100. Further Studies Upon the Regional Differentiation of the Inductive Capacity of the Organizer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Divergent Homeobox Gene Pbxf Is Expressed in the Postnatal Subventricular Zone and Interneurons of the Olfactory Bulb
The Journal of Neuroscience, May 1, 1996, 76(9):2972-2982 The Divergent Homeobox Gene PBXf Is Expressed in the Postnatal Subventricular Zone and Interneurons of the Olfactory Bulb Lori Redmond,’ Susan Hockfield,’ and Maria A. Morabito* LS’ection of Neurobiology, and *Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066 In the mammalian brain, an important phase of neurogenesis postnatally in the SVZ, in the migratory pathway to the olfactory occurs postnatally in the subventricular zone (SVZ). This region bulb, and in the layers of the olfactory bulb that are the targets consists of a heterogeneous population of cells, some mitoti- of these migratory neurons. Combining in situ hybridization for tally active, others postmitotic. A subset of mitotically active PBX7 with immunostaining for markers of cell proliferation SVZ precursor cells gives rise to a population of neurons that (PCNA), postmitotic neurons (class III p-tubulin), and glia migrates over a long distance to their final destination, the (GFAP), we show that SVZ proliferating cells and their neuronal olfactory bulb. Other SVZ precursor cells continue to proliferate progeny express rat /33X7 mRNA, whereas glial cells do not or undergo cell death. The combination of genes that regulates express detectable levels of PBX7. The expression of 133x7 in proliferation and cell fate determination of SVZ precursor cells SVZ precursor cells and postmitotic neurons suggests a role for remains to be identified. We have used the rat homolog of the PBX7 in the generation of olfactory bulb interneurons and in human homeobox gene fBX7 in Northern analysis and in situ mammalian neurogenesis. -
Phenotypic Characterization of Macrophages in the Endometrium of the Pregnant Cow Lilian J
ORIGINAL ARTICLE Phenotypic Characterization of Macrophages in the Endometrium of the Pregnant Cow Lilian J. Oliveira, Peter J. Hansen Department of Animal Sciences, University of Florida, Gainesville, FL, USA Keywords Problem Cow, endometrium, macrophage, placentome, Macrophages are recruited in large number to the interplacentomal pregnancy endometrium of the cow during pregnancy. We evaluated whether endometrial macrophages also accumulate in placentomal regions of Correspondence Peter J. Hansen, Department of Animal endometrium during pregnancy and whether endometrial macrophages Sciences, University of Florida, PO Box are regionally differentiated. 110910, Gainesville FL 32611-0910 USA. E-mail: [email protected]fl.edu Method of study Interplacentomal endometrium and placentomes were subjected to Submitted June 18, 2009; dual-color immunofluorescence using CD68 as a pan-macrophage accepted September 8, 2009. marker. Citation Results Oliveira L J, Hansen PJ. Phenotypic CD68+ cells were abundant in stroma of the interplacentomal endome- Characterization of macrophages in the trium and caruncular septa of the placentomes. CD68+ cells were not endometrium of the pregnant cow. Am J Reprod Immunol 2009; 62: 418–426 present in fetal villi of the placentomes or in the interplacentomal cho- rion. Regardless of location, the majority of CD68+ cells also expressed + + doi:10.1111/j.1600-0897.2009.00761.x CD14. In interplacentomal endometrium, CD68 CD11b cells were pres- ent in deeper areas of the stroma but not in shallow endometrial stroma. In caruncular septa of the placentome, CD68+ cells were nega- tive for CD11b. CD68+ cells in the interplacentomal endometrium were negative for MHC class II while most CD68+ cells in caruncular septa were positive for MHC class II. -
MN20, a D2 Cyclin, Is Transiently Expressed in Selected Neural Populations During Embryogenesis
The Journal of Neuroscience, January 1, 1996, 76(1):21 O-21 9 MN20, a D2 Cyclin, Is Transiently Expressed in Selected Neural Populations during Embryogenesis M. Elizabeth Ross, Michelle L. Carter, and Jang Hern Lee Labor-a tory of Molecular Neurobiology and Development, Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455 Although the regulation of proliferation and differentiation thalamus, but not hippocampus, striatum, or thalamus. Com- during brain development has long been considered to be parison with 5bromodeoxyuridine labeling of cells in S interrelated, the mechanisms that coordinate the control of phase indicated that MN20 expression in embryonic cere- cell division and histogenesis are poorly understood. The cell bellum and cerebral cortex was most pronounced in young cycle is a dynamic process that is governed by the concerted neurons that recently had become postmitotic. Although action of numerous cell cycle regulatory proteins in response expressed in other embryonic cerebellar neurons, MN20 was to signals both intrinsic and extrinsic to the cell. Thus, pro- detected in granule precursors only postnatally, after their teins that regulate the cell cycle are well suited to provide a migration from the rhombic lip to the external germinal layer. link between processes that control neuroblast proliferation This indicates that MN20/D2 cyclin is induced in cerebellar and differentiation. We reported previously the isolation from granule precursors as they become competent to differenti- brain of a message form of D2 cyclin, one of several cyclin ate. The spatial distribution of MN20 expression in the de- proteins known to promote the progression from Gl to S veloping brain suggests that regional differences in cell cycle phase. -
