Hensen's Node Induces Neural Tissue in Xenopus Ectoderm. Implications for the Action of the Organizer in Neural Induction

Total Page:16

File Type:pdf, Size:1020Kb

Hensen's Node Induces Neural Tissue in Xenopus Ectoderm. Implications for the Action of the Organizer in Neural Induction Development 113, 1495-1505 (1991) 1495 Printed in Great Britain © The Company of Biologists Limited 1991 Hensen's node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer in neural induction C. R. KINTNER1 and J. DODD2 ^Molecular Neurobiology Laboratory, The Salk Institute, San Diego, CA 92186, USA 2Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA Summary The development of the vertebrate nervous system is ectoderm to respond to Hensen's node extends much initiated in amphibia by inductive interactions between later in development than that to activin-A or to ectoderm and a region of the embryo called the induction by vegetal cells, and parallels the extended organizer. The organizer tissue in the dorsal lip of the competence to neural induction by axial mesoderm. The blastopore of Xenopus and Hensen's node in chick actions of activin-A and Hensen's node are further embryos have similar neural inducing properties when distinguished by their effects on lithium-treated ecto- transplanted into ectopic sites in then" respective em- derm. These results suggest that neural induction can bryos. To begin to determine the nature of the inducing occur efficiently in response to inducing signals from signals of the organizer and whether they are conserved organizer tissue arrested at a stage prior to gastrulation, across species we have examined the ability of Hensen's and that such early interactions in the blastula may be an node to induce neural tissue in Xenopus ectoderm. We important component of neural induction in vertebrate show that Hensen's node induces large amounts of embryos. neural tissue in Xenopus ectoderm. Neural induction proceeds in the absence of mesodermal differentiation and is accompanied by tissue movements which may Key words: neural induction, organizer, activin-A, reflect notoplate induction. The competence of the Hensen's node, notoplate. Introduction tissue when transplanted to ectopic sites in chick or amphibian embryos, respectively. In addition, both Vertebrate neural development begins when ectoderm tissues pattern the induced neural tissue along the on the dorsal side of the embryo is induced to form anterior-posterior axis (Spemann, 1931; Tsung et al., neural tissue. The neural inducer is a region of tissue, 1965; see Hara, 1978). The similarities in the properties known as the organizer, whose properties have been of the organizer in different vertebrate embryos defined by transplantation studies in several vertebrate suggests that the inducing signals underlying neural species. When the organizer is transplanted from one induction may be conserved. To examine this idea, we blastula to the ventral side of another, the host embryo have asked whether Xenopus ectoderm responds to the forms a second dorsal axis (Spemann and Mangold, organizer taken from the chick embryo as it does to its 1924). The nervous system in this second axis is derived own organizer. Chick Hensen's node was isolated and from host ectoderm which, in the absence of the graft, cultured with Xenopus ectoderm in a standard animal would have formed ventral epidermis. This result cap assay. The assay was carried out at room indicates that ectoderm can be induced to form neural temperature (approximately 22°C) such that the ecto- tissue upon appropriate interaction with the organizer, derm can respond to inducing signals while the chick an event that normally occurs only on the dorsal side of tissue is developmentally static. Thus tissue differen- the embryo. In amphibia, the organizer maps to the tiation and morphogenetic movements observed rep- dorsal lip of the blastopore (DLB), a region of the resent the response of Xenopus ectoderm, while the marginal zone of the blastula just above the first site of inducing signals detected in the assay can be attributed invagination at gastrulation. In birds, the organizer to Hensen's node tissue as it existed at the stage of maps to the anterior end of the primitive streak, a isolation from the embryo. region called Hensen's node (Waddington and Schmidt, We show that Xenopus ectoderm responds to 1933; see Hara, 1978). Hensen's node by forming large amounts of neural Both Hensen's node and the DLB induce neural tissue without detectably forming dorsal mesodermal 1496 C. R. Kintner and J. Dodd derivatives. The inducing activity of Hensen's node is embryos. In every assay the size of undigested probes for each different from the potent embryonic inducer, activin-A transcript used was measured on the same gel as the (Asashima et al., 1990; Eijnden-Van Raaij et al., 1990; experimental samples. This permitted us to determine Smith et al., 1990; Thompsen et al., 1990). In addition, whether probe escaped RNAase protection in any experimen- Hensen's node induces ectoderm to undergo morpho- tal samples. logical movements resulting in axial elongation in the Histology and immunohistochemistry absence of mesoderm. These results are discussed in the Recombinants were fixed in 3% trichloracetic acid at 4°C for light of the model in which an early interaction between 30 min. After extensive washing, they were dehydrated ectoderm and organizer tissue in the blastula is an through an ethanol series and embedded in paraffin using important component of neural induction in vertebrate standard procedures (Kintner, 1988). Tissue was sectioned at embryos. 