University of Texas at El Paso DigitalCommons@UTEP

Open Access Theses & Dissertations

2013-01-01 Olivine Ca Content Measured By ICP-OES To Estimate P-T Bradley Benavides University of Texas at El Paso, [email protected]

Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Commons

Recommended Citation Benavides, Bradley, "Olivine Ca Content Measured By ICP-OES To Estimate P-T" (2013). Open Access Theses & Dissertations. 1584. https://digitalcommons.utep.edu/open_etd/1584

This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. OLIVINE CA CONTENT MEASURED BY ICP-OES TO ESTIMATE P-T

BRADLEY D. BENAVIDES

Department of Geological Sciences

APPROVED:

Jasper Konter, Ph.D., Chair

Elizabeth Anthony, Ph.D.

Lawrence Ellzey, Ph.D.

Benjamin Flores, Ph.D. Dean of the Graduate School OLIVINE CA CONTENT MEASURED BY ICP-OES TO ESTIMATE P-T

by

BRADLEY D. BENAVIDES, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Geological Sciences

THE UNIVERSITY OF TEXAS AT EL PASO

December 2013

ABSTRACT

Ca is a trace element in olivine and its concentration is pressure and temperature dependent, providing a rare opportunity to estimate pressure conditions at which mantle-derived rocks

(xenoliths) last equilibrated. This P-T dependence has previously been calibrated for mantle xenoliths, and we applied this technique to samples from Jasper (Jasper Seamount), an oceanic intraplate volcano (OIV) off the coast of the Baja California Peninsula of Mexico.

Preliminary compositions for xenoliths from this location appear to define a magmatic plumbing system that features magma storage near the bottom of the crust. A more detailed analysis of the samples is required to better estimate P-T conditions, and this is normally achieved with electron microprobe measurements of Ca content in olivine, and Mg and Fe in orthopyroxene and clinopyroxene (Köhler and Brey, 1990). In order to assess and improve precision, O'Reilly et al. (1997) used proton microprobe and electron microprobe data to obtain

Ca concentrations for two samples and compared them to compositional estimates from isotope dilution. The results show that isotope dilution yields the highest precision, while the electron microprobe achieves 1% precision, and the proton microprobe yields the worst precision (2.7%). It was found that Ca is strongly correlated with temperature and poorly correlated with pressure, requiring high-precision Ca concentrations to minimize the error on P-

T estimates. In this study, the capabilities of ICP-OES to determine the concentration of Ca of a well-studied Kilbourne Hole xenolith (KH7) have been evaluated. Precise ICP-OES concentrations of Fe, Mg, and Ni were also determined, and these were tested as potential internal standards using electron microprobe concentrations of these elements and the ratio of

Ca to one of these elements. The best precision was found to result from measuring Ca/Mg

iii ratios, with a given Mg concentration from a different technique. A gravimetrically prepared

UTEP Fake Olivine Standard (UFOS) was subsequently measured, having a composition that is close to Jasper Seamount xenoliths. The new Ca/Mg technique was then applied to the xenoliths of Jasper Seamount, bracketed with UFOS measurements for a secondary correction that also includes a drift correction. Jasper Seamount samples define a similar temperature range as was previously found, and overlapping with other OIVs. Pressure estimates only yield values outside of the calibrated range of the applied geothermobarometer, which may result from partial re-equilibration of mineral compositions, alteration of the samples on the seafloor, or by unintentionally including small inclusions of clinopyroxene in the bulk dissolution of olivine.

iv

TABLE OF CONTENTS

Page

ABSTRACT...... iii TABLE OF CONTENTS...... v LIST OF TABLES...... vii LIST OF FIGURES ...... ix LIST OF GRAPHS...... x Chapter 1. INTRODUCTION ...... 1 2. ANALYTICAL BACKGROUND...... 2 3. GEOLOGIC BACKGROUND ...... 3 4. TECHNIQUE DEVELOPMENT...... 8 4.1 Pilot study...... 8 4.2 Analysis-(ICP-OES) ...... 9 4.3 Analysis- (Electron Microprobe) ...... 10 5. SAMPLE DESCRIPTION AND PREPARATION ...... 13 6. RESULTS...... 14 6.1 Pilot Study Results and Expected Precision ...... 14 6.2 Results for Jasper Seamount ...... 15 7. DISCUSSION...... 16 7.1 Ca in Olivine and Extreme Pressures...... 16 7.2 Temperature Estimates at Fixed Pressure ...... 17 8. CONCLUSIONS...... 19 REFERENCES ...... 21 APPENDIX A. FIGURES ...... 23 APPENDIX B. ELECTRON MICROPROBE ELEMENTAL MAPS...... 28 APPENDIX C. TABLES...... 42 APPENDIX D. GRAPHS...... 70

v

CURRICULUM VITA...... 78

vi

LIST OF TABLES

Table 1...... 42

Table 2...... 42

Table 3...... 43

Table 4...... 43

Table 5...... 44

Table 6...... 45

Table 7...... 54

Table 8...... 54

Table 9...... 55

Table 10...... 55

Table 11...... 56

Table 12...... 57

Table 13...... 58

Table 14...... 59

Table 15...... 60

Table 16...... 60

Table 17...... 64

Table 18...... 62

Table 19...... 63

Table 20...... 64

Table 21...... 65

Table 22...... 65

Table 23...... 66

Table 24...... 67

Table 25...... 68

vii

Table 26...... 69

Table 27...... 69

viii

LIST OF FIGURES

Figure 1...... 23

Figure 2...... 24

Figure 3...... 25

Figure 4...... 26

Figure 5...... 26

Figure 6...... 28

Figure 7...... 29

Figure 8...... 30

Figure 9...... 31

Figure 10...... 32

Figure 11...... 33

Figure 12...... 34

Figure 13...... 35

Figure 14...... 35

Figure 15...... 37

Figure 16...... 38

Figure 17...... 39

Figure 18...... 40

Figure 19...... 41

ix

LIST OF GRAPHS

Graph 1...... 70

Graph 2...... 70

Graph 3...... 71

Graph 4...... 72

Graph 5...... 72

Graph 6...... 73

Graph 7...... 73

Graph 8...... 74

Graph 9...... 74

Graph 10...... 75

Graph 11...... 75

Graph 12...... 76

Graph 13...... 76

Graph 14...... 77

Graph 15...... 77

x

1. INTRODUCTION

Despite numerous attempts to define the internal plumbing system of volcanoes in detail, the exact underground pathways involved remain somewhat of a mystery. The magmatic plumbing system can reveal how melt has risen to the surface of Earth and any potential prolonged residence in magma chambers. In active volcanoes, seismology gives insight into this plumbing system (e.g. Klein et al., 1987, Koyanagi et al., 1972). This has been very successful in Hawaii, which has a dense seismometer network and significant activity (e.g.

Ryan, 1988). Some seismic velocity models have been made of Jasper Seamount (Jasper

Seamount) but given the volcano's inactivity, the volcanic plumbing system has to be derived from and geochronology from dredge samples (Hammer et al, 1994; Gee et al,

1988, 1991; Pringle et al, 1991).

Older volcanoes that are no longer (seismically) active can be investigated using the composition of lavas that were erupted. Here we use geothermobarometry of pieces of mantle included in the lavas, so-called xenoliths, to investigate the plumbing system of a relatively small, submarine intraplate volcano: Jasper Seamount. Past work at Jasper Seamount shows pressure-temperature (P-T) path with a decrease in temperature at about 7-10 Kbar (21-30 km)

10km depth (Figure 1). This is similar to the depth of the bottom of the plate around 11.6-13.3 km when the volcano was active, based on an underlying crustal age of 33-25 Ma (Turcotte and

Schubert, 1982). Compositions of xenolith materials from the bottom of the crust and the top of the mantle are pressure and temperature sensitive, and this aspect can be used to define the

P-T conditions of various sampling points along the magmatic plumbing system. A decrease in

1 temperature near the base of the crust may indicate that there was a magma chamber located at the base of the crust. This study collected 2050 analysis points by electron microprobe

(Tables 6-24) and 14 by ICP-OES (Table 27), in order to use established thermobarometers to estimate the last equilibrium pressure and temperature conditions for the studied xenoliths.

2

2. ANALYTICAL BACKGROUND

There are not many ways to estimate P-T for peridotite. Most of the existing thermobarometers are sensitive both to P and T (Köhler and Brey, 1990), and thus in order to accurately calculate temperature, pressure must be known. Köhler and Brey (1990) defined one of the very few barometers for mantle xenoliths by fitting experimental data from P-T experiments to Ca content of olivine, with two equations (Eqn. 1 and Eqn. 2) that give temperature dependent pressure.

For

For

They then used Eqn. 1 and Eqn. 3 to determine P and T from samples across the southwest

United States. The thermometer in Eqn. 3 uses clinopyroxene-orthopyroxene (cpx-opx) pairs and Mg-Fe exchange between them, which can be used to solve for the required temperature:

TBKN.

where

3

This provides two equations with two unknowns that can therefore be solved. Error from pressure propagates into temperature calculations. Therefore error in Ca concentration will increase overall error of pressure and temperature.

In order to test the precision of the P-T estimates of these equations, O'Reilly et al.

(1997) used proton microprobe, and electron microprobe measurements to obtain Ca concentrations. The results (Table 1) show that isotope dilution yields the highest precision.

Proton microprobe analysis was found to produce unacceptable error levels for the P calculations. Electron microprobe achieves 1% (1sd) level errors at ~500ppm Ca, but for lower concentration olivines the precision deteriorates. This is important because higher pressure samples have a lower Ca content and the intraplate origin of Jasper Seamount implies that samples from deep into the mantle may be included. With ICP-OES we found ~1% (2sd) precision for 500 ppm Ca and roughly 3-4% for 50 ppm Sr in Kilbourne Hole xenolith olivine

(N=17). Sr was used as a gauge for low concentration Ca in this study. This method is much less labor-intensive than isotope dilution, but will be shown to produce high-precision results.

4

3. GEOLOGICAL BACKGROUND

OIVs are volcanoes that are not located at plate boundaries like the majority of volcanoes, and instead they can be caused by tectonic processes (e.g, Marquesas, Samoa), or in a more traditional view, by stationary deep mantle plumes (e.g. Woodhead, 1992; Natland,

1980); Hawaii is thought to be the prime example of a deep mantle plume-sourced OIV. Konter et al (2009) have proposed a similar origin for Jasper Seamount, based on major, trace element and isotope compositions of dredged lavas. Particularly isotopic data illustrates the distinct geochemical signature of ocean island (OIBs) compared to that of mid ocean ridge basalts (MORBs; Hofmann, 1997), the latter making up the crustal part of the oceanic plates.

Some samples from Jasper Seamount plot near the overlap between MORB and OIB (near "C" or "FOZO"), but the majority of the samples plot away from the overlap, stretching toward the extreme end-points of the OIBs ( Figure 3) , recognized as "HIMU" (high U/Pb mantle) and "EM"

(enriched mantle) mantle compositions (Hofmann, 1997; Figure 3). As a result, Jasper

Seamount is likely not a volcano related to Pacific Ocean crust generation, but instead a small intraplate volcano. This, in turn, implies a different (deeper) setting with different P-T conditions for the melt producing this volcanic structure, compared to ocean ridges.

The main volcano studied here, Jasper Seamount is located just to the west of the Baja

Baja Peninsula of Mexico. It is part of the Fieberling-Guadalupe Seamount trail (FGST; Jarrard and Clague, 1977). The FGST is a chain of larger volcanoes that runs oblique to the spreading direction, as seen from magnetic anomalies (Atwater and Severinghaus, 1989), to the ridge axis.

It is surrounded by a smaller group of scattered that were likely erupted near the

5 ridge axis (Konter et al., 2009). The latter will not be covered in this study, and instead the focus will be on Jasper Seamount, the best studied of six seamounts that compose the WNW-

ESE trending FGST.

Jasper Seamount is much closer in size to average sized OIVs than the unusually large volcanoes in Hawaii, making it a suitable model volcano for other intraplate volcanoes.

Geochemical and geophysical data show that the internal structure of Jasper Seamount was very similar to that of the (Gee et al., 1988, 1991; Pringle et al., 1991). Like the

Hawaiian Islands, it can be seen that FGST volcanoes erupt in a 7.4 million year series of three stages (Gee and Staudigel, 1988, and Pringle et al, 1991).