Research on the Basic Biology of the Digestive System
Photomicrograph showing expression of the Lgr5-lacZ reporter gene in the base of small intestinal crypts in adult mice. Through this type of research, scientists have been able to identify stem cells within the adult intestine that are capable of forming the cell types needed to continually renew this organ throughout life. Image courtesy of Dr. Hans Clevers. Reprinted by permission from MacMillan Publishers Ltd: Nature, 449:1003-1007, copyright 2007. Opportunities and Challenges in Digestive Diseases Research: Recommendations of the National Commission on Digestive Diseases Research on the Basic Biology of the Digestive System SUMMARY OF RESEARCH GOALS The Commission proposes multiple research goals to achieve the overarching mission of understanding the basic biologic underpinnings of the structurally and functionally complex digestive system. Developing new technologies to isolate, characterize, cultivate, and manipulate stem cells of the digestive system may provide new approaches to understand the pathogenesis and develop new therapies for digestive diseases. Uncovering the mechanisms that control development and differentiation of the digestive tract before birth and in neonatal life could generate new insights for regenerative therapies to treat digestive cancers and other diseases, as well as provide new insights into disease pathogenesis. Studying the fundamental mechanisms of digestion could point to new strategies for treating disorders of nutrient and fluidabsorption, secretion, and metabolism. The enteric nervous system links the digestive system and the brain and controls motility within the gastrointestinal (GI) tract. Research on the function and organization of the enteric nervous system will enable a better understanding of gut motility in digestive health and disease. The intestinal microflora are essential to normal digestive function; studying the composition and activity of commensal organisms in healthy individuals could reveal important links between alterations in the microflora and human disease. -
Embryonic Regeneration by Relocalization of the Spemann
Embryonic regeneration by relocalization of the PNAS PLUS Spemann organizer during twinning in Xenopus Yuki Moriyamaa,b,1 and Edward M. De Robertisa,b,2 aHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095; and bDepartment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1662 Contributed by Edward M. De Robertis, April 3, 2018 (sent for review February 16, 2018; reviewed by Makoto Asashima, Atsushi Suzuki, and Naoto Ueno) The formation of identical twins from a single egg has fascinated side of the embryo in regularly cleaving embryos (9). The op- developmental biologists for a very long time. Previous work had posite, darker side of the embryo gives rise to the ventral (belly) shown that Xenopus blastulae bisected along the dorsal–ventral side. The displacement of egg cytoplasmic determinants along (D-V) midline (i.e., the sagittal plane) could generate twins but at microtubules toward the dorsal side triggers an early Wnt signal very low frequencies. Here, we have improved this method by (10), which is responsible for localizing the subsequent formation using an eyelash knife and changing saline solutions, reaching of the Spemann organizer signaling center in the marginal zone frequencies of twinning of 50% or more. This allowed mechanistic at the gastrula stage. The Spemann organizer is a tissue that analysis of the twinning process. We unexpectedly observed that secretes a mixture of growth factor antagonists, such as Chordin, the epidermis of the resulting twins was asymmetrically pig- Noggin, Follistatin, Cerberus, Frzb1, and Dickkopf, which are mented at the tailbud stage of regenerating tadpoles. -
Regionalisation of Human ES Cell Derived Neural Precursors