10 fsm on a rotary microtome and mounted on gelatin-subbed slides. For histology, sections were stained with haematoxylin and eosin or Giemsa's stain. For immunohistochemistry, the Methods sections were dewaxed, labelled with monoclonal antibodies, using a fluorescein-labelled second antibody and counter- Animals and reagents stained with Hoechst dye. Monoclonal antibodies used were Embryos were obtained from Xenopus laevis adult frogs as follows: anti-NCAM (gift of Drs K. Sakaguchi and W. (NASCO and Xenopus 1) by hormone-induced egg-laying Harris, UCSD), 12/101 (Kintner and Brockes, 1985) and Not- and in vitro fertilization using standard protocols. Animal 1 (Placzek et al., 1990; Yamada et al., 1991). caps were dissected from appropriately staged (Nieuwkoop and Faber, 1967) embryos in 0.5x MMR containing penicillin and streptomycin, as previously described (Dixon and Results Kintner, 1989). For lithium treatment, embryos were incu- bated at the 64 cell stage with 0.25 M LiCl for 10 minutes and Hensen's node induces neural tissue then washed extensively with 0.5 x MMR. To measure Fate mapping and transplantation studies have led to competence, ectodermal caps were isolated from embryos at the idea that Hensen's node in the chick is functionally appropriate times after the start of gastrulation by removing equivalent to the dorsal lip of the blastopore (DLB) in ectoderm that was not yet contacted by involuting tissue. amphibia (see Hara, 1978). We therefore examined Hensen's node tissue was dissected from chick embryos whether Hensen's node could substitute for DLB tissue (White Leghorns from Spafas, CT, Truslow Farms, VA, and Mclntyre Poultry, CA) at stages 3-10 (Hamburger and in a Xenopus animal cap assay by combining Hensen's Hamilton, 1951) in ice cold L15 medium. The chick tissue was nodes, dissected from stage 3.5 and stage 4 chick placed between two pieces of animal cap tissue as shown in embryos, with pairs of ectodermal caps dissected from Fig. 1, and the resulting recombinants maintained on agarose- stage 9 Xenopus laevis embryos (Fig. 1). The recombi- coated dishes in 0.5 x MMR with penicillin and streptomycin nants were allowed to develop for 18-24 hours at room at room temperature (approximately 22°C). Recombinants temperature and then assayed for the expression of were harvested for RNA analysis after 20 hours or were tissue-specific RNA transcripts. maintained for 2.5 days with frequent changes of the culture medium for observation and histological analysis. The recombinants were examined for the presence of A highly purified preparation of porcine activin-A was neural tissue by measuring the expression of two kindly provided by Drs W. Vale and J. Vaughan in the Peptide neural-specific transcripts, NCAM and NF-3. NCAM is Biology Laboratory at the Salk Institute for Biological expressed in Xenopus ectoderm soon after neural Studies. induction and is restricted to neural tissue (Jacobson and Rutishauser, 1986; Kintner and Melton, 1987) RNA analysis providing an early general marker of neural differen- RNA was isolated from embryos or explants and assayed for tiation. NP-3 encodes a neuronal intermediate filament the expression of specific RNA transcripts using an RNAase protein (Charnas et al., 1987) that is expressed in protection assay described previously (Melton et al., 1984; neurons beginning about 4 hours after neural tube Kintner and Melton, 1987). The hybridization probes used to closure (Dixon and Kintner, 1989). All transcripts were detect NCAM, NF3, muscle-specific actin and EF-1 alpha detected with an RNAase protection assay in which the RNA are described elsewhere (Kintner and Melton, 1987; Dixon and Kintner, 1989). The hybridization probe for Xenopus tissue but not the chick tissue generated full- XlHbox6 RNA is a fragment of the XlHbox6 cDNA (Sharpe length protected fragments. et al., 1987) kindly provided by Drs C. Wright and E. Recombinants formed between Xenopus ectoderm DeRobertis. The hybridization probe for en-2 RNA is a and Hensen's node expressed both NCAM and NF-3 portion of the Xenopus engrailed-2 cDNA that was isolated transcripts (Fig. 2, lane 4). The levels of the two and provided for us by Drs R. Harland and A. Hemmati- transcripts expressed in the ectodermal caps after Brivanlou (Hemmati-Brivanlou et al., 1991). The amounts of induction by Hensen's node were approximately equiv- RNA in each sample were normalized by monitoring the alent to the levels observed in stage-matched control levels of EF-1 alpha RNA (Krieg et al., 1989).