The three stages erupted at Jasper Seamount transition from borderline tholeiitic to alkali basalts in three stages (Gee et al, 1991). The first stage makes up most of the volcano

(≈90%), and it is the most tholeiitic, recognized as the flank transitional series (FTS) at 11.5-10

Ma. Between 8.7-7.5 Ma the flank alkali series (FAS) was erupted and makes up 3-8% of Jasper

Seamount. The summit alkali series (SAS; <1% of the volcano) erupted 4.8-4.1 Ma (Gee et al.,

1991; Pringle et al., 1991). Jasper Seamount undergoes the same formation process as the

Hawaiian Islands but is much smaller and provides an excellent environment to see how these processes work on the smaller scale. Interestingly, Jasper Seamount is also one of the relatively few submarine volcanoes for which mantle xenoliths are available, meaning a more representative model may be derived for average-sized OIVs. The Jasper Seamount xenolith samples are all hosted in the SAS lavas, and they fall into the Cr-Diopside Group according to the Wilshire and Shervais (1975) classification of ultramafic xenoliths. Of the two types of

6 ultramafic xenoliths, Cr-rich clinopyroxene and spinel, as well as Mg-rich olivine and pyroxenes, characterizes the Cr-diopside group. The other group being the Al-augite group containing Al,

Ti-rich augites and Fe-rich olivine and orthopyroxenes (Wilshire and Shervais, 1975).

7

4. TECHNIQUE DEVELOPMENT

An experimental technique using ICP-OES for measuring Ca at high precision was developed for this study. This technique was first applied to sample KH-7 as a pilot study, then to Jasper Seamount sample.

4.1 Pilot Study

ICP-OES analyses were used to determine concentration of Ca in a well-characterized xenolith from Kilbourne Hole (KH-7) instead of the samples from our study area. Köhler and

Brey (1990) also included samples from, Kilbourne Hole, a maar volcano in the Potrillo Volcanic

Field near El Paso, TX (Figure 2), in their original geothermobarometer study. This approach was taken since this sample has been analyzed extensively and there is an abundance of material to work with, in contrast to our Jasper Seamount dredge samples that are more difficult to obtain. In addition, electron microprobe analysis was carried out to acquire an accurate measurement of major element compositions for the constituent minerals, needed for the internal standardization of the ICP-OES data and for the geothermobarometer. For the

Kilbourne Hole sample, major element compositions were already available from the electron microprobe, while new data was collected by ICP-OES for its Ca concentration. Together with a gravimetrically prepared standard (UTEP Fake Olivine Standard, coined UFOS), multiple analyses of the sample and the standard were used to gauge the potential precision of the ICP-

OES, before the sample from Jasper Seamount were subjected to this technique.

8

4.2 Analysis-(ICP-OES)

First olivine grains were separated by hand for both Kilbourne Hole and Jasper

Seamount samples, and the cleanest crystals were dissolved in a mixture of HF-HNO3. After drying and treatment with HNO3, the sample is then completely dissolved in HCl. Once dissolution is complete, the samples are dried then dissolved in weak HNO3 for measurement on the ICP-OES. The USGS standard (M-182) was measured as an unknown during the tests with KH-7 and the UFOS standard to calibrate the machine response at a given concentration, and to correct for instrument drift. The instrumental drift correction also includes a correction for factors such as plasma instability, by using an internal standard approach, where Ca is ratioed over an element of known concentration, from a different quantitative analytical technique. In the mineral olivine precise ICP-OES concentration ratios of Mg, Ni, and Fe to Ca can be collected that can then be combined with externally measured Mg, Ni, and Fe. Since samples were dissolved and dried in HF-HNO3, Si will be largely lost, complexing with F, and therefore Si cannot be used as an internal standard. Fe can also be dismissed, since the Fe spectral peak intensity was too high for our samples and saturated the spectrometer. A larger dilution was simulated, to see if dilution would affect Ca precision significantly, by assessing the precision of ppb-level Sr concentrations. This showed an error 2.5 times greater than the error of ppm-level Ca, suggesting Ca/Fe is not effective for Ca concentration measurements.

Of the remaining potential internal standardization elements the Ca/Mg ratio shows the best precision compared to Ca/Ni and Ca/Sr ratios. Initially, a Ca/Ni ratio determined by OES was used, but the low Ni content of olivine results in a relatively poor precision measurement from the electron microprobe (10% or more) and limits the precision in Ca/Ni due to error

9 propagation. The same argument can be made for Ca/Sr. As a result, Ca/Mg was used as the internal standard, measuring a low intensity element spectral peak for Mg on the ICP-OES, such that this major element does not saturate the spectrometer, while solutions with ppm-level Ca can be employed. Use of the Ca/Mg ratio yielded ~1% error levels.

4.3 Analysis-(Electron Microprobe)

In addition to high precision Ca concentrations, the P-T estimate also requires major element compositions for olivine, clinopyroxene, and orthopyroxene, to solve two geothermobarometry equations with two unknowns. In this study, the Ca in olivine geobarometer and the Mg-Fe clinopyroxene-orthopyroxene exchange thermometer are used

(Köhler and Brey, 1990). An electron microprobe was used to acquire precise compositional data of individual minerals for Mg, Fe, Si, and minor elements for olivine and the pyroxenes.

This data was already available for the Kilbourne Hole sample, and therefore only data for the

Jasper Seamount samples were acquired with this technique.

For trace element analysis Köhler and Brey (1990) used a wavelength dispersive system

(WDS) on a "CAMEBAX MICROBEAM". They applied and acceleration voltage of 20 kV, a beam current of 50 nA, and count times of 60-100s depending on Ca content. For major element analysis, Köhler and Brey (1990) used a KEVEX Energy Dispersive Spectrometer (EDS) on a

CAMECA electron microprobe. They used a count time of 100s, 20 nA current, and an accelerating voltage of 15 kV.

Jasper Seamount sample analysis started with using a CAMECA SX-50 electron microprobe to make elemental X-ray maps of each Jasper Seamount sample for Mg, Ca, Fe, and

Si. We used a an acceleration voltage of 15 kV, beam current of 50 nA, pixel dwell time of 20s,

10 and a pixel step of 10 microns with a 10 micron beam. We used the highest resolution map needed to fit the entire sample. Most samples required at least one map and up to four maps at 1024x1024 step resolution and only one (Jasper Seamount 5-38) fit in a single 512x512 step map.

These high resolution elemental maps and the back-scattered electron (BSE) images revealed exsolution lamellae in both the clinopyroxenes and orthopyroxenes, indicating low- temperature modification of the crystal structures. These lamellae ranged from 1-30 microns in width, and they proved to be difficult to analyze, so a scanning and integrating analysis was used, given that the P-T estimates depend on the compositional exchange between the pyroxenes.

We then set up separate calibrations for the olivine and pyroxenes using ASTIMEX standards (Table 3) based on general elemental compositions of each mineral and adjusted calibrations for best results.

Using the olivine calibration, five grains per sample (eight samples) were analyzed, with

3 points per grain (rim, middle, and core). In these analyses I used an acceleration voltage of 15 kV, beam current of 20 nA, and a peak count time of 20s and background of 5s, with a focused beam (>1micron). A total of 132 spots were analyzed on olivine for the 8 samples.

A different approach had to be used to obtain major elemental analysis of pyroxene due to exsolution lamellae. Bulk composition of orthopyroxene and clinopyroxene was obtained by increasing (defocusing) the beam size to 60 microns and analyzing thirty points per sample at

61 micron steps making three lines of ten points apiece. This approach is based on a test

11 analysis of a pyroxene with 50 lines across the entire grain. The averaging of 3 lines (7 sets of 3 lines), and subsequently the averaging of 5 lines (4 sets of 5 lines) provide the same averages and errors for each element, suggesting no improvement of the averaged composition is accomplished by more than 3 lines. The electron microprobe data is included in (Tables 6-24)

12

5. SAMPLE DESCRIPTION AND PREPARATION

Both the sample from Kilbourne Hole, and the samples from Jasper seamount consist of spinel-bearing peridotites, with varying amounts of olivine, orthopyroxene, and clinopyroxene.

The Kilbourne Hole (KH-7) sample was described by Perkins and Anthony (2011), and is expected to be one of the deeper-origin xenoliths whose mineralogy implies it is a lherzolite

(olivine (ol): 51%, orthopyroxene (opx): 27%, clinopyroxene (cpx): 17%). Jasper seamount sample consist of the same mineralogy, but particularly the amount cpx varies. Sample JSM-1-

96 is a lherzolite (ol: 50% , opx: 40%, cpx: 10%). Sample JSM 5-12 is a lherzolite (ol: 70%, opx:

20%, cpx: 10%). Sample JSM 1-6 is a lherzolite (ol: 40%, opx: 30%, cpx: 20%). Samples JSM 5-

22, JSM 5-8A, JSM 5-8B, and JSM 5-38 are all harzburgites (ol: 90%, opx: >10%, cpx: >10%).

For both the Kilbourne Hole sample and Jasper Seamount, olivine grains were hand- picked. In case of the submarine samples from Jasper Seamount, the five least-altered samples were analyzed, using from 12.42mg (Jasper Seamount 1-96) to 91.67 mg (Jasper Seamount 5-

22). Sample material was separated from thin section billets that had previously been used to prepare polished thin sections for the electron microprobe. The same dissolution (HF-HNO3,

HNO3, HCl) steps were applied that were used with the KH-7 sample, while the various amounts of material allowed for a varying number of duplicate ICP-OES analyses per sample, adding up to a total of 14 Ca/Mg analyses.

13

6. RESULTS

First shown are our results of the high precision tests done in the pilot study. Next, the results from the geothermobarometer and technique applied to Jasper Seamount sample will be covered.

6.1 Pilot Study Results and Expected Precision

The error level was estimated from 17 duplicate analyses of the Kilbourne Hole sample and 10 analyses of the UFOS standard(Tables 25-26). Multiple spectral peaks were tested for both Ca and Mg, and the data suggest the best precision results from the use of 318nm

Ca/280nm Mg, and 318nm Ca/285nm Mg. If drift of the ICP-OES instrument is corrected by fitting a trend to multiple instances of an analyzed standard (run as unknown), and detrending the sample data, both Ca/Mg ratios attain approximately 1% (2sd) errors. In order to drift correct our samples and assess performance, the UFOS standard was prepared as the standard to be run as unknown. The standard was gravimetrically prepared (weighed to more significant figures than attainable by measurement), and its composition mimics that of a dissolved olivine to ensure any corrections will be similar between standard and samples. The resulting 1% error is very promising, since this is similar to the precision from isotope dilution analyses (1.6%, 2sd;

O'Reilly et al., 1997) and improves on electron microprobe precision (~4%, 2sd; O' Reilly et al.,

1997), suggesting a precision improvement up to 4x over electron microprobe analyses. Since the ultimate goal of improved precision is an improved P-T estimate for any given xenolith, assessing the effect of 1% precision yields a pressure estimate precision of about 0.26 Kbar

(1sd), well within the calibration of 1.7 Kbar (Köhler and Brey, 1990). Isotope dilution generates similar precision estimates with a much more labor intensive analytical technique, while

14 electron microprobe errors are similar to the calibration error. This implies the higher precision techniques may better define relative pressure conditions of xenoliths, although the overall precision of the entire group is less certain due to the larger calibration error.

6.2 Results for Jasper Seamount

P-T estimates were attained by using the Ca317/Mg280 ratio from ICP-OES and elemental analysis from the electron microprobe (See Tables 6-24). Of the five samples for which we collected ICP-OES data, four returned negative P estimates (-23 Kbar to -1 Kbar; average of -13.7 Kbar) with T ranging from 899 C°-1022 C° with an average of 976.2 C°. Sample

JSM 5-12 returned pressures ranging from 55-63 Kbar and temperatures between 1279 C° and

1336 C°, well into the garnet-peridotite zone. Obtaining very low and/or high pressures that are on the edge or beyond the calibrated P-T range for this geothermobarometer requires assessment of just the well-defined major element data. Applying a fixed pressure of 12 Kbar, all eight samples were included (See Table 5) and the thermometer portion of the geothermobarometer returned T estimates of 951-1223 C° with an average of 1057 C°.

15

7. DISCUSSION

The calculated P-T values for the analyzed samples using both the pyroxene thermometer and the olivine barometer are effectively at the edge or outside of the calibrated range for these methods. Since the Ca in olivine barometer is usually seen as the most difficult component of the needed measurements, this is the most logical component to assess for problems. However, multiple analyses on our samples suggest that the measurements are indeed quite precise (~1%), so a lack of precision is not causing the extremely high/low P-T values. We discuss a few possible causes below that may affect our calculations, and subsequently we discuss results, assuming a fixed pressure as is done more commonly (e.g.

Perkins and Anthony, 2011).

