest from Leroy P. Steele. Prizes are awarded in up to three cate- gories. The following citation describes the award for Mathematical Exposition. Citation John B. Garnett An important development in harmonic analysis was the discovery, by C. Fefferman and E. Stein, in the early seventies, that the space of functions of bounded mean oscillation (BMO) can be realized as the limit of the Hardy spaces Hp as p tends to infinity. A crucial link in their proof is the use of “Carleson measure”—a quadratic norm condition introduced by Carleson in his famous proof of the “Corona” problem in complex analysis. In his book Bounded analytic functions (Pure and Applied Mathematics, 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981, xvi+467 pp.), Garnett brings together these far-reaching ideas by adopting the techniques of singular integrals of the Calderón-Zygmund school and combining them with techniques in complex analysis. The book, which covers a wide range of beautiful topics in analysis, is extremely well organized and well written, with elegant, detailed proofs. The book has educated a whole generation of mathematicians with backgrounds in complex analysis and function algebras. It has had a great impact on the early careers of many leading analysts and has been widely adopted as a textbook for graduate courses and learning seminars in both the U.S. -
Proof Theory, Constructive Mathematics
Mathematisches Forschungsinstitut Oberwolfach Report No. 18/2008 Mathematical Logic: Proof Theory, Constructive Mathematics Organised by Samuel R. Buss, San Diego Ulrich Kohlenbach, Darmstadt Helmut Schwichtenberg, M¨unchen April 6th – April 12th, 2008 Abstract. The workshop “Mathematical Logic: Proof Theory, Constructive Mathematics” brought together a carefully selected group of mathematicians, computer scientists and logicians in other fields to discus the impact of proof- theoretic and constructive methods in their various areas. A key topic in the meeting was the unwinding of proofs to obtain computational information. This hidden computational information has already lead to new mathematical insights. Computational information is more directly present in constructive approaches to mathematics, a fact that makes it worthwhile to carefully in- vestigate these approaches and also study their proof-theoretic properties. The precise quantitative information proof theory yields about proofs and proof transformations can directly be applied to computational complexity. Mathematics Subject Classification (2000): 03Fxx. Introduction by the Organisers The workshop Mathematical Logic: Proof Theory, Constructive Mathematics was held April 6-12, 2008 and had the following main aims: To promote the interaction of proof theory with core areas of mathematics. This, in particular, refers to uses of proof theoretic techniques (most notably various forms of functional and realizability interpretations) to unwind prima facie ineffective proofs in mathematics. For instance a number of talks presented such applica- tions in the areas of fixed point theory, ergodic theory, topological dynamics and symbolic dynamics resulting in new theorems, surprising to the experts in the respective fields (Avigad, Briseid, Gerhardy, Leu¸stean, Simpson). Another talk addressed uses of analytic number theory in connection with new unprovability results and phase transitions in provability (Bovykin). -
Well-Partial-Orders and Ordinal Notation Systems
Faculty of Sciences Department of Mathematics Connecting the Two Worlds: Well-partial-orders and Ordinal Notation Systems Jeroen Van der Meeren Supervisor: Prof. Dr. Andreas Weiermann Dissertation submitted in fulfillment of the requirements for the degree of Doctor (Ph.D.) in Sciences, Mathematics 2015 Copyright. The author and the supervisor give the authorization to consult and to copy parts of this work for personal use only. Any other use is limited by the laws of copyright. Permission to reproduce any material contained in this work should be obtained from the author. This does not include the Ghent University logo on the front page, which remains under full copyright of Ghent University. Das Unendliche hat wie keine andere Frage von jeher so tief das Gem¨utdes Menschen bewegt; das Unendliche hat wie kaum eine andere Idee auf den Verstand so anregend und fruchtbar gewirkt; das Unendliche ist aber auch wie kein anderer Begriff so der Aufkl¨arungbed¨urftig. From time immemorial, the infinite has stirred men's emotions more than any other question. Hardly any other idea has stimu- lated the mind so fruitfully. Yet, no other concept needs clarifi- cation more than it does. - David Hilbert, Uber¨ das Unendliche (On the infinite ) [39] Preface Kruskal claims in his now-classical 1972 paper [47] that well-partial-orders are among the most frequently rediscovered mathematical objects. Well- partial-orders have applications in many fields outside the theory of orders: computer science, proof theory, reverse mathematics, algebra, combinatorics, etc. The maximal order type of a well-partial-order characterizes that order's strength. -
Formally Verifying Peano Arithmetic
FORMALLY VERIFYING PEANO ARITHMETIC by Morgan Sinclaire A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mathematics Boise State University May 2019 Morgan Sinclaire SOME RIGHTS RESERVED This work is licensed under a Creative Commons Attribution 4.0 International License. BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Morgan Sinclaire Thesis Title: Formally Verifying Peano Arithmetic Date of Final Oral Examination: 15 March 2019 The following individuals read and discussed the thesis submitted by student Morgan Sinclaire, and they evaluated his presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. M. Randall Holmes, Ph.D. Chair, Supervisory Committee John Clemens, Ph.D. Member, Supervisory Committee Samuel Coskey, Ph.D. Member, Supervisory Committee Elena Sherman, Ph.D. Member, Supervisory Committee The final reading approval of the thesis was granted by M. Randall Holmes, Ph.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate College. For Aiur iv ACKNOWLEDGMENTS The main people who deserve counterfactual credit for this work include: 1. My parents. In particular, my mom and my dad. 2. My advisor. He far exceeded his administrative obligations with the number of hours he was available to me for help, both on this thesis and for all of my miscellaneous logic questions. 3. The other people here who have made Boise State a good place to learn logic: Professors Elena Sherman, John Clemens, and Sam Coskey, and the only other logic grad student, Gianni Krakoff.