Recommended publications
  • Embryonic Regeneration by Relocalization of the Spemann
    Embryonic regeneration by relocalization of the PNAS PLUS Spemann organizer during twinning in Xenopus Yuki Moriyamaa,b,1 and Edward M. De Robertisa,b,2 aHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095; and bDepartment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1662 Contributed by Edward M. De Robertis, April 3, 2018 (sent for review February 16, 2018; reviewed by Makoto Asashima, Atsushi Suzuki, and Naoto Ueno) The formation of identical twins from a single egg has fascinated side of the embryo in regularly cleaving embryos (9). The op- developmental biologists for a very long time. Previous work had posite, darker side of the embryo gives rise to the ventral (belly) shown that Xenopus blastulae bisected along the dorsal–ventral side. The displacement of egg cytoplasmic determinants along (D-V) midline (i.e., the sagittal plane) could generate twins but at microtubules toward the dorsal side triggers an early Wnt signal very low frequencies. Here, we have improved this method by (10), which is responsible for localizing the subsequent formation using an eyelash knife and changing saline solutions, reaching of the Spemann organizer signaling center in the marginal zone frequencies of twinning of 50% or more. This allowed mechanistic at the gastrula stage. The Spemann organizer is a tissue that analysis of the twinning process. We unexpectedly observed that secretes a mixture of growth factor antagonists, such as Chordin, the epidermis of the resulting twins was asymmetrically pig- Noggin, Follistatin, Cerberus, Frzb1, and Dickkopf, which are mented at the tailbud stage of regenerating tadpoles.
    [Show full text]
  • Repair of Ultraviolet Irradiation Damage to a Cytoplasmic
    Proc. Nat. Acad. Sci. USA Vol. 72, No. 4, pp. 1235-1239, April 1975 Repair of Ultraviolet Irradiation Damage to a Cytoplasmic Component Required for Neural Induction in the Amphibian Egg (cortex/vegetal hemisphere/gray crescent/dorsal lip/gastrulation) HAE-MOON CHUNG AND GEORGE M. MALACINSKI Department of Zoology, Indiana University, Bloomington, Ind. 47401 Communicated by Robert Briggs, January 2, 1975 ABSTRACT Localized ultraviolet irradiation of the am- In order to gain direct insight into whether an ultraviolet phibian egg destroys a cytoplasmic component that is sensitive component(s) localized in the egg cytoplasm prior required for neural induction. Destruction of that com- ponent severely diminishes the inducing capacity of the to first cleavage division is actually involved in neural dorsal lip at gastrulation, as determined by embryological induction, the following question was posed: Does regional assays. Repair of the ultraviolet lesion can be achieved by UV damage to the egg affect the subsequent inducing capacity replacing the dorsal lip of the irradiated embyro with a of the dorsal lip during gastrulation? By assaying for inducing lip from an unirradiated embryo. capacity of dorsal lips from irradiated embryos and replacing Various types of analyses have established that components the dorsal lips of irradiated embryos with normal lips it was of the amphibian egg cytoplasm influence the pattern of early possible to conclude that UV does indeed damage a localized morphogenesis (see ref. 1 for a review). One of the most component of the egg cytoplasm that is necessary for neural conveniently demonstrated, yet most incompletely under- morphogenesis. stood, cytoplasmic components in the amphibian egg is the MATERlALS AND METHODS gray crescent.