7.1 Ca in Olivine and extreme pressures

Since the original geothermobarometer returned either negative pressures or pressures that are far too high for this environment they cannot be accepted as accurate data. This could be due to any of three circumstances. The first possibility is that the xenoliths partially re- equilibrated in the lava as it traveled to the surface. We do not deem this very likely due to the fact that in order to get such negative pressure estimates the Ca levels must be relatively high.

Since re-equilibration of the mineral compositions should be diffusion limited, the time-scale of diffusion (10-11 cm2/sec; Morioka, 1981) should agree with the time of magmatic ascent, which instead is limited (< 10 yr; Costa and Dungan, 2005) due to the presence of xenoliths that would have settled out in a magma chamber. Thus this scenario is not the cause of the low temperature and pressure.

16

Another possible explanation for the negative pressures could be alteration of the

Jasper Seamount xenoliths. Ca is a very mobile element in water-bearing fluids and exposure to sea water on the ocean floor for 4 Ma could very well have caused Ca exchange with sea water.

Some supporting evidence for this idea is that particularly the olivine crystals in the xenoliths seem to be variably affected by alteration, as visible in a hand piece. The clinopyroxene in samples JSM 5-22 seems to be forming as rims on the orthopyroxenes (See Figure 13). This could be due to alteration of the orthopyroxene by the presence of another mineral in the xenolith. For this reason the data from this sample should not be included in this study.

Finally, extreme P-T estimates could have resulted from a problem with the bulk measurement technique for precise measurement of Ca in olivine. Any inclusion of a Ca-rich clinopyroxene grain, either from small-scale inclusions or error in the handpicking process, would yield a much higher Ca concentration and render the Ca/Mg ratio used for the geothermobarometer useless. This effectively amounts to a problem with accuracy, at high precision. Measurement on alternative, high precision equipment (such as a secondary ion microprobe) would be necessary to assess this component.

In order to circumvent any potential problems with the barometer component of the P-

T estimates, a 12 Kbar fixed pressure estimate was used to obtain temperature estimates, as was used by Perkins and Anthony (2011) for Kilbourne Hole xenoliths.

7.2 Temperature Estimates at Fixed Pressure

Temperatures calculated at the same fixed pressure as Perkins and Anthony (2011; 12

KBar), show a some scatter. The sample that was originally very high in P-T is still the highest in

17 temperature (1223 C°). The other samples plot effectively on top of fields for other OIVs (data from the Georoc online database), and one sample extends the temperature down a little from previous estimates for Jasper Seamount. In comparison to the Jasper Seamount results, the fields for the xenoliths from Kilbourne Hole are a little lower in temperature (except the harzburgites). This might have been expected, since Jasper Seamount is thought to represent an intraplate volcano, likely fed by a relatively hot mantle upwelling (Konter et al., 2009), while the Rio Grande Rift is not fed as deeply. In fact, recent seismic interpretations from USArray data from only show slow (likely thermal) seismic anomalies in the top ~300 km (Schmandt and

Humphreys (2010).The values are also largely below the volatile-rich solidus, implying that the xenoliths sampled here were simply picked up by the melt, potentially as wall-rock to channels.

The fluid and melt inclusions in Figure 1 (blue symbols) are typically higher temperature than the xenolith equilibrium temperatures, which may reflect their relationship to the melt that picked up the xenoliths on the way to the surface. Unfortunately, it is not possible to deduce pressure conditions beyond spinel stability (~20-60km depth), and therefore the presence and location of a magma chamber cannot be narrowed down with the current data set. As a result, all that we can conclude is that temperatures are similar as those calculated before for Jasper

Seamount, and those of other OIVs.

18

8. CONCLUSIONS

This study attempted to use Ca in olivine, combined with Fe-Mg exchange between pyroxenes, as a geothermobarometer for mantle-derived xenoliths. Jasper Seamount, an OIV off the coast of the Baja California Peninsula, was compared to the previously studied Kilbourne

Hole mantle xenoliths with an experimental technique of high precision measurement of Ca. Ca is shown to correlate strongly with temperature and poorly with pressure so Ca measurements need to be extremely precise to provide an accurate P estimate. Köhler and Brey, (1990) used an electron microprobe technique to measure Ca with a ~2% error (1sd). O'Reilly et al. (1997) found that isotope dilution provided the highest precision Ca measurements with 1% (1sd) precision and even worse with proton microprobe analysis (2.7% error; 1sd). The technique we developed uses the electron microprobe to obtain accurate major element analysis of olivine, orthopyroxene, and clinopyroxene. It also uses ICP-OES analysis of olivine to measure Ca in olivine at high precision. This was found to produce precise about 1% (2sd) results on

Kilbourne Hole sample and a gravimetrically prepared standard (UFOS) and was applied to

Jasper Seamount attaining the same sub 2% precision. The geothermobarometer returned four negative pressures and one pressure of ~55 Kbar, which is well into the garnet peridotite zone.

There are multiple possible reasons for this, the first being that this is a bulk technique and any inclusion of cpx in the olivine that was analyzed through ICP-OES measurement would produce unrealistically high Ca concentrations. This would make the Ca/Mg ratio used in the geothermobarometer effectively useless. Another possibility in the cause of the extreme pressure results is that Jasper Seamount xenoliths resided on the ocean floor for 4 Ma which allows for alteration of the xenoliths through Ca exchange with ocean water. The technique

19 developed to precisely measure Ca in olivine for a geothermobarometer provides a more time- efficient and less labor intensive alternative to purely high precision electron microprobe analysis or isotope dilution. To be used effectively, this technique should be applied to fresher mantle xenoliths with special care taken in physical separation of olivine grains.

20

REFERENCES

Atwater, T., and J. Severinghaus (1989), Tectonic maps of the northeast Pacific, in The Eastern Pacific Ocean and Hawaii, Geol. of N. Am., vol. N, edited by E. L. Winterer, pp. 15 – 20, Geol. Soc. of Am., Boulder, Colo.

Gee, J., Staudigel, H., and Natland, J. H. (1991). Geology and Petrology of Jasper Seamount. J. Geophys. Res., 96, 4083–4105, doi:10.1029/90JB02364.

Gee, J., Tauxe, L., Hildebrand, J. A., Staudigel, H., Lonsdale, P. (1988). Nonuniform magnetization of Jasper Seamount. J. Geophys. Res., 93, 12,159–12,175, doi:10.1029/JB093iB10p12159.

Hofmann, A. W. (1997), Mantle geochemistry: The message from oceanic volcanism, Nature, 385, 219 – 229, doi:10.1038/385219a0. Jarrard, R. D., and D. A. Clague (1977). Implications of Pacific Island and seamount ages for the origin of volcanic chains, Rev. Geophys., 15(1), 57–76, doi:10.1029/RG015i001p00057.

Klein, F. W., Koyanagi, R. Y., Nakata, J. S., and Tanigawa, W. R. (1987). The seismicity of Kilauea's magma system, U.S. Geol. Surv. Prof. Pap., 1350, 1019-1186.

Kohler, T. P., Brey, G. P. (1990). Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochimica et Cosmochimica Acta, 54(9), 2375-2388.

Konter, J.G., Staudigel, H., Blichert-Toft, J., Hanan, B.B., Polvé, M., Davies, G.R. , Shimizu, N., Schiffman, P. (2009). Geochemical stages at Jasper Seamount and the origin of intraplate volcanoes, Geochemistry, and Geosystems, 10 (2009), p. Q02001 doi.org/10.1029/2008GC002236

Konter, J.G., Staudigel, H., Gee, J. (2010). SPOTLIGHT 2 Jasper Seamount. Oceanography 23(2):40-41.

Koyanagi, R. Y., Swanson, D. A., and Endo, E. T. (1972). Distribution of earthquakes related to mobility of the south flank of Kilauea volcano, Hawaii, U.S. Geol. Surv. Prof. Pap., 800-D, D89-D97

Morgan, W. J. (1971). Convection plumes in the lower mantle, Nature, 230, 42–43, doi:10.1038/230042a0.

Morioka, M. (1981). Cation diffusion in olivine-II.. Ni-Mg, Mn-Mg, and Ca. Geochim Cosmochim Acta, 45: 1573-1580

Natland, J. H. (1980). Progression of volcanism in the Samoan linear volcanic chain, American Journal Of Science, 280A, 709−735

21

O'Reilly. S. Y., Griffin, W. L. , Ryan, C. G. (1997). Minor elements in olivine from spinel lherzolite xenoliths; implications for thermobarometry. Mineralogical Magazine (April 1997), 61(2(405)):257-269

Perkins, D., Anthony, E.Y.. (2011). The evolution of spinel lherzolite xenoliths and the nature of the mantle at Kilbourne Hole, New Mexico. Contributions to Mineralogy and Petrology, DOI 10.1007/s00410-011-0644-1

Pringle,M. S., Staudigel, H., Gee, J. (1991). Jasper Seamount: Seven million years of volcanism. Geology, 19, 364–368, doi:10.1130/0091-7613(1991)019<0364:JSSMYO>2.3. CO;2.

Ryan, M.R., (1988). The mechanics and three dimensional internal structure of active magmatic systems: Kilauea volcano, Hawaii, J. Geophys. Res., 93 (1988), pp. 4213–4248

Sen, G. (1983). A petrologic model for the constitution of the upper mantle and crust of the Koolau shield, Oahu, Hawaii, and Hawaiian magmatism. Earth planet Sci Lett 62:215- 228

D.L. Turcotte, Schubert, G. (1982). Geodynamics: Applications of Continuum Mechanics to Geological Problems. Wiley, New York (1982), p. 450

Woodhead, J. D. (1992). Temporal geochemical evolution in oceanic intra-plate volcanics: A case study from theMarquesas (French Polynesia) and comparison with other hotspots, Contrib. Mineral. Petrol., 111, 458 –467, doi:10.1007/BF00320901.

Wyllie, P.J. (1981). Plate tectonics and magma genesis. Rundschau 70:128-153

22

APPENDIX A. FIGURES

Figure 1: P-T diagram for mantle xenoliths. Shown are fields for Society, Spitsbergen, Samoa and Hawaii. Additionally, in red squares the samples from Jasper Seamount (red cross is error estimate), showing the likely p-T path of Jasper Seamount melts in general. The more horizontal part may represent a subcrustal magma reservoir. Blue squares represent p-T data from fluid and melt inclusions, note their consistent higher temperature, implying these may have equilibrated more with the melt that transported the xenoliths. Also shown is the solidus for mantle melts, with either H2O or CO2 present (Wyllie, 1981). Additionally, the spinel-garnet transition is shown (Sen, 1983)). The gray shaded fields show regions yielding different melt compositions, based on p-T conditions.

23

Figure 2: Figure from Köhler and Brey, 1990, with data from Hervig et al., 1986, Webb and

Wood, 1986, and Chapman and Pollack, 1977. P-T calculated for different southwestern USA spinel peridotites. Spinel phase shows shallower depth than garnet lherzolite.

24

Figure 3: From Hofmann, 1997. Pb and Sr isotopic ratios. Hawaiian values circled in orange

show different values than MORB values

25

Figure 4: Location of dredges. Data from Konter et al.,2009. Image made with Fledermaus.

Figure 5: Profile view of Jasper Seamount facing north. Data from Konter et al.,2009. Image

made with Fledermaus.

26

Figure 6: Ca/Mg ratios of Ca measured on the 317.933 spectral spectral peak and Mg measured

on the 280.271 spectral peak. Instrumental drift (left) is corrected by detrending of the

collected data (right), possible by measuring gravimetric standard.

