The Cleavage Stage Origin of Spemann's Organizer: Analysis Of

Total Page:16

File Type:pdf, Size:1020Kb

The Cleavage Stage Origin of Spemann's Organizer: Analysis Of Development 120, 1179-1189 (1994) 1179 Printed in Great Britain © The Company of Biologists Limited 1994 The cleavage stage origin of Spemann’s Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus Daniel V. Bauer1, Sen Huang2 and Sally A. Moody2,* 1Department of Anatomy and Cell Biology, University of Virginia 2Department of Anatomy and Neuroscience Program, The George Washington University Medical Center, 2300 I Street, NW Washington, DC 20037, USA *Author for correspondence SUMMARY Recent investigations into the roles of early regulatory the ventral animal clones extend across the entire dorsal genes, especially those resulting from mesoderm induction animal cap. These changes in the blastomere constituents or first expressed in the gastrula, reveal a need to elucidate of the animal cap during epiboly may contribute to the the developmental history of the cells in which their tran- changing capacity of the cap to respond to inductive growth scripts are expressed. Although fates both of the early blas- factors. Pregastrulation movements of clones also result in tomeres and of regions of the gastrula have been mapped, the B1 clone occupying the vegetal marginal zone to the relationship between the two sets of fate maps is not become the primary progenitor of the dorsal lip of the clear and the clonal origin of the regions of the stage 10 blastopore (Spemann’s Organizer). This report provides embryo are not known. We mapped the positions of each the fundamental descriptions of clone locations during the blastomere clone during several late blastula and early important periods of axis formation, mesoderm induction gastrula stages to show where and when these clones move. and neural induction. These will be useful for the correct We found that the dorsal animal clone (A1) begins to move targeting of genetic manipulations of early regulatory away from the animal pole at stage 8, and the dorsal animal events. marginal clone (B1) leaves the animal cap by stage 9. The ventral animal clones (A4 and B4) spread into the dorsal Key words: fate map, epiboly, dorsal lip, cell lineage, animal cap animal cap region as the dorsal clones recede. At stage 10, assays. INTRODUCTION of the gastrula that express unique gene products could be iden- tified. Since many experiments use the cleavage stage embryo Gastrulation movements morphologically transform the for targeting foreign gene products, and rely on changes in fate amphibian embryo from a ball of cells into an elongated for the interpretation of gene function, the comprehensive map tadpole with distinct dorsal-ventral and anterior-posterior axes. of blastomere clones at blastula and gastrula stages will allow In addition, during this time, many tissue and phenotype spec- investigators to target correct progenitors for gene misexpres- ifications occur, and many region-specific regulatory genes are sion, ‘knockout,’ and dominant negative experiments. This first expressed, e.g., Xlim-1, fork head, and goosecoid (Taira study demonstrates that some clones move prior to gastrula- et al., 1992; Dirksen and Jamrich, 1992; Blumberg et al., tion, such that important developmental regions of the embryo 1991). Identification of the developmental history of the cells change in composition over time. For example, the animal cap occupying the various regions of the gastrula is fundamental is used to assay the inductive capacity of exogenous molecules for understanding the role of these genes and the upstream or ectopically expressed gene products (e.g., Slack et al., 1987; events that lead to their region-specific expression. Currently, Kimelman and Kirschner, 1987; Smith, 1987; Rosa et al., we know the developmental fate of the early cleavage stage 1988; Sokol and Melton, 1992; Christian et al., 1992). Inves- blastomeres (Hirose and Jacobson, 1979; Jacobson and Hirose, tigators have used animal caps of various sizes and stages, 1981; Jacobson, 1983; Dale and Slack, 1987; Moody, 1987a,b; which can lead to different results (see Dawid, 1991). Our Moody and Kline, 1990), and there is a detailed fate map of study demonstrates that animal caps of different sizes at the early gastrula (Keller, 1975, 1976). However, there are few different stages in fact contain different clones. Another data that relate these two maps; we do not know where the blas- important developmental region is Spemann’s Organizer, the tomere clones are located in the gastrula. In this study, the inducer of the nervous system. This region has been identified locations of the blastomere clones prior to and during gastru- in the stage 10 embryo (Keller, 1976), but investigators lation were mapped so that the existing early and late maps disagree on the identity of the cleavage stage progenitors could be integrated and the blastomere progenitors of regions (Gimlich, 1986; Takasaki, 1987; Masho, 1988). It often has 1180 D. V. Bauer, S. Huang and S. A. Moody Fig. 1. The