    [Show full text]
  • GTPBP2 Is a Positive Regulator of TGF- Signaling, and Is Required for Embryonic Patterning in Xenopus
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... GTPBP2 is a positive regulator of TGF- signaling, and is required for embryonic patterning in Xenopus. A Dissertation Presented by Arif Kirmizitas to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Molecular and Cellular Biology Stony Brook University December 2008 Stony Brook University The Graduate School Arif Kirmizitas We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Gerald H. Thomsen – Dissertation Advisor Professor, Department of Biochemistry and Cell Biology Howard I. Sirotkin – Chairperson of Defense Associate Professor, Department of Neurobiology and Behavior Nancy C. Reich Professor, Department of Molecular Genetics and Microbiology A. Wali Karzai Associate Professor, Department of Biochemistry and Cell Biology Bernadette C. Holdener Associate Professor, Department of Biochemistry and Cell Biology Daniel S. Kessler Associate Professor, Department of Cell and Developmental Biology,University of Pennsylvania School of Medicine, Philadelphia, PA This Dissertation is accepted by the Graduate School. Lawrence Martin Dean of the Graduate School ii Abstract of the Dissertation GTPBP2 is a positive regulator of TGF- signaling, and is required for embryonic patterning in Xenopus. by Arif Kirmizitas Doctor of Philosophy in Molecular and Cellular Biology Stony Brook University 2008 The Transforming Growth Factor (TGF-) superfamily of signaling proteins regulate a diverse set of biological processes, including cell proliferation, adhesion, migration, apoptosis, differentiation and embryonic pattern formation.
    [Show full text]
  • The Cleavage Stage Origin of Spemann's Organizer: Analysis Of
    Development 120, 1179-1189 (1994) 1179 Printed in Great Britain © The Company of Biologists Limited 1994 The cleavage stage origin of Spemann’s Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus Daniel V. Bauer1, Sen Huang2 and Sally A. Moody2,* 1Department of Anatomy and Cell Biology, University of Virginia 2Department of Anatomy and Neuroscience Program, The George Washington University Medical Center, 2300 I Street, NW Washington, DC 20037, USA *Author for correspondence SUMMARY Recent investigations into the roles of early regulatory the ventral animal clones extend across the entire dorsal genes, especially those resulting from mesoderm induction animal cap. These changes in the blastomere constituents or first expressed in the gastrula, reveal a need to elucidate of the animal cap during epiboly may contribute to the the developmental history of the cells in which their tran- changing capacity of the cap to respond to inductive growth scripts are expressed. Although fates both of the early blas- factors. Pregastrulation movements of clones also result in tomeres and of regions of the gastrula have been mapped, the B1 clone occupying the vegetal marginal zone to the relationship between the two sets of fate maps is not become the primary progenitor of the dorsal lip of the clear and the clonal origin of the regions of the stage 10 blastopore (Spemann’s Organizer). This report provides embryo are not known. We mapped the positions of each the fundamental descriptions of clone locations during the blastomere clone during several late blastula and early important periods of axis formation, mesoderm induction gastrula stages to show where and when these clones move.