27

APPENDIX B. ELECTRON MICROPROBE ELEMENTAL MAPS

Figure 6: JSM 1-96 Ca

28

Figure 7: 1-96 Mg

29

Figure 8: JSM 5-12 Ca

30

Figure 9: JSM 5-12 Mg

31

Figure 10: JSM 1-6 Ca

32

Figure 11: JSM 1-6 Mg

33

Figure 12: JSM 5-22 Ca

34

Figure 13: JSM 5-22 Mg

35

Figure 14: JSM 5-8A Ca

36

Figure 15: JSM 5-8A Mg

37

Figure 16: JSM 5-8B Ca

38

Figure 17: JSM 5-8B Mg

39

Figure 18: JSM 5-38 Ca

40

Figure 19: JSM 5-38 Mg

41

APPENDIX C. TABLES

Table 1: Modified from O'Reilly et al. (1997) to show just Ca concentration and error. The bulk of Ca concentrations fell in the 200-600 ppm range with a mean of 380 ± 210 ppm

Sample Proton Isotope Dilution Electron Microprobe/Secondary Microprobe Ion Mass Spectrometry SC-1 Standard Olivine 518 ± 14 524 ± 4 523 ± 10 (EMP) N-1 Standard Olivne 25 ± 7 19.6 ± 3 19.8 ± 1.1 (SIMS)

Table 2: UFOS Standard composition and error UFOS ppm in standard ppm in fake Error(%rsd) Error

olivine

Ca 1000 2.824 0.3 0.008

Mn 1000 7.3 0.3 0.02

Ni 1000 19 0.3 0.06

Mg 10000 1939 0.3 6

Fe 1000 427 0.3 1

Si 10000 1140 0.3 3

42

Table 3: ASTIMEX Standards selected for olivine and pyroxene

ASTIMEX Standard Pyroxene Olivine

Mg Olivine Olivine

Si Olivine Olivine

Fe Olivine Olivine

Mn Bustamite Rhodonite

Ca Chromium Diopside Chromium Diopside

Na Tugtupite NA

Al Sanidine NA

Ti Rutile NA

Cr Chromite NA

Table 4: P-T Minimum, maximum and average per sample based on iterative P-T calculator

Min T Average Max T Min P Average Max P Sample (C°) T (C°) (C°) (Kbar P (Kbar (Kbar) JSM 4-35 974 1004.7 1022 -14 -9.4 -7 JSM 1-96 991 993.3 998 -16 -15.5 -14 JSM 5-12 1279 1300.5 1336 55 58.0 63 JSM 1-6 933 938.6 942 -23 -22.3 -22 JSM 5-22 899 968.1 1007 -18 -7.3 -1 AVERAGE 1015.2 1041.04 1061 -3.2 0.674286 3.8

43

Table 5: Temperatures given an assumed P of 12 Kbar

Min Average Max Sample T(C°) T(C°) T(C°) JSM 4-35 1025 1047 1059 JSM 1-96 1046 1048 1051 JSM 5-12 1193 1201 1223 JSM 1-6 1001 1005 1007 JSM 5-22 951 1003 1032 JSM 5-8A 1017 1043 1058 JSM 5-8B 1004 1059 1167 JSM 5-38 1021 1047 1063 AVERAGE 1032 1057 1083

44

ELECTRON MICROPROBE DATA

Table 6: JSM 5-12 CPX 1 Line Averages and Standard Deviations; SD (2sd %)

JSM 5- 12 CPX CPX2 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #1 0.197 17.874 9.073 47.706 17.509 0.137 1.935 0.032 3.21 97.678 #2 0.251 17.912 6.027 49.969 19.451 0.157 1.426 0.085 3.062 98.346 #3 0.27 18.476 4.739 51.343 19.268 0.132 0.509 0.079 2.583 97.403 #4 0.201 18.655 7.546 48.19 17.725 0.125 1.919 0.123 3.166 97.655 #5 0.253 18.015 4.678 50.919 19.639 0.078 0.905 0.127 2.798 97.418 #6 0.201 18.947 6.335 49.877 18.286 0.137 1.559 0.134 3.129 98.611 #7 0.307 18.06 4.503 51.161 20.744 0.112 0.989 0.045 2.788 98.714 #8 0.276 18.227 6.328 50.096 18.694 0.118 0.7 0.088 2.911 97.444 #9 0.27 18.627 3.82 52.312 20.047 0.137 0.652 0.03 2.732 98.633 #10 0.255 19.242 5.375 51.914 18.426 0.165 0.58 0.103 2.68 98.745 Average 0.25 18.40 5.84 50.35 18.98 0.13 1.12 0.08 2.91 98.06 SD 29.8 5.0 54.2 6.0 10.9 37.4 98.3 91.3 15.3 1.2 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #11 0.279 18.134 5.993 50.207 19.095 0.133 1.378 0.083 3.118 98.426 #12 0.266 19.85 4.606 51.891 17.62 0.127 0.826 0.107 3.273 98.571 #13 0.332 17.668 8.977 48.921 17.442 0.173 0.88 0.032 2.407 96.837 #14 0.224 16.181 5.13 47.723 20.452 0.125 0.532 0.124 2.42 92.915 #15 0.252 18.206 5.043 50.776 20.589 0.147 1.143 0.058 2.787 99.005 #16 0.224 19.005 5.409 51.249 18.445 0.105 1.109 0.103 3.022 98.678 #17 0.197 18.615 5.855 50.002 19.324 0.14 1.266 0.133 3.032 98.57

45

#18 0.216 17.97 6.923 49.398 19.693 0.103 1.276 0.062 2.974 98.621 #19 0.283 18.776 3.628 52.453 20.645 0.135 0.526 0.26 2.421 99.131 #20 0.221 18.749 5.298 50.722 19.914 0.178 1.125 0.116 3.041 99.372 Average 0.25 18.32 5.69 50.33 19.32 0.14 1.01 0.11 2.85 98.01 SD 32.8 10.6 50.9 5.6 12.1 36.3 60.2 115.8 22.6 3.9 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #21 0.216 18.749 5.389 50.759 19.997 0.157 1.096 0.062 3.246 99.675 #22 0.295 18.373 4.555 50.943 20.877 0.065 0.849 0.134 2.657 98.753 #23 0.271 19.064 3.358 52.631 20.518 0.158 0.484 0.077 2.702 99.268 #24 0.221 19.036 5.816 50.767 18.847 0.13 1.013 0.133 2.924 98.892 #25 0.221 19.537 4.807 51.133 18.942 0.105 0.947 0.128 3.183 99.008 #26 0.27 18.244 5.079 49.039 19.64 0.155 1.13 0.107 3.255 96.923 #27 0.197 18.187 7.573 46.797 17.425 0.138 0.64 0.177 2.545 93.686 #28 0.267 19.207 4.495 52.117 19.565 0.092 0.836 0.068 3.043 99.695 #29 0.218 19.351 4.771 51.358 19.302 0.143 0.937 0.015 2.837 98.938 #30 0.232 17.983 6.609 49.326 19.768 0.133 1.269 0.165 2.789 98.28 Average 0.24 18.77 5.25 50.49 19.49 0.13 0.92 0.11 2.92 98.31 SD 26.7 5.8 45.2 6.7 9.9 48.5 50.6 94.9 17.5 3.7 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #31 0.272 16.481 9.935 46.564 19.45 0.137 1.513 0.129 3.073 97.558 #32 0.274 18.645 5.997 50.399 19.574 0.127 1.285 0.169 3.239 99.715 #33 0.225 20.389 4.994 51.535 18.193 0.14 0.959 0.108 3.158 99.708 #34 0.218 18.983 4.922 51.298 19.927 0.102 0.928 0.174 2.947 99.506 #35 0.205 18.391 6.339 46.741 17.834 0.083 0.976 0.138 2.879 93.592 #36 0.218 18.93 5.145 51.046 19.412 0.117 1.109 0.008 3.066 99.056 #37 0.264 19.315 3.737 52.751 19.93 0.073 0.569 0.124 2.718 99.486 #38 0.22 19.27 6.528 51.422 18.738 0.117 0.522 0.15 2.77 99.741 #39 0.226 18.88 5.81 50.56 19.503 0.107 1.257 0.182 3.287 99.819 #40 0.183 18.753 4.631 51.349 20.197 0.103 0.931 0.236 2.842 99.231 Average 0.23 18.80 5.80 50.37 19.28 0.11 1.00 0.14 3.00 98.74

46

SD 26.1 10.4 57.9 8.2 8.1 39.2 61.1 83.9 13.1 3.9 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #41 0.213 21.48 8.478 48.138 14.6 0.102 2.115 0.107 4.131 99.37 #42 0.199 19.826 4.888 51.664 18.228 0.095 0.976 0.129 2.819 98.83 #43 0.199 18.852 8.038 48.549 17.49 0.172 1.749 0.088 3.167 98.31 #44 0.243 18.647 4.559 51.587 19.566 0.15 0.902 0.056 2.662 98.376 #45 0.232 17.229 7.639 49.165 19.481 0.135 1.299 0.205 2.767 98.158 #46 0.233 19.875 4.722 51.617 17.838 0.163 0.989 0.139 2.995 98.578 #47 0.255 18.209 6.879 49.758 18.602 0.127 1.719 0.142 3.107 98.802 #48 0.241 18.361 5.88 50.658 19.247 0.137 1.226 0.158 2.97 98.885 #49 0.267 17.426 4.03 52.192 20.969 0.078 0.655 0.165 2.392 98.18 #50 0.209 19.303 4.085 52.092 18.54 0.132 0.715 0.108 2.567 97.756 Average 0.23 18.92 5.92 50.54 18.46 0.13 1.23 0.13 2.96 98.52 SD 20.5 13.4 57.6 6.0 18.2 46.3 78.7 65.2 32.4 0.9 CPX 3 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #51 0.251 18.262 4.792 51.264 19.513 0.152 0.919 0.066 2.612 97.834 #52 0.206 19.834 5.045 51.42 17.572 0.127 1.127 0.123 3.19 98.648 #53 0.244 17.423 5.126 50.744 20.61 0.162 1.054 0.207 2.474 98.048 #54 0.164 18.066 6.588 49.657 19.044 0.088 1.545 0.141 2.974 98.274 #55 0.183 19.942 6.314 50.222 17.168 0.123 1.469 0.15 3.048 98.625 #56 0.205 19.2 5.666 50.821 16.324 0.088 1.261 0.092 3.14 96.803 #57 0.248 18.391 7.225 49.131 18.04 0.082 1.725 0.072 3.095 98.013 #58 0.252 19.799 5.375 51.307 17.711 0.097 1.22 0.012 2.965 98.743 #59 0.224 19.176 7.866 48.938 16.471 0.122 1.406 0.145 3.297 97.65 #60 0.208 21.124 8.281 48.628 15.005 0.107 2.15 0.114 3.876 99.498 Average 0.22 19.12 6.23 50.21 17.75 0.11 1.39 0.11 3.07 98.21 SD 28.0 11.5 39.7 4.2 18.6 47.8 52.0 97.0 24.8 1.5 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #61 0.218 19.404 5.423 51.298 18.206 0.133 1.204 0.124 2.901 98.917 #62 0.235 17.733 7.161 48.923 18.557 0.127 1.244 0.071 2.965 97.022

47

#63 0.28 18.783 4.844 51.777 18.844 0.21 0.734 0.004 2.452 97.933 #64 0.231 18.938 9.498 46.865 17.02 0.108 2.597 0.168 3.857 99.287 #65 0.216 20.804 3.983 52.671 17.129 0.108 0.702 0.103 2.889 98.612 #66 0.266 18.562 4.937 51.289 19.176 0.132 1.001 0.152 2.649 98.17 #67 0.252 17.627 3.664 52.085 20.795 0.13 0.494 0.176 2.398 97.625 #68 0.229 19.403 3.99 52.421 18.659 0.095 0.671 0.08 2.823 98.376 #69 0.256 18.337 4.767 51.3 19.8 0.093 0.976 0.088 2.415 98.036 #70 0.199 18.096 12.533 44.377 16.193 0.103 3.188 0.036 3.852 98.582 Average 0.24 18.77 6.08 50.30 18.44 0.12 1.28 0.10 2.92 98.26 SD 21.0 10.1 94.4 10.9 14.9 54.7 139.4 112.1 36.7 1.3 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #71 0.197 18.338 11.201 44.867 16.528 0.115 3.345 0.081 3.911 98.589 #72 0.241 18.759 5.982 50.042 18.822 0.118 1.349 0.141 2.937 98.396 #73 0.213 19.23 5.453 50.832 18.473 0.097 1.209 0.068 2.779 98.359 #74 0.216 18.977 5.032 51.499 19.222 0.125 1.039 0.096 2.955 99.165 #75 0.26 17.532 4.359 51.771 20.6 0.143 0.878 0.103 2.514 98.166 #76 0.214 18.318 5.921 50.335 19.135 0.155 1.257 0.125 2.946 98.413 #77 0.208 21.999 3.841 52.836 15.833 0.11 0.614 0.079 3.049 98.575 #78 0.212 18.124 7.943 48.59 18.422 0.082 2.059 0.121 3.392 98.95 #79 0.233 18.773 3.924 52.276 19.499 0.127 0.541 0.125 2.581 98.084 #80 0.243 18.841 5.651 50.71 18.333 0.172 0.985 0.138 2.799 97.878 Average 0.22 18.89 5.93 50.38 18.49 0.12 1.33 0.11 2.99 98.46 SD 17.5 12.7 74.4 9.1 15.1 43.0 124.6 48.2 27.3 0.8 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #81 0.257 18.032 7.063 49.98 17.977 0.085 1.065 0.079 2.886 97.428 #82 0.301 17.789 4.38 51.722 20.396 0.157 0.779 0.098 2.678 98.305 #83 0.158 21.663 6.316 50.547 14.553 0.145 1.381 0.173 3.634 98.577 #84 0.208 18.229 6.828 49.24 18.195 0.122 1.669 0.076 3.061 97.632 #85 0.193 17.755 6.749 49.465 19.054 0.145 1.615 0.025 2.99 97.994 #86 0.237 17.579 5.867 50.265 19.458 0.163 1.32 0.187 2.823 97.905