Regionalisation of human ES cell derived neural precursors DISSERTATION zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Johanna Viola Driehaus aus Lüneburg Bonn, 2008 Anfertigung mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Oliver Brüstle 2. Gutachter: Prof. Dr. Dieter Fürst Tag der Promotion: 27. Februar 2009 Diese Dissertation wurde durch ein Graduiertenstipendium der Konrad-Adenauer- Stiftung e.V gefördert. Sie ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. Erscheinungsjahr: 2009 Für meine Eltern Table of Contents Abbreviations..................................................................................................................... 8 1 Introduction................................................................................................................... 11 1.1 Stem cells ............................................................................................................................................................... 11 1.1.1 Embryonic stem cells..................................................................................................................................... 13 1.1.1.1 Derivation and characteristics of human embryonic stem cells.......................................................... 13 1.1.1.2 Developments -
Repair of Ultraviolet Irradiation Damage to a Cytoplasmic
Proc. Nat. Acad. Sci. USA Vol. 72, No. 4, pp. 1235-1239, April 1975 Repair of Ultraviolet Irradiation Damage to a Cytoplasmic Component Required for Neural Induction in the Amphibian Egg (cortex/vegetal hemisphere/gray crescent/dorsal lip/gastrulation) HAE-MOON CHUNG AND GEORGE M. MALACINSKI Department of Zoology, Indiana University, Bloomington, Ind. 47401 Communicated by Robert Briggs, January 2, 1975 ABSTRACT Localized ultraviolet irradiation of the am- In order to gain direct insight into whether an ultraviolet phibian egg destroys a cytoplasmic component that is sensitive component(s) localized in the egg cytoplasm prior required for neural induction. Destruction of that com- ponent severely diminishes the inducing capacity of the to first cleavage division is actually involved in neural dorsal lip at gastrulation, as determined by embryological induction, the following question was posed: Does regional assays. Repair of the ultraviolet lesion can be achieved by UV damage to the egg affect the subsequent inducing capacity replacing the dorsal lip of the irradiated embyro with a of the dorsal lip during gastrulation? By assaying for inducing lip from an unirradiated embryo. capacity of dorsal lips from irradiated embryos and replacing Various types of analyses have established that components the dorsal lips of irradiated embryos with normal lips it was of the amphibian egg cytoplasm influence the pattern of early possible to conclude that UV does indeed damage a localized morphogenesis (see ref. 1 for a review). One of the most component of the egg cytoplasm that is necessary for neural conveniently demonstrated, yet most incompletely under- morphogenesis. stood, cytoplasmic components in the amphibian egg is the MATERlALS AND METHODS gray crescent. -
A Rice Homeobox Gene, OSHJ, Is Expressed Before Organ
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 8117-8122, July 1996 Plant Biology A rice homeobox gene, OSHJ, is expressed before organ differentiation in a specific region during early embryogenesis (embryo/in situ hybridization/organless mutant) YUTAKA SATO*, SOON-KWAN HONGt, AKEMI TAGIRIt, HIDEMI KITANO§, NAOKI YAMAMOTOt, YASUO NAGATOt, AND MAKOTO MATSUOKA*¶ *Nagoya University, BioScience Center, Chikusa, Nagoya 464-01, Japan; tFaculty of Agriculture, University of Tokyo, Tokyo 113, Japan; tNational Institute of Agrobiological Resources, Tsukuba, Ibaraki 305, Japan; and §Department of Biology, Aichi University of Education, Kariya 448, Japan Communicated by Takayoshi Higuchi, Nihon University, Tokyo, Japan, March 25, 1996 (received for review October 20, 1995) ABSTRACT Homeobox genes encode a large family of One of the powerful approaches for understanding the homeodomain proteins that play a key role in the pattern molecular mechanisms involved in plant embryogenesis is to formation of animal embryos. By analogy, homeobox genes in identify molecular rnarkers that can be used both to monitor plants are thought to mediate important processes in their cell specification events during early embryogenesis and to embryogenesis, but there is very little evidence to support this gain an entry into regulatory networks that are activated in notion. Here we described the temporal and spatial expression different embryonic regions after fertilization (10). With this patterns of a rice homeobox gene, OSHI, during rice embry- approach, it has been demonstrated that some genes are ogenesis. In situ hybridization analysis revealed that in the expressed in specific cell types, regions, and organs of embryo wild-type embryo, OSHI was first expressed at the globular (11, 12). -
GTPBP2 Is a Positive Regulator of TGF- Signaling, and Is Required for Embryonic Patterning in Xenopus
SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... GTPBP2 is a positive regulator of TGF- signaling, and is required for embryonic patterning in Xenopus. A Dissertation Presented by Arif Kirmizitas to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Molecular and Cellular Biology Stony Brook University December 2008 Stony Brook University The Graduate School Arif Kirmizitas We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Gerald H. Thomsen – Dissertation Advisor Professor, Department of Biochemistry and Cell Biology Howard I. Sirotkin – Chairperson of Defense Associate Professor, Department of Neurobiology and Behavior Nancy C. Reich Professor, Department of Molecular Genetics and Microbiology A. Wali Karzai Associate Professor, Department of Biochemistry and Cell Biology Bernadette C. Holdener Associate Professor, Department of Biochemistry and Cell Biology Daniel S. Kessler Associate Professor, Department of Cell and Developmental Biology,University of Pennsylvania School of Medicine, Philadelphia, PA This Dissertation is accepted by the Graduate School. Lawrence Martin Dean of the Graduate School ii Abstract of the Dissertation GTPBP2 is a positive regulator of TGF- signaling, and is required for embryonic patterning in Xenopus. by Arif Kirmizitas Doctor of Philosophy in Molecular and Cellular Biology Stony Brook University 2008 The Transforming Growth Factor (TGF-) superfamily of signaling proteins regulate a diverse set of biological processes, including cell proliferation, adhesion, migration, apoptosis, differentiation and embryonic pattern formation. -
Decidual Cell Polyploidization Necessitates Mitochondrial Activity
Decidual Cell Polyploidization Necessitates Mitochondrial Activity Xinghong Ma1,2, Fei Gao1,2, Allison Rusie1,2, Jennifer Hemingway1,2, Alicia B. Ostmann1,2, Julie M. Sroga1,2, Anil G. Jegga3, Sanjoy K. Das1,2* 1 Division of Reproductive Sciences, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America, 2 Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America, 3 Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America Abstract Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. -
The Cleavage Stage Origin of Spemann's Organizer: Analysis Of
Development 120, 1179-1189 (1994) 1179 Printed in Great Britain © The Company of Biologists Limited 1994 The cleavage stage origin of Spemann’s Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus Daniel V. Bauer1, Sen Huang2 and Sally A. Moody2,* 1Department of Anatomy and Cell Biology, University of Virginia 2Department of Anatomy and Neuroscience Program, The George Washington University Medical Center, 2300 I Street, NW Washington, DC 20037, USA *Author for correspondence SUMMARY Recent investigations into the roles of early regulatory the ventral animal clones extend across the entire dorsal genes, especially those resulting from mesoderm induction animal cap. These changes in the blastomere constituents or first expressed in the gastrula, reveal a need to elucidate of the animal cap during epiboly may contribute to the the developmental history of the cells in which their tran- changing capacity of the cap to respond to inductive growth scripts are expressed. Although fates both of the early blas- factors. Pregastrulation movements of clones also result in tomeres and of regions of the gastrula have been mapped, the B1 clone occupying the vegetal marginal zone to the relationship between the two sets of fate maps is not become the primary progenitor of the dorsal lip of the clear and the clonal origin of the regions of the stage 10 blastopore (Spemann’s Organizer). This report provides embryo are not known. We mapped the positions of each the fundamental descriptions of clone locations during the blastomere clone during several late blastula and early important periods of axis formation, mesoderm induction gastrula stages to show where and when these clones move. -
Evolution of Vertebrate Forebrain Development: How Many Different
J. Anat. (2001) 199, pp. 35–52, with 4 figures Printed in the United Kingdom 35 Evolution of vertebrate forebrain development: how many different mechanisms? ANN C. FOLEY AND CLAUDIO D. STERN Department of Genetics and Development, Columbia University, New York, NY 10032, USA (Accepted 6 April 2001) Over the past 50 years and more, many models have been proposed to explain how the nervous system is initially induced and how it becomes subdivided into gross regions such as forebrain, midbrain, hindbrain and spinal cord. Among these models is the 2-signal model of Nieuwkoop & Nigtevecht (1954), who suggested that an initial signal (‘activation’) from the organiser both neuralises and specifies the forebrain, while later signals (‘transformation’) from the same region progressively caudalise portions of this initial territory. An opposing idea emerged from the work of Otto Mangold (1933) and other members of the Spemann laboratory: 2 or more distinct organisers, emitting different signals, were proposed to be responsible for inducing the head, trunk and tail regions. Since then, evidence has accumulated that supports one or the other model, but it has been very difficult to distinguish between them. Recently, a considerable body of work from mouse embryos has been interpreted as favouring the latter model, and as suggesting that a ‘head organiser’, required for the induction of the forebrain, is spatially separate from the classic organiser (Hensen’s node). An extraembryonic tissue, the ‘anterior visceral endoderm’ (AVE), was proposed to be the source of forebrain-inducing signals. It is difficult to find tissues that are directly equivalent embryologically or functionally to the AVE in other vertebrates, which led some (e.g.