    [Show full text]
  • Competition Between Noggin and Bone Morphogenetic Protein 4
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 12141-12145, December 1995 Developmental Biology Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development YAEL RE'EM KALMA*, TERESA LAMBt, AND DALE FRANK*t *Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel; and tDepartment of Molecular and Cellular Biology, Division of Biochemistry and Molecular Biology, 401 Barker Hall, University of California, Berkeley, CA 94720 Communicated by John Gerhart, University of California, Berkeley, CA, September 15, 1995 ABSTRACT Bone morphogenetic protein 4 (BMP-4) in- dorsalization signal (6-9), it is not clear how distinct axial borders duces ventral mesoderm but represses dorsal mesoderm for- are defined within the developing embryo. It is possible that cell mation in Xenopus embryos. We show that BMP-4 inhibits two borders are defined by a combination of positive and negative signaling pathways regulating dorsal mesoderm formation, pathways which demarcate the dorsal/ventral border. the induction of dorsal mesoderm (Spemann organizer) and Bone morphogenetic protein 4 (BMP-4) is a member of the the dorsalization of ventral mesoderm. Ectopic expression of transforming growth factor ( family (11). The gene has been BMP-4 RNA reduces goosecoid and forkhead-l transcription isolated from Xenopus laevis, and ectopic expression of in vitro in whole embryos and in activin-treated animal cap explants. synthesized BMP-4 RNA in developing embryos causes de- Embryos and animal caps overexpressing BMP-4 transcribe velopmental changes which suggest that BMP-4 protein in- high levels of genes expressed in ventral mesoderm (Xbra, duces ventroposterior mesoderm.
    [Show full text]
  • Proquest Dissertations
    REGULATION OF THE BMP SIGNALLING PATHWAY BY BMPl-RELATED METALLOPROTEASES FIONA CLAIRE WARDLE A Thesis Submitted for the Degree of Doctor of Philosophy at the University of London 1998 Department of Anatomy and Developmental Biology University College, London. ProQuest Number: 10016134 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10016134 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Bone Morphogenetic Proteins (BMPs) 2-8 are members of the TGFp superfamily of secreted signalling molecules. During embryonic development BMPs are involved in many processes including cell fate determination, morphogenesis, growth and programmed cell death, all of which are essential for normal development. BMP activity may be regulated in variety of ways. Of particular interest is the finding that three Xenopus proteins. Noggin, Chordin and Follistatin are able to bind BMP4 and prevent it activating its receptor (Piccolo et al., 1996; Zimmerman et al., 1996; Fainsod et al., 1997). Inhibition by Chordin can be alleviated by Xolloid, a BMP 1-related metalloprotease that cleaves Chordin (Piccolo et al., 1997). Similarly, in the Drosophila embryo Dpp, a BMP2/4 homologue, is inhibited by the Chordin homologue, Sog, but activated by Tolloid, a BMP 1-related metalloprotease (Marqués et al., 1997).
    [Show full text]
  • On the Nature and Function of Organizers Alfonso Martinez Arias* and Ben Steventon*
    © 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev159525. doi:10.1242/dev.159525 REVIEW On the nature and function of organizers Alfonso Martinez Arias* and Ben Steventon* ABSTRACT organizer to birds and mammals in experiments in which he Organizers, which comprise groups of cells with the ability to instruct transplanted a piece from the leading edge of the primitive streak of adjacent cells into specific states, represent a key principle in chicken, duck and rabbit embryos into early chicken embryos and developmental biology. The concept was first introduced by observed a duplication of the anteroposterior axis of the host Spemann and Mangold, who showed that there is a cellular (Waddington, 1932, 1954). The tissue he was transplanting population in the newt embryo that elicits the development of a contained a structure known as the node (see Glossary, Box 1), secondary axis from adjacent cells. Similar experiments in chicken and led to a conceptual association between the node and the and rabbit embryos subsequently revealed groups of cells with similar organizer. An important landmark in all these experiments is instructive potential. In birds and mammals, organizer activity is often the emergence of a secondary nervous system at the beginning of the associated with a structure known as the node, which has thus been inductive process, and for this reason the function of the organizer is ‘ ’ considered a functional homologue of Spemann’s organizer. Here, often associated with a process called neural induction (De we take an in-depth look at the structure and function of organizers Robertis and Kuroda, 2004; De Robertis et al., 2000; Stern, 2005).