48

#87 0.186 19.695 8.159 48.406 16.128 0.135 2.153 0.169 3.688 98.724 #88 0.237 18.06 6.658 49.713 18.223 0.132 1.627 0.076 3.025 97.754 #89 0.257 17.597 4.359 51.572 20.178 0.105 0.877 0.111 2.581 97.642 #90 0.22 17.997 5.428 50.436 19.187 0.092 1.198 0.185 2.807 97.554 Average 0.23 18.44 6.18 50.13 18.33 0.13 1.37 0.12 3.02 97.95 SD 36.8 13.9 38.7 4.1 19.7 41.7 60.6 96.3 24.6 0.9 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #91 0.245 17.836 4.442 52.085 19.969 0.142 0.535 0.085 2.322 97.667 #92 0.205 18.478 5.836 50.489 18.776 0.122 1.462 0.044 2.866 98.283 #93 0.276 18.57 6.796 49.319 18.326 0.17 1.605 0.127 3.162 98.357 #94 0.198 18.429 4.981 51.36 19.247 0.13 0.979 0.125 2.785 98.241 #95 0.21 19.872 6.517 50.226 16.976 0.115 1.438 0.099 3.099 98.558 #96 0.249 17.511 6.367 50.014 19.145 0.19 1.462 0.08 2.687 97.711 #97 0.22 18.642 6.224 49.822 18.75 0.113 1.403 0.125 3.217 98.522 #98 0.236 21.071 4.215 52.273 16.394 0.137 0.732 0.123 2.718 97.905 #99 0.204 19.195 5.113 51.187 17.995 0.058 1.103 0.067 2.96 97.888 #100 0.264 18.043 7.509 49.798 18.249 0.072 0.973 0.105 2.807 97.825 Average 0.23 18.76 5.80 50.66 18.38 0.12 1.17 0.10 2.86 98.10 SD 23.7 11.2 37.1 4.0 11.6 63.7 61.4 58.3 18.5 0.7 CPX 4 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #101 0.302 17.524 5.419 50.744 19.668 0.13 1.102 0.158 2.669 97.721 #102 0.217 19.731 10.458 47.043 15.064 0.112 2.143 0.063 3.647 98.483 #103 0.217 18.363 3.917 52.584 19.644 0.133 0.712 0 2.599 98.175 #104 0.229 17.68 6.435 49.98 19.325 0.142 1.451 0.019 2.776 98.044 #105 0.205 19.781 4.187 52.455 17.834 0.113 0.745 0.035 2.924 98.284 #106 0.209 17.645 6.43 49.736 19.117 0.14 1.46 0.218 3.09 98.051 #107 0.225 18.582 5.209 51.157 18.539 0.108 0.953 0.102 2.712 97.593 #108 0.22 18.61 7.267 49.154 17.59 0.187 1.834 0.112 3.477 98.458 #109 0.167 17.939 3.475 52.761 20.082 0.053 0.494 0.13 2.209 97.317 #110 0.202 17.884 3.955 52.37 19.962 0.143 0.65 0.105 2.833 98.108

49

Average 0.22 18.37 5.68 50.80 18.68 0.13 1.15 0.09 2.89 98.02 SD 30.9 9.0 74.2 7.3 16.4 54.3 95.2 141.9 29.2 0.8 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #111 0.243 18.919 4.098 52.186 18.441 0.165 0.582 0.037 2.631 97.306 #112 0.284 18.121 3.545 52.712 19.842 0.133 0.557 0.056 2.357 97.612 #113 0.262 18.613 6.033 49.933 18.464 0.117 1.513 0.123 2.892 97.954 #114 0.197 18.582 6.184 50.372 18.174 0.082 1.236 0.181 2.866 97.878 #115 0.222 18.569 4.434 51.978 19.083 0.16 0.842 0.046 2.731 98.072 #116 0.244 19.766 4.293 52.25 18.128 0.097 0.759 0.168 2.681 98.389 #117 0.251 18.464 4.159 52.607 19.135 0.092 0.479 0.057 2.465 97.714 #118 0.241 17.799 3.41 52.616 20.802 0.122 0.494 0.15 2.15 97.788 #119 0.248 18.579 3.737 52.725 19.748 0.103 0.528 0.169 2.43 98.273 #120 0.243 20.66 6.621 50.468 15.758 0.142 1.482 0.174 3.239 98.791 Average 0.24 18.81 4.65 51.78 18.76 0.12 0.85 0.12 2.64 97.98 SD 18.8 8.8 50.6 4.2 14.4 47.0 97.1 103.6 23.6 0.9 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #121 0.191 20.048 6.003 50.891 16.996 0.155 1.331 0.159 3.288 99.068 #122 0.268 17.552 4.026 51.863 20.274 0.155 0.669 0.134 2.511 97.46 #123 0.26 17.775 4.355 51.91 19.966 0.168 0.856 0.012 2.514 97.821 #124 0.26 19.895 6.01 51.424 16.126 0.11 0.878 0.17 3.093 97.972 #125 0.228 18.919 5.644 50.434 18.041 0.12 1.277 0.07 2.775 97.512 #126 0.288 17.962 6.144 50.104 18.86 0.108 1.387 0.129 2.905 97.894 #127 0.201 19.02 4.784 51.377 18.592 0.12 0.987 0.134 2.771 97.991 #128 0.278 18.325 3.477 52.641 19.747 0.172 0.484 0 2.448 97.575 #129 0.319 18.363 3.454 52.836 18.321 0.145 0.574 0.08 2.444 96.542 #130 0.232 17.582 5.674 50.442 19.218 0.095 0.631 0.108 2.377 96.365 Average 0.25 18.54 4.96 51.39 18.61 0.13 0.91 0.10 2.71 97.62 SD 31.4 9.8 43.2 3.6 14.1 40.7 72.7 117.2 22.7 1.6 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #131 0.288 18.811 4.251 52.323 18.805 0.182 0.756 0.093 2.801 98.315

50

#132 0.222 19.189 5.534 50.853 17.686 0.11 0.911 0.121 2.985 97.616 #133 0.209 18.638 4.219 52.167 17.653 0.132 0.813 0.165 2.684 96.684 #134 0.262 18.181 3.378 52.718 19.811 0.155 0.468 0.085 2.331 97.394 #135 0.244 18.778 4.338 52.064 19.034 0.132 0.871 0.081 2.787 98.335 #136 0.247 18.695 5.256 50.767 18.296 0.14 1.194 0.096 2.882 97.577 #137 0.262 18.378 6.18 50.091 18.228 0.112 1.368 0.125 2.743 97.492 #138 0.204 19.864 6.93 49.867 16.286 0.162 1.57 0.072 3.564 98.524 #139 0.248 18.025 5.725 50.577 19.461 0.142 1.285 0.139 3.014 98.621 #140 0.255 18.406 3.393 52.894 19.875 0.153 0.469 0.068 2.377 97.897 Average 0.24 18.70 4.92 51.43 18.51 0.14 0.97 0.10 2.82 97.85 SD 21.2 5.7 48.4 4.4 12.1 31.2 76.9 60.8 24.6 1.2 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #141 0.247 18.182 8.431 47.802 18.375 0.132 2.289 0 3.331 98.793 #142 0.187 19.118 4.943 51.42 18.282 0.18 0.998 0.028 2.923 98.085 #143 0.226 18.799 6.942 49.441 17.467 0.122 1.619 0.203 3.059 97.884 #144 0.218 19.404 9.362 47.188 16.099 0.067 2.539 0.134 3.687 98.704 #145 0.236 19.076 4.786 51.499 18.317 0.123 0.934 0.07 2.816 97.862 #146 0.26 18.148 3.429 52.532 20.175 0.117 0.538 0.121 2.254 97.579 #147 0.267 18.05 4.206 52.008 19.521 0.163 0.801 0.213 2.681 97.915 #148 0.245 19.001 6.496 50.312 17.465 0.137 1.14 0.182 2.877 97.858 #149 0.248 17.435 5.71 50.543 19.032 0.073 0.896 0.127 2.35 96.418 #150 0.231 18.942 4.784 51.433 18.581 0.135 0.992 0.128 2.875 98.106 Average 0.24 18.62 5.91 50.42 18.33 0.12 1.27 0.12 2.89 97.92 SD 19.4 6.7 64.1 7.1 12.5 55.7 103.9 117.3 29.3 1.3 CPX 5 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #151 0.245 17.806 5.404 50.703 19.478 0.098 1.236 0.176 2.807 97.959 #152 0.232 18.599 5.931 49.809 18.91 0.12 1.514 0.159 2.774 98.052 #153 0.29 17.542 5.166 51.159 18.941 0.147 0.583 0.119 2.242 96.193 #154 0.283 17.993 4.077 52.06 17.676 0.128 0.807 0.085 2.57 95.685 #155 0.202 18.386 6.086 50.26 18.149 0.078 1.443 0 2.985 97.593

51

#156 0.255 18.774 4.295 52.175 18.506 0.133 0.789 0.071 2.379 97.383 #157 0.276 18.104 5.508 50.69 19.078 0.167 1.296 0.154 2.563 97.842 #158 0.276 18.998 4.198 52.098 18.135 0.157 0.764 0.234 2.744 97.61 #159 0.241 19.545 6.228 50.521 16.737 0.093 1.371 0.067 2.896 97.705 #160 0.248 18.136 7.482 49.191 17.814 0.063 1.789 0.019 3.049 97.797 Average 0.25 18.39 5.44 50.87 18.34 0.12 1.16 0.11 2.70 97.38 SD 21.2 6.5 39.2 4.0 8.8 58.4 68.6 135.4 19.3 1.6 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #161 0.228 19.287 5.071 51.371 17.185 0.173 0.808 0.046 2.632 96.807 #162 0.232 18.415 6.666 49.959 17.76 0.105 1.596 0.052 3.007 97.795 #163 0.226 18.471 5.188 51.108 18.7 0.122 1.131 0.032 2.669 97.654 #164 0.253 18.352 5.028 51.251 18.568 0.11 1.013 0 2.644 97.224 #165 0.228 18.7 4.778 51.709 18.199 0.162 0.962 0.057 2.621 97.419 #166 0.27 17.768 3.945 52.258 19.644 0.19 0.763 0.034 2.375 97.252 #167 0.243 17.74 4.442 51.893 19.337 0.18 0.5 0.035 2.193 96.568 #168 0.239 17.499 3.839 52.31 20.077 0.097 0.653 0.046 2.191 96.956 #169 0.217 17.043 7.153 50.359 17.865 0.182 0.685 0.01 2.404 95.923 #170 0.237 16.957 7.535 49.377 18.603 0.127 1.074 0.112 2.572 96.6 Average 0.24 18.02 5.36 51.16 18.59 0.14 0.92 0.04 2.53 97.02 SD 12.8 8.3 48.7 3.8 9.6 49.7 67.9 142.9 19.5 1.2 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #171 0.022 33.37 4.741 54.601 0.686 0.043 0.417 0.128 5.24 99.254 #172 0.008 33.705 4.412 55.26 0.572 0.068 0.357 0.13 4.894 99.414 #173 0.028 29.192 15.265 43.956 1 0.07 3.592 0.2 6.239 99.549 #174 0.078 20.784 27.285 29.954 5.59 0.073 8.408 0.133 6.809 99.12 #175 0.293 16.97 4.586 52.167 20.165 0.07 0.605 0.118 2.321 97.298 #176 0.249 17.995 4.829 51.411 18.983 0.133 0.997 0 2.411 97.013 #177 0.275 17.92 4.795 51.364 19.545 0.115 1.061 0.045 2.552 97.68 #178 0.243 18.735 7.155 48.846 16.905 0.13 1.801 0.11 3.286 97.215 #179 0.232 18.514 10.18 46.564 14.528 0.135 2.106 0.302 3.506 96.072