location and nomenclature of blastomeres used in this study. (A) 16-cell embryo (Hirose and Jacobson, 1979). (B) 32-cell embryo labeled with the nomenclature of Jacobson and Hirose (1981). (C) 32-cell embryo labeled with the nomenclature of Nakamura and Kishiyama (1971). been assumed that Spemann’s Organizer region arises from the 8 and 9, video images of sagittal sections were measured with a vegetal hemisphere of the cleavage stage embryo (see review Hamamatsu Argus-10 image processor. Sections were chosen from Elinson and Kao, 1989) but, in fact, our initial studies (Hainski each embryo (four at stage 8 and five at stage 9) that contained the and Moody, 1992) and those of others (Takasaki, 1987; Masho, largest area of the labeled B1 clone. The circumference of the tissue 1988) show that most of the dorsal blastopore lip actually section was divided into 360° of arc. The animal-most and vegetal- arises from an animal hemisphere blastomere. In the present most boundaries of the B1 clone were measured relative to a linear projection of the floor of the blastocoel to the surface. These bound- study, we detail the blastomeres (from 16- and 32-cell aries were expressed in degrees of arc. embryos) that contribute to the Organizer region, as well as the lateral and ventral lips, and provide a developmental history of the pregastrulation movements of these important clones. RESULTS MATERIALS AND METHODS The positions of clones change before gastrulation Although the appearance of the dorsal lip of the blastopore at Embryos were obtained from natural matings of adult frogs that had stage 10 is commonly used as the indicator of the onset of gas- been induced to mate with chorionic gonadotropin (Sigma). Fertilized trulation, Xenopus blastula cells become motile at stage 8 eggs were dejellied and selected for lineage dye injections as detailed (Newport and Kirschner, 1982), clones have intermixed by in previous reports (Moody, 1987a,b). Only embryos with stereotyped three cell diameters by stage 9 (Wetts and Fraser, 1989) and cleavage furrows (Fig. 1) were used in order to label consistently the same progenitor in all embryos. Embryos were held in Steinberg’s cellular events indicative of gastrulation movements begin solution until they reached the 16- or 32-cell stage.To study clones nearly an hour before stage 10 (Keller, 1978). We investigated derived from the 16-cell embryo, each of the eight different blas- both the movements of each blastomere clone and the mixing tomeres (Fig. 1A) was injected with 1 nl of 5% horseradish peroxi- between clones before stage 10 to determine whether these dase (HRP, Boeringer-Mannheim). To study clones derived from the movements reorganize the clones prior to the invagination at 32-cell embryo, two neighboring blastomeres were injected, one with the dorsal blastopore lip. 1 nl of 0.5% Texas Red-dextran-amine (TRDA, Molecular Probes) The stage 7 clones were in the original position and wedge and the other with 2 nl of 0.5% fluorescein-dextran-amine (FDA, shape of the injected blastomere (Figs 2,3). Clones of animal Molecular Probes). Only the midline blastomeres of the three animal- blastomeres interdigitated along their edges with neighboring most tiers were examined (Fig. 1B,C). For easier reading, the nomen- unlabeled cells, especially at the marginal zone border of the clature of Nakamura (Fig. 1C) is used in the text when referring to 32-cell blastomeres. However, Jacobson’s nomenclature is illustrated clone (Fig. 3). The D1.1 clone was the most intermixed (Fig. in Fig. 1B so that reference can be made to mother cells (Fig. 1A) and 3B), especially with the contralateral D1.1 clone (Fig. 4). to the 32-cell fate map of Moody (1987b). Clones of vegetal blastomeres had little mixing at the borders Injected embryos were raised in Steinberg’s solution, the fluores- (Figs 2,3). At stage 8 some clones began to shift positions. The cent ones in the dark, at room temperature. Embryos were fixed, at A4 clone extended a few cell diameters across the geometric intervals from stage 7 to stage 13 (Nieuwkoop and Faber, 1967), in animal pole into the dorsal area, while the animal-most descen- 4% paraformaldehyde in 0.1 M P04 buffer (pH 7.4). Most of the HRP- dants of A1 receded one or two cell diameters away from the labeled embryos were processed as whole mounts. They were washed, animal pole (Figs 5,6B). In addition, all of the clones mixed ′ reacted in 3,3 -diaminobenzidine (Sigma), dehydrated, cut in half and along their borders with neighboring clones at a depth of one embedded in clear plastic (Eukitt, Calibrated Instruments, Inc.). Most or two cell diameters (Figs 5,6B). of the fluorescently labeled embryos were sectioned at 17 µm with a cryostat, washed and coverslipped with Tris/glycerol. For stages 7- At stage 9, several of the clones had moved from their 10, the animal pole was identified by determining the center of the original positions.
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Divergence of Ectodermal and Mesodermal Gene Regulatory Network Linkages in Early Development of Sea Urchins
    