    [Show full text]
  • Pintallavis, a Gene Expressed in the Organizer and Midline Cells of Frog Embryos: Involvement in the Development of the Neural Axis
    Development 116 81-93 (1992) 81 Printed in Great Britain © The Company of Biologists Limited 1992 Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis A. RUIZ i ALTABA and T. M. JESSELL Howard Hughes Medical Institute, Center for Neurobiology, Department of Biochemistry and Molecular Biophysics,Columbia University,701 W. 168th Street, New York, N. Y. 10032, USA Summary We have identified a novel frog gene, Pintallavis (the chord. Overexpression of Pintallavis perturbs the devel- Catalan for lipstick), that is related to the fly fork head opment of the neural axis, suppressing the differen- and rat HNF-3 genes. Pintallavis is expressed in the tiation of anterior and dorsal neural cell types but caus- organizer region of gastrula embryos as a direct zygotic ing an expansion of the posterior neural tube. Our response to dorsal mesodermal induction. Subsequently, results suggest that Pintallavis functions in the induc- Pintallavis is expressed in axial midline cells of all three tion and patterning of the neural axis. germ layers. In axial mesoderm expression is graded with highest levels posteriorly. Midline neural plate cells that give rise to the floor plate transiently express Pin - Key words: axial mesoderm, midline, neural induction, organizer, tallavis, apparently in response to induction by the noto- Pintallavis, Xenopus laevis. Introduction trulation and extend along the A-P axis giving rise primar- ily to the prechordal plate and notochord. Ectodermal cells The development of the basic body plan of vertebrate adjacent to the dorsal lip, a region known as the dorsal non- embryos depends on inductive interactions and morpho- involuting marginal zone (NIMZ, Keller and Danilchik, genetic movements that take place during gastrulation (Ger- 1988) remain in the ectoderm but also extend along the hart and Keller, 1986; Hamburger, 1988).
    [Show full text]
  • Introducing the Spemann-Mangold Organizer: Experiments and Insights That Generated a Key Concept in Developmental Biology
    Int. J. Dev. Biol. 45: 1-11 (2001) Introducing the Spemann-Mangold organizer 1 Introducing the Spemann-Mangold organizer: experiments and insights that generated a key concept in developmental biology KLAUS SANDER*,1 and PETER E. FAESSLER2 1Institut für Biologie I (Zoologie), Freiburg, Germany and 2Lehrstuhl für Wirtschafts- und Sozialgeschichte der Technischen Universität, Dresden, Germany “What has been achieved is but the first step; we still stand in the presence spent a year in Spemann’s institute and helped him with the English of riddles, but not without hope of solving them. And riddles with the hope version of his book (Spemann 1938). Two witnesses of that period of solution - what more can a man of science desire?” who had seen the film felt that Eakin’s performance gives a good (Hans Spemann, Croonian Lecture 1927) impression of Spemann’s gist for lecturing. Hans Spemann (Fig. 1) gained early fame by his work on lens induction in frogs (Sander 1985, Saha 1991). Evocation of the The “organizer paper” by Hans Spemann and Hilde Mangold “outer parts of the eye” by an outgrowth of the nerve tube (the (1924) initiated a new epoch in developmental biology. It marked optical vesicle) had been postulated early in the 19th century (von the climax of Spemann’s life-long research, and the “organizer Baer 1828; Oppenheimer 1970b), but Spemann’s experiments effect” received special mention by the committee that honoured were the first to raise considerable interest; perhaps not so much him with the Nobel Prize for physiology and medicine in 1935. This by their results than by the long-lasting controversy these trig- introduction precedes a translation of that paper by Spemann’s gered.