52

#180 0.235 18.67 5.85 50.658 17.898 0.095 1.181 0.183 2.691 97.466 Average 0.17 22.59 8.91 48.48 11.59 0.09 2.05 0.13 3.99 98.01 SD 140.3 59.6 164.3 30.3 147.4 70.8 237.2 122.8 83.7 2.5 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #181 0.402 18.738 5.105 51.123 18.343 0.138 1.019 0.121 2.613 97.607 #182 0.29 18.186 5.704 50.603 18.205 0.053 1.222 0.368 2.915 97.551 #183 0.259 18.061 4.943 50.667 18.687 0.09 1.001 0.165 2.561 96.44 #184 0.263 17.378 4.591 50.823 19.98 0.133 0.944 0.435 2.632 97.185 #185 0.305 17.574 4.242 52.032 21.038 0.093 0.807 0.036 2.343 98.474 #186 0.102 27.617 6.568 52.102 5.962 0.07 0.387 0.155 4.401 97.371 #187 0 34.465 3.626 55.521 0.562 0.022 0.371 0.194 5.194 99.961 #188 0.03 34.201 3.752 55.352 0.606 0.067 0.449 0.201 5.368 100.033 #189 0.009 34.145 3.737 55.311 0.616 0.107 0.345 0.164 5.226 99.667 #190 0 34.055 3.8 55.209 0.606 0.063 0.367 0.133 5.2 99.44 0.17 25.44 4.61 52.87 10.46 0.08 0.69 0.20 3.85 98.37 184.4 63.7 42.5 8.3 180.4 86.2 98.4 119.8 69.2 2.7 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total #191 0.018 34.029 3.972 55.277 0.676 0.057 0.44 0.214 5.572 100.261 #192 0.036 33.71 4.034 55.273 0.595 0.073 0.438 0.247 5.285 99.7 #193 0.031 33.929 3.845 55.215 0.646 0.042 0.377 0.099 5.17 99.362 #194 0.008 34.146 3.964 55.181 0.603 0 0.396 0.174 5.275 99.754 #195 0.005 34.168 3.76 55.609 0.48 0.063 0.357 0.089 5.316 99.853 #196 0.191 22.823 8.238 50.926 11.623 0.07 0.433 0.702 3.482 98.494 #197 0.245 17.272 3.813 51.818 20.466 0.153 0.526 0.522 2.199 97.019 #198 0.256 17.776 4.1 52.31 19.213 0.13 0.735 0.107 2.422 97.055 #199 0.21 19.487 3.851 52.667 18.855 0.135 0.611 0.161 2.478 98.461 #200 0.334 18.012 4.754 51.388 20.299 0.118 0.881 0.174 2.659 98.624 Average 0.13 26.54 4.43 53.57 9.35 0.08 0.52 0.25 3.99 98.86 SD 188.6 60.4 61.6 7.1 204.2 114.7 66.4 162.5 72.8 2.3

53

Table 7: JSM 5-12 CPX-3 Line Averages and Standard Deviations; SD (2sd %) JSM 5- 12 CPX Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Average 0.235 18.683 5.655 50.639 18.654 0.127 1.131 0.109 2.896 98.134 SD 7.837 1.781 12.649 1.602 3.722 9.814 23.296 20.082 6.566 0.521

Table 8: JSM 5-12 CPX-5 Line Averages and Standard Deviations; SD (2sd %)

JSM 5- 12 CPX Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Average 0.235 18.683 5.655 50.639 18.654 0.127 1.131 0.109 2.896 98.134 SD 5.929 1.077 14.584 1.806 4.484 5.217 26.945 7.388 6.477 0.474

54

Table 9: JSM 5-12 OPX 3 line Averages and Standard deviations; SD (2sd %)

JSM 5-12 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total OPX 1 Average 0.014 33.025 4.142 55.122 0.952 0.119 0.488 0.174 5.857 99.899 SD 54.665 1.298 9.906 0.401 38.526 174.807 5.362 32.871 0.631 0.155 OPX 2 Average 0.022 33.179 4.174 55.090 0.884 0.061 0.521 0.166 5.677 99.780 SD 24.246 0.212 2.388 0.425 4.127 21.274 3.668 21.958 0.604 0.139 OPX 3 Average 0.017 32.968 4.134 55.057 1.161 0.048 0.553 0.167 5.638 99.751 SD 21.656 0.756 4.432 0.188 8.665 41.493 4.363 21.797 1.362 0.229 OPX 4 Average 0.011 33.024 3.791 54.957 1.011 0.050 0.468 0.154 5.555 99.026 SD 94.839 0.379 1.026 0.441 27.699 14.722 6.256 27.626 1.576 0.555 OPX 5 Average 0.017 33.057 4.324 54.625 0.947 0.058 0.547 0.149 5.538 99.271 SD 72.793 0.747 5.810 0.793 4.965 13.800 20.138 19.235 2.764 0.700

Table 10: JSM 4-35 Spots per olivine grain

JSM 4- 35 Spot # MgO SiO2 CaO MnO FeO Total OLIV 1 #28 48.802 40.565 0.085 0.216 9.636 99.312 #29 49.248 40.689 0.094 0.205 9.587 99.832 #33 49.359 40.852 0.12 0.213 9.964 100.517 #34 48.946 40.604 0.099 0.293 9.516 99.467 OLIV 2 #35 48.432 40.131 0.094 0.13 9.632 98.428 #36 48.636 40.522 0.095 0.243 9.349 98.853 #37 48.981 40.264 0.085 0.222 9.715 99.277 OLIV 3 #38 49.167 40.721 0.101 0.232 9.798 100.027 #39 49.412 40.972 0.09 0.208 9.898 100.588 #40 49.095 40.865 0.097 0.23 9.752 100.047 OLIV 4 #41 49.901 41.429 0.098 0.067 9.946 101.45

55

#42 49.596 41.521 0.07 0.285 9.817 101.298 #43 49.288 40.813 0.137 0.081 9.53 99.858 OLIV 5 #44 48.896 39.932 0.056 0.207 9.897 98.996 #45 49.195 40.219 0.111 0.107 9.405 99.046 #46 49.027 40.702 0.105 0.3 9.798 99.941

Table 11: JSM 1-96 Spots per olivine grain

JSM 1- 96 Spot # MgO SiO2 CaO MnO FeO Total OLIV 1 #40 48.427 40.473 0.102 0.013 9.017 98.041 #41 48.699 41.008 0.148 0.243 9.659 99.765 #42 48.835 41.59 0.13 0.182 9.728 100.474 OLIV 2 #43 48.824 41.087 0.12 0.204 9.586 99.83 #44 48.935 41.102 0.113 0.192 9.596 99.947 #45 48.999 41.215 0.116 0.293 9.553 100.186 OLIV 3 #46 48.709 41.091 0.153 0.293 9.688 99.943 #47 49.233 41.515 0.126 0.124 9.699 100.705 #48 48.789 41.335 0.139 0.252 9.452 99.974 OLIV 4 #53 48.711 41.476 0.129 0.141 9.544 100.01 #54 48.407 40.974 0.139 0.182 9.422 99.132 #55 48.976 41.245 0.101 0.124 9.276 99.73 OLIV 5 #56 48.908 41.359 0.143 0.256 9.381 100.055 #57 48.742 41.346 0.14 0.217 9.465 99.918 #58 48.996 41.19 0.157 0.147 9.413 99.911

56

Table 12: JSM 5-12 Spots per olivine grain

JSM 5- 12 Spot # MgO SiO2 CaO MnO FeO Total OLIV 1 #5 48.963 40.738 0.034 0.216 9.218 99.176 #6 49.134 41.47 0.055 0.081 9.008 99.757 #7 49.41 41.181 0.059 0.16 9.169 99.988 #8 48.994 41.164 0.042 0.125 8.99 99.325 OLIV 2 #9 49.331 41.494 0.063 0.035 9.107 100.038 #10 49.258 41.524 0.025 0.121 8.9 99.837 #11 49.669 41.517 0.053 0.201 9.255 100.704 #12 49.726 41.556 0.007 0.227 9.245 100.768 OLIV 3 #13 49.281 41.149 0.042 0.036 9.481 99.998 #14 49.215 41.372 0.046 0.098 8.977 99.716 #16 49.321 41.577 0.063 0.311 9.215 100.496 #17 49.666 41.44 0.055 0.3 9.269 100.738 OLIV 4 #18 48.915 41.104 0.024 0.239 8.958 99.248 #19 49.513 41.295 0.053 0.294 9.25 100.414 #20 49.898 41.825 0.046 0.125 9.381 101.284 #21 49.737 41.663 0.057 0.272 9.827 101.566 OLIV 5 #22 49.832 41.56 0.029 0.198 9.447 101.074 #23 49.795 41.526 0.024 0.213 9.471 101.037 #24 49.296 41.455 0.032 0.16 9.514 100.465 #25 49.183 41.064 0.046 0.102 9.355 99.759

57

Table 13: JSM 1-6 Spots per olivine grain

JSM 1-6 Spot # MgO SiO2 CaO MnO FeO Total OLIV 1 #21 48.666 41.35 0.098 0.087 9.722 99.931 #22 48.52 41.47 0.102 0.139 9.339 99.579 #23 48.436 41.271 0.133 0.07 9.278 99.197 #24 48.215 41.164 0.101 0.049 9.521 99.059 OLIV 2 #25 48.358 41.248 0.116 0.125 9.664 99.519 #26 48.394 41.361 0.101 0.111 9.42 99.395 #27 48.346 41.314 0.139 0.059 9.348 99.214 #28 48.508 41.299 0.119 0.084 9.421 99.44 OLIV 3 #29 48.313 41.419 0.102 0.143 9.308 99.293 #30 48.155 41.22 0.094 0.041 9.399 98.918 #31 48.537 41.006 0.095 0.189 9.511 99.345 OLIV 4 #32 48.767 41.417 0.098 0.136 9.618 100.043 #33 48.417 41.355 0.111 0.254 9.543 99.688 #34 48.424 41.256 0.099 0.08 9.647 99.515 OLIV 5 #35 48.829 41.19 0.095 0.203 9.625 99.95 #36 48.981 41.205 0.101 0.234 9.58 100.109 #37 40.671 41.134 0.123 0.119 9.573 91.627 #38 48.829 41.305 0.112 0.108 9.574 99.937 #39 48.958 41.243 0.123 0.146 9.703 100.181

58

Table 14: JSM 5-22 Spots per olivine grain

JSM 5- Spot 22 # MgO SiO2 CaO MnO FeO Total OLIV 1 #1 50.414 41.581 0.066 0.115 8.983 101.168 #2 50.56 41.564 0.076 0.146 8.789 101.144 #3 50.777 41.759 0.088 0.223 8.757 101.613 #4 50.644 41.609 0.064 0.217 8.816 101.359 OLIV 2 #5 50.266 41.543 0.081 0.245 8.569 100.713 #6 50.445 41.703 0.066 0.218 8.782 101.223 #7 50.624 41.703 0.06 0.221 8.461 101.078 OLIV 3 #8 50.452 41.429 0.039 0.17 8.55 100.65 #9 50.943 41.675 0.048 0.284 8.851 101.809 #10 50.487 41.737 0.074 0.195 8.567 101.068 OLIV 4 #11 50.399 41.847 0.069 0.136 8.601 101.06 #12 50.221 41.429 0.076 0.23 8.7 100.666 #13 50.314 41.693 0.048 0.159 8.595 100.817 OLIV 5 #14 50.568 41.622 0.085 0.316 8.82 101.42 #15 50.778 41.731 0.056 0.221 8.475 101.27 #16 50.833 41.731 0.049 0.207 8.684 101.512

59

Table 15: JSM 5-8A Spots per olivine grain

JSM 5- Spot 8A # MgO SiO2 CaO MnO FeO Total Oliv 1 #3 48.635 41.017 0.049 0.093 9.157 98.959 #4 49.716 41.712 0.052 0.297 9.171 100.956 #5 50.228 41.466 0.046 0.318 9.69 101.755 #13 50.075 41.521 0.066 0 9.589 101.26 OLIV 4 #14 49.782 41.305 0.069 0.209 9.327 100.701 #15 49.958 41.494 0.104 0.225 9.721 101.509 #16 49.115 40.927 0.083 0.257 9.01 99.4 OLIV 5 #17 48.732 40.392 0.056 0.154 8.76 98.102 #18 49.656 41.265 0.062 0.196 9.093 100.28 #19 49.609 41.119 0.035 0.283 9.602 100.658 OLIV 6 #20 49.691 41.652 0.06 0.271 9.413 101.095 #21 49.49 41.372 0.06 0.191 9.713 100.834 #22 49.735 41.479 0.069 0.274 9.382 100.947 OLIV 3 #23 49.893 41.652 0.045 0.08 9.629 101.308 #24 49.702 41.406 0.049 0.132 9.429 100.726 #25 49.656 40.873 0.049 0.332 9.377 100.295