    [Show full text]
  • Lect17+18-376F09(Induction).Pdf
    10/23/09 We are walking and standing with parts of our bodies which could have been used for thinking had they developed in another part of the embryo. Hans Spemann, 1943 Reading from Chapter 3 - types of cell specification Chapter 6 - cell-cell signaling (molecules, pathways) Chapter 10 - amphibian axis formation 2nd Hourly Exam - Friday, October 30 Skip ʻAutonomous & conditional cell specification...ʼ lecture currently listed for Oct. 19 for now Autonomous Conditional Syncitial 1 10/23/09 Figure 3.8 Autonomous Specification in the Early Tunicate Embryo Figure 3.15 Drieschʼs Demonstration of Regulative Development Figure 3.12 In the Early Developmental Stages of Many Vertebrates, the Separation of the Embryonic Cells Can Create Twins Future identical quadruplets from a single blastodisc in the nine- banded armadillo 2 10/23/09 Hans Spemann & Ross Harrison 1869-1941 1870-1959 Figure 10.18 Spemannʼs Demonstration of Nuclear Equivalence in Newt Cleavage Figure 7.33 Reorganization of Cytoplasm in the Newly Fertilized Frog Egg 3 10/23/09 Figure 10.19 Asymmetry in the Amphibian Egg Figure 10.20 Determination of Ectoderm During Newt Gastrulation 4 10/23/09 Figure 10.21(1) Organization of a Secondary Axis by Dorsal Blastopore Lip Tissue The Spemann & Mangold Experiment Dark Light donor Host Figure 10.12 Graft of Cells From Dorsal Marginal Zone of a Salamander Embryo Sinks into a Layer of Endodermal Cells and forms a Blastopore-like Groove The Spemann & Mangold Experiment Figure 10.21(2) Organization of a Secondary Axis by Dorsal Blastopore Lip
    [Show full text]
  • Molecular Nature of Spemann's Organizer: the Role of the Xenopus
    Cell, Vol. 67, 111 I-1 120, December 20, 1991, Copyright 0 1991 by Cell Press Molecular Nature of Spemann’s Organizer: the Role of the Xenopus Homeobox Gene goosecoid Ken W. Y. Cho,’ Bruce Biumberg, dorsal cells of the embryo (Gimiich and Gerhart, 1984; Herbert Steinbeisser, and Eddy M. Lh? Robertis Gimlich, 1988) the so-called Nieuwkoop center (Gerhart Molecular Biology institute et al., 1989). Experiments involving coculture of tissue and Department of Biological Chemistry fragments suggest that cells from the Nieuwkoop center University of California release diffusible signals that in turn induce Spemann’s Los Angeles, California 90024-l 737 organizer activity in the overlying marginal zone ceils (Nieuwkoop, 1973). One of the most important recent advances in Xenopus Summary embryology is the discovery that peptide growth factors mediate mesoderm induction. Factors related to basic fi- This study analyzer, the function of the homeobox gene brobiast growth factor (bFGF) can induce ventral meso- goosecold in Xenopus development. First, we find that derm (blood, mesothelium, mesenchyme, and some mus- gooaecoid mFiNA distribution closely mimics the ex- cle), while growth factors of the TGF-8 family, in particular pected localization of organizer tissue in normal em- activin (also called XTC-MIF), are very potent dorsal meso- bryos as well as in those treated with LiCi and UV light. derm inducers (prechordal mesoderm, notochord, and Second, goosecoid mRNA accumulation is induced muscle) (Slack et al., 1989; Smith et al., 1989; Green and by activin, even in the absence of protein synthesis. Smith, 1990). Uncommitted ceils from the animal cap (top) it is not affected by bFGF and is @passed by retinoic region of Xenopus biastulae acquire Spemann’s organizer acid.
    [Show full text]
  • The LIM Domain-Containing Homeo Box Gene Xlim-1 Is Expressed Specifically in the Organizer Region of Xenopus Gastrula Embryos
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos Masanori Taira/'^ Milan Jamrich,^ Peter J. Good/ and Igor B. Dawid^ ^Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20852 USA; ^Department of Biochemistry, Chiba University School of Medicine, Chiba 280, Japan; ^Laboratory of Molecular Pharmacology, Center for Biologies Evaluation and Research, Food and Drug Administration, Bethesda, MD 20852 USA A novel cysteine-rich motif, named LIM, has been identified in the homeo box genes lin-ll, Isl-1, and mec-S', the mec-3 and lin-ll genes determine cell lineages in Caenorhabditis elegans. We isolated LIM class homeo box genes from Xenopus laevis that are closely related to lin-ll and mec-3 in the LIM and homeo domains. This paper deals with one of these genes, Xlim-1. Xlim-1 mRNA is found at low abundance in the unfertilized egg, has a major expression phase at the gastrula stage, decreases, and rises again during the tadpole stage. In adult tissues the brain shows the highest abundance, by far, of Xlim-1 mRNA. The maternal and late expression phases of the Xlim-1 gene suggest that it has multiple functions at different stages of the Xenopus life cycle. In the gastrula embryo, Xlim-1 mRNA is localized in the dorsal lip and the dorsal mesoderm, that is, in the region of Spemann's organizer.
    [Show full text]