Table 16: JSM 5-8B Spots per olivine grain

JSM 5- Spot 8B # MgO SiO2 CaO MnO FeO Total OLIV 1 #32 50.523 41.427 0.027 0.172 8.967 101.124 #33 50.203 40.995 0.07 0.145 8.905 100.326 #34 50.531 41.337 0.059 0.119 8.923 100.978 #35 50.472 41.239 0.048 0.256 8.523 100.545 OLIV 2 #36 50.681 41.34 0.028 0.152 8.556 100.766

60

#37 50.841 41.977 0.046 0.201 8.725 101.8 #38 50.888 41.496 0.06 0.177 9.36 101.989 OLIV 3 #39 50.089 40.803 0.069 0.229 8.414 99.61 #40 50.581 41.314 0.053 0.085 8.83 100.873 #42 50.76 41.32 0.052 0.266 9.294 101.701 OLIV 4 #43 50.719 41.365 0.052 0.137 9.074 101.355 #44 50.623 41.162 0.029 0.253 8.895 100.97 #45 50.427 40.961 0.046 0.085 9.023 100.552 OLIV 5 #46 51.006 41.633 0.053 0.306 9.085 102.092 #48 50.231 41.327 0.046 0.152 8.695 100.46 #49 50.715 41.098 0.066 0.174 8.86 100.922

Table 17: JSM 5-38 Spots per olivine grain

JSM 5- 38 Spot # MgO SiO2 CaO MnO FeO Total OLIV 1 #17 49.81 41.35 0.05 0.031 8.839 100.09 #18 49.397 41.273 0.071 0.222 8.645 99.617 #19 50.158 41.47 0.06 0.234 8.923 100.855 OLIV 2 #20 49.825 41.04 0.084 0.194 9.075 100.226 #21 49.978 41.226 0.08 0.208 8.628 100.128 #22 49.596 41.524 0.045 0.084 8.945 100.202 OLIV 3 #23 49.949 41.56 0.067 0.296 8.812 100.693 #24 50.095 41.506 0.071 0.179 8.765 100.626 #25 49.981 41.451 0.048 0.232 9.106 100.826 OLIV 4 #26 50.178 41.284 0.073 0.2 8.784 100.528 #27 50.026 41.156 0.06 0.296 8.743 100.288 #28 50.269 41.494 0.059 0.207 8.77 100.807 OLIV 5 #29 49.614 41.173 0.059 0.332 9.049 100.236

61

#30 49.92 41.346 0.064 0.163 8.666 100.167 #31 49.676 41.239 0.06 0.037 8.91 99.931

PYROXENES

Table 18: JSM 1-6 Spots per OPX and CPX grain

JSM 1- Spot 6 # Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total OPX 1 #28 0.1 32.046 5.504 54.265 1.168 0.115 0.476 0.035 6.116 99.833 #29 0.062 32.177 5.738 54.383 1.2 0.148 0.462 0.155 5.92 100.252 #30 0.088 32.102 5.627 54.438 1.235 0.125 0.509 0.151 6.158 100.44 #31 0.085 32.346 5.527 54.798 1.24 0.098 0.474 0.141 5.982 100.695 #32 0.065 32.286 5.474 54.479 1.248 0.155 0.419 0.147 6.183 100.463 OPX 2 #33 0.077 32.142 5.638 54.52 1.212 0.152 0.5 0.116 5.909 100.271 #34 0.066 32.167 5.63 54.1 1.166 0.105 0.484 0.147 6.153 100.026 #35 0.082 32.099 5.733 54.644 1.206 0.138 0.436 0.094 6.086 100.524 #36 0.043 32.286 5.683 54.616 1.242 0.12 0.536 0.172 5.944 100.65 #37 0.086 31.701 5.557 53.82 1.168 0.148 0.472 0.13 6.041 99.131 OPX 3 #38 0.121 31.522 5.87 53.57 1.202 0.117 0.446 0.119 6.005 98.98 #39 0.078 32.082 5.776 54.265 1.224 0.12 0.415 0.123 6.095 100.185 #40 0.055 31.895 5.757 54.31 1.286 0.13 0.554 0.179 5.983 100.157 #41 0.1 31.863 5.759 54.19 1.189 0.143 0.498 0.133 6.089 99.972 OPX 4 #42 0.08 32.157 5.485 54.813 1.221 0.1 0.462 0.074 6.073 100.471 #43 0.528 20.073 34.102 37.147 1.29 0.335 0.314 0.119 4.226 98.14 #44 0.039 31.792 5.606 54.37 1.262 0.133 0.513 0.176 6.391 100.29 #45 0.084 31.958 5.64 54.732 1.282 0.15 0.501 0.179 6.125 100.657 OPX 5 #46 0.059 31.903 5.574 54.706 1.286 0.11 0.528 0.057 6.219 100.447 #47 0.1 31.865 5.687 54.894 1.282 0.085 0.523 0.106 5.954 100.502 #48 0.062 31.469 5.562 54.616 1.277 0.09 0.444 0 6.158 99.686

62

#49 0.089 32.223 5.71 54.629 1.241 0.128 0.506 0.119 5.965 100.618 OPX 6 #57 0.08 32.123 5.566 54.706 1.255 0.078 0.431 0.004 5.983 100.234 #58 0.09 32.017 5.716 54.368 1.251 0.062 0.526 0.081 6.134 100.252 #59 0.055 31.929 5.612 54.126 1.159 0.18 0.497 0.176 6.059 99.8 CPX 1 #50 0.797 16.438 6.243 50.703 21.602 0.407 0.677 0.173 3.134 100.178 #51 0.762 16.567 6.481 51.606 21.717 0.344 0.703 0.018 3.082 101.285 #52 0.793 16.75 6.481 51.55 21.837 0.299 0.664 0.049 3.226 101.654 CPX 2 #53 0.771 16.315 6.239 51.08 21.697 0.377 0.694 0.102 3.003 100.284 #54 0.755 16.332 6.388 50.911 21.595 0.32 0.729 0 3.206 100.241 #55 0.855 16.483 6.462 51.437 21.924 0.34 0.742 0.074 3.093 101.414 #56 0.783 16.687 6.466 51.452 21.766 0.329 0.687 0.222 2.933 101.329 CPX 3 #60 0.755 16.46 6.311 50.594 21.628 0.389 0.639 0.112 3.076 99.969 #61 0.805 16.443 6.726 51.456 21.703 0.357 0.785 0.071 3.192 101.542 #62 0.845 16.115 6.641 50.273 21.487 0.332 0.783 0.074 2.986 99.542 #63 0.801 16.466 6.554 51.454 21.607 0.395 0.748 0.123 3.14 101.295

Table 19: JSM 4-35 OPX and CPX 3 line Averages and Standard deviations; SD (2sd %)

JSM 4-35 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total OPX1 Average 0.065 33.094 5.468 54.363 1.164 0.096 0.502 0.170 5.683 100.612 SD 40.273 0.364 3.859 0.578 1.206 25.679 4.826 17.119 3.124 0.324 OPX 2 Average 0.122 32.551 5.474 54.080 1.557 0.101 0.521 0.149 5.613 100.175 SD 82.444 0.131 4.160 0.181 4.600 19.633 4.133 31.545 2.337 0.120 OPX 3 Average 0.064 33.198 5.261 54.519 1.177 0.090 0.500 0.165 5.847 100.826 SD 8.700 0.144 1.729 0.199 1.445 12.657 2.476 9.711 2.277 0.280 OPX 4 Average 0.049 33.027 5.263 54.441 1.163 0.088 0.505 0.154 5.661 100.360

63

SD 23.348 0.077 0.650 0.182 1.180 24.848 5.051 28.748 9.706 0.478 OPX 5 Average 0.053 33.145 5.242 54.247 1.150 0.091 0.487 0.155 5.902 100.478 SD 3.412 0.426 1.368 0.429 1.113 27.308 5.266 11.274 1.006 0.040 CPX 1 Average 0.640 17.191 5.915 51.186 21.873 0.245 0.731 0.109 2.944 100.838 SD 6.970 1.808 4.490 0.648 2.670 14.459 7.119 17.030 2.309 0.599 CPX 2 Average 0.664 17.349 5.879 51.160 21.942 0.248 0.764 0.110 3.061 101.182 SD 2.354 0.159 0.977 0.164 0.074 9.657 3.128 15.189 2.511 0.163 CPX 3 Average 0.673 17.498 5.808 51.643 22.014 0.245 0.744 0.123 3.023 101.776 SD 5.311 0.151 1.168 0.401 0.420 10.265 4.537 18.125 3.104 0.155 CPX 4 Average 0.681 17.391 5.866 51.240 21.795 0.246 0.718 0.109 2.970 101.021 SD 1.309 1.877 9.010 1.017 1.843 17.128 1.907 9.181 5.016 0.888 CPX 5 Average 0.667 18.136 5.661 50.302 21.352 0.229 0.689 0.099 3.132 100.271 SD 7.371 12.556 2.070 1.645 7.153 10.054 5.751 35.810 16.687 0.297

Table 20: JSM 1-96 OPX AND CPX 3 line Averages and Standard deviations; SD (2sd %)

JSM 1-96 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total OPX 3 Average 0.089 32.648 5.606 54.137 1.153 0.099 0.470 0.179 5.872 100.262 SD 18.635 0.403 0.616 0.436 11.731 20.955 1.413 34.153 1.572 0.280 OPX 4 Average 0.109 32.418 5.647 53.416 1.185 0.109 0.454 0.151 5.885 99.382 SD 2.217 0.988 2.027 1.329 1.257 26.205 3.835 30.040 2.098 1.030 OPX 5 Average 0.089 32.639 5.576 53.832 1.189 0.083 0.459 0.156 5.950 99.981 SD 14.175 0.048 0.384 0.470 1.621 29.479 3.070 15.232 0.567 0.322 CPX 1 Average 0.920 16.810 6.474 50.119 20.810 0.308 0.688 0.092 3.009 99.237 SD 0.701 0.484 1.348 0.220 0.400 8.370 2.956 42.415 1.849 0.222 CPX 4 Average 0.932 16.901 6.580 50.799 20.988 0.315 0.740 0.106 3.078 100.444 SD 1.972 0.797 0.648 1.511 0.719 6.585 4.624 26.449 0.280 1.039

64

Table 21: JSM 5-22 OPX and CPX 3 line Averages and Standard deviations; SD (2sd %)

JSM 5-22 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total OPX1 Average 0.023 33.177 4.185 54.740 2.013 0.044 0.805 0.167 5.476 100.636 SD 37.084 0.745 7.547 0.797 5.006 33.004 27.697 40.907 1.833 0.059 OPX 2 Average 0.018 33.622 4.029 54.432 1.496 0.051 0.721 0.141 5.371 99.888 SD 39.116 0.906 4.150 0.500 23.972 18.461 14.560 22.546 0.926 0.178 OPX 3 Average 0.060 33.460 3.860 54.546 1.551 0.050 0.595 0.153 5.295 99.576 SD 112.997 0.211 6.618 0.768 13.049 53.477 28.635 29.499 1.395 0.050 OPX 4 Average 0.014 33.914 3.780 54.830 0.920 0.048 0.499 0.166 5.374 99.552 SD 69.371 0.184 3.708 0.379 22.413 24.922 9.625 11.717 2.677 0.182 OPX 5 Average 0.023 33.162 4.035 54.190 1.924 0.044 0.637 0.133 5.190 99.345 SD 86.352 1.066 2.348 0.494 16.672 13.116 24.062 25.928 0.625 0.030 CPX 1 Average 0.220 17.583 4.384 50.890 22.863 0.114 0.930 0.112 2.348 99.450 SD 40.241 1.460 29.262 1.456 1.204 6.243 43.107 84.443 5.334 0.808 CPX 2 Average 0.274 17.467 4.100 51.179 22.347 0.138 0.877 0.101 2.570 99.058 SD 51.387 0.910 12.076 0.263 1.836 7.530 15.425 7.009 10.707 0.722 CPX 3 Average 0.476 17.284 4.737 51.295 21.684 0.148 0.827 0.098 2.554 99.106 SD 135.161 3.781 23.708 0.286 14.194 70.216 43.003 19.957 23.915 1.511

Table 22: JSM 5-8A OPX and CPX 3 line Averages and Standard deviations; SD (2sd %)

JSM 5-8A Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total OPX1 Average 0.069 33.680 4.034 54.912 1.513 0.048 0.713 0.154 5.715 100.847 SD 31.130 0.677 6.786 0.398 2.355 45.597 18.056 19.320 2.833 0.193 OPX2 Average 0.045 34.081 3.595 55.253 0.831 0.043 0.506 0.162 5.663 100.188 SD 79.831 1.387 0.189 0.840 1.898 41.422 2.875 5.554 1.349 0.856 OPX3 Average 0.020 34.254 3.672 55.389 0.866 0.041 0.531 0.178 5.628 100.586

65

SD 41.834 0.495 1.832 0.358 3.194 46.003 3.760 12.729 4.155 0.146 OPX4 Average 0.021 34.331 3.518 55.646 0.808 0.041 0.524 0.170 5.519 100.585 SD 30.760 0.224 2.550 0.161 2.246 29.899 3.261 16.404 1.477 0.059 OPX5 Average 0.023 31.312 3.441 49.924 0.799 0.031 0.410 0.120 3.885 89.952 SD 52.973 7.001 8.932 5.657 26.504 108.078 24.704 10.956 23.557 6.831 CPX1 Average 0.404 16.632 4.206 46.752 18.398 0.074 0.944 0.080 1.959 89.455 SD 8.656 3.843 4.446 3.508 3.755 26.792 14.612 44.458 17.221 3.878 CPX2 Average 0.462 17.039 4.596 50.059 21.373 0.097 0.844 0.080 2.338 96.893 SD 3.478 1.949 15.184 3.226 4.847 28.445 5.510 42.422 3.775 2.768 CPX3 Average 0.395 17.924 5.060 48.409 18.571 0.072 1.055 0.091 2.396 93.977 SD 7.077 0.453 11.872 2.083 4.133 6.914 20.408 28.454 2.198 1.303 CPX4 Average 0.462 18.106 4.683 51.140 21.592 0.099 1.167 0.088 2.623 99.964 SD 7.155 1.111 2.239 0.404 0.690 13.205 7.958 40.494 3.530 0.370 CPX5 Average 0.665 17.368 4.630 51.519 21.624 0.146 0.939 0.187 2.712 99.795 SD 72.578 9.033 23.874 1.129 2.825 126.649 41.294 167.823 18.788 0.442

Table 23: JSM 5-8B OPX and CPX 3 line Averages and Standard deviations; SD (2sd %)

JSM 5-8B Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total OPX1 Average 0.045 35.600 3.743 53.749 0.787 0.046 0.545 0.167 5.762 100.451 SD 7.348 4.348 12.180 6.341 6.966 90.270 54.849 23.160 11.128 0.643 OPX 2 Average 0.026 34.382 3.662 54.810 0.709 0.038 0.433 0.152 5.232 99.452 SD 49.759 0.703 2.432 1.227 6.003 38.971 5.120 16.610 0.459 0.336 OPX 3 Average 0.026 34.382 3.662 54.810 0.709 0.038 0.433 0.152 5.232 99.452 SD 49.759 0.703 2.432 1.227 6.003 38.971 5.120 16.610 0.459 0.336 OPX4 Average 0.031 34.058 3.643 55.206 0.682 0.053 0.451 0.160 5.565 99.857 SD 48.688 0.178 0.569 0.843 5.081 44.088 7.864 23.192 3.628 0.292 OPX 5 Average 0.134 32.437 4.766 54.776 1.492 0.063 0.434 0.147 5.531 99.787

66

SD 35.171 4.826 19.767 0.397 144.974 38.792 1.015 27.944 4.255 0.253 CPX 1 Average 0.736 16.785 4.993 51.521 21.484 0.148 0.895 0.099 2.599 99.265 SD 5.029 3.370 15.183 1.476 2.692 41.092 16.186 37.353 13.559 1.450 CPX 3 Average 0.645 18.509 5.350 51.492 19.595 0.144 1.072 0.100 2.921 99.835 SD 8.680 0.000 0.000 8.680 8.680 8.680 8.680 8.680 8.680 0.000

Table 24: JSM 5-38 OPX and CPX 3 line Averages and Standard deviations; SD (2sd %)

JSM 5-38 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO Total OPX1 Average 0.053 33.404 3.405 54.985 0.840 0.107 0.542 0.146 5.267 98.756 SD 10.089 0.565 2.779 0.827 6.079 23.291 8.201 16.178 2.232 0.518 OPX 2 Average 0.066 33.164 3.437 54.842 1.203 0.107 0.565 0.164 5.206 98.760 SD 38.471 1.593 2.190 0.122 58.298 11.636 10.903 13.359 3.253 0.093 OPX 3 Average 0.061 33.370 3.343 54.716 1.031 0.111 0.519 0.141 5.201 98.498 SD 13.025 0.991 2.188 0.690 35.274 12.440 7.243 29.071 0.982 0.360 OPX 4 Average 0.050 33.266 3.345 54.146 0.800 0.109 0.514 0.132 5.191 97.561 SD 38.809 1.269 6.379 1.861 0.765 16.840 1.562 33.319 1.337 1.304 OPX 5 Average 0.060 33.283 3.352 54.886 1.002 0.111 0.541 0.163 5.289 98.694 SD 33.747 1.599 4.799 0.175 80.265 14.748 20.227 1.625 0.216 0.692 CPX 1 Average 0.891 16.889 4.466 51.435 21.454 0.304 1.119 0.108 2.374 99.045 SD 0.786 2.277 7.061 1.104 2.164 9.056 25.921 25.962 6.721 0.291 CPX 2 Average 0.915 16.787 4.258 51.679 21.652 0.287 0.976 0.099 2.469 99.125 SD 2.105 0.542 2.426 0.485 0.451 13.607 2.281 14.390 4.681 0.169

67

OES DATA

Table 25: KH7 Wavelength ratios

Corrected Ratios for KH- Sample 7 Detrended Detrended Ca315/Mg285 Ca315/Mg279 Ca315/Mg280 Ca317/Mg285 Ca317/Mg279 Ca317/Mg280 Ca317/Mg285 Ca317/Mg280 KH7-1 0.01437 0.00152 0.01539 0.02756 0.00292 0.02951 1 0.02605 0.02791 KH7-2 0.01417 0.00151 0.01522 0.02733 0.00290 0.02934 2 0.02601 0.02794 KH7-3 0.01376 0.00146 0.01481 0.02715 0.00289 0.02922 3 0.02602 0.02802 KH7-4 0.01376 0.00147 0.01478 0.02697 0.00288 0.02898 4 0.02603 0.02798 KH7-5 0.01368 0.00145 0.01459 0.02693 0.00285 0.02873 5 0.02617 0.02793 KH7-6 0.01351 0.00143 0.01438 0.02689 0.00284 0.02860 6 0.02632 0.02800 KH7-7 0.01324 0.00140 0.01409 0.02678 0.00284 0.02850 7 0.02640 0.02810 KH7-1 0.01267 0.00135 0.01357 0.02624 0.00280 0.02810 8 0.02605 0.02790 KH7-2 0.01251 0.00134 0.01345 0.02609 0.00280 0.02804 9 0.02609 0.02804 KH7-3 0.01218 0.00131 0.01302 0.02597 0.00278 0.02775 10 0.02616 0.02795 KH7-4 0.01156 0.00126 0.01251 0.02521 0.00275 0.02729 11 0.02559 0.02769 KH7-5 0.01173 0.00128 0.01269 0.02523 0.00276 0.02730 12 0.02580 0.02790 KH7-6 0.01127 0.00122 0.01214 0.02516 0.00273 0.02710 13 0.02591 0.02790 KH7-7 0.01086 0.00118 0.01177 0.02497 0.00272 0.02705 14 0.02591 0.02805 KH7-8 0.01070 0.00116 0.01139 0.02519 0.00272 0.02683 15 0.02632 0.02802 KH7-9 0.01049 0.00113 0.01109 0.02512 0.00270 0.02656 16 0.02644 0.02796 KH7-10 0.00984 0.00107 0.01060 0.02453 0.00267 0.02640 17 0.02604 0.02800

avg 0.012 0.001 0.013 0.0261 0.003 0.0280 avg 0.02608 0.02796 2sd 0.003 0.000 0.003 0.0020 0.000 0.0020 2sd 0.0004 0.0002 2sd 2sd (%) 23.0 21.1 22.8 7.4819 5.4 7.2532 (%) 1.67 0.65

68

Table 26: UFOS Ca/Mg ratios from OES (2rsd in %)

UFOS Run 318Ca/280Mg 318Ca/285Mg UFOS-1 0.00130 0.00135 UFOS-2 0.00133 0.00136 UFOS-3 0.00133 0.00137 UFOS-4 0.00131 0.00136 UFOS-5 0.00132 0.00136 UFOS-6 0.00132 0.00137 UFOS-7 0.00131 0.00137 UFOS-8 0.00131 0.00135 UFOS-9 0.00133 0.00138 UFOS-10 0.00133 0.00136

2rsd: 1.7 1.5 True Ca/Mg: 2.824/1939 0.001456

Table 27: JSM Ca/Mg ratios from OES

Ca/Mg ratio Avg Ca/Mg % 2sd N JSM4-35 0.002170 1.70 2 JSM1-96 0.002548 ---- 1 JSM5-12 0.0009478 0.8 2 JSM1-6 0.002427 0.03 2 JSM5-22 0.001567 1.5 7

69

APPENDIX D. MICROPROBE PYROXENE SAMPLE ERROR

JSM5-12 CPX 5 LINE AVERAGE 2.000 1.500 1.000 0.500 l1 0.000 l2 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO -0.500 l3 -1.000 -1.500 -2.000

Graph 1.

JSM5-12 CPX 3 LINE AVERAGE 2.000 1.500 l1 1.000 l2 0.500 l3 0.000 l4 -0.500 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO l5 -1.000 l6 -1.500 -2.000

Graph 2.

70

JSM 5-12 OPX 2.00

1.50

1.00 L1 0.50 L2 0.00 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO L3 -0.50 L4 -1.00

-1.50

-2.00

Graph 3.

71

JSM 5-8A CPX 2

1.5

1 l1 0.5 l2 0 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO l3 -0.5 l4 -1

-1.5

-2

Graph 4.

JSM 5-8A OPX 2 1.5 1 0.5 l1 0 l2 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO -0.5 l3 -1 l4 -1.5 -2 -2.5

Graph 5.

72

JSM5-8B CPX 2

1.5

1

0.5

0 L1 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO -0.5

-1

-1.5

-2

Graph 6.

JSM5-8B OPX 2

1.5

1 L1 0.5 L2 0 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO L3 -0.5 L4 -1

-1.5

-2

Graph 7.

73

JSM4-35 CPX 2

1.5

1 L1 0.5 L2 0 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO L3 -0.5 L4 -1

-1.5

-2

Graph 8.

JSM4-35 OPX 2

1.5

1 L1 0.5 L2 0 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO L3 -0.5 L4 -1

-1.5

-2

Graph 9.

74

JSM5-22 CPX 2

1.5

1

0.5 L1 0 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO L2 -0.5

-1

-1.5

-2

Graph 10

JSM5-22 OPX 2

1.5

1 L1 0.5 L2 0 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO L3 -0.5 L4 -1

-1.5

-2

Graph 11.

75

JSM5-38 CPX 2

1.5

1

0.5

0 L1 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO -0.5

-1

-1.5

-2

Graph 12

JSM5-38 OPX 2

1.5

1 L1 0.5 L2 0 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO L3 -0.5 L4 -1

-1.5

-2

Graph 13.

76

JSM1-96 CPX 2

1.5

1

0.5

0 L1 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO -0.5

-1

-1.5

-2

Graph 14.

JSM1-96 OPX 2

1.5

1

0.5 L1 0 Na2O MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO L2 -0.5

-1

-1.5

-2

Graph 15.

77

CURRICULUM VITA

Bradley Benavides was born in Hendersonville, North Carolina. The first son of Daniel and Victoria Benavides , he graduated from East Henderson High School, East Flat Rock, North

Carolina, in the spring of 2006. He entered the University of North Carolina at Wilmington in the fall of 2006 and transferred to Appalachian State University in the fall of 2008 where he received his Bachelor's of Science in Geology in 2010. He entered Graduate School at The

University of Texas at El Paso. While pursuing a Master's of Science in Geosciences he worked as an intern for CrownQuest Operating, a petroleum company in Midland, Texas in the summer of 2013 and accepted a full time position as a geologist for the winter of 2014.

Permanent Address: 20 Cardinal Haven Lane

Hendersonville, NC, 28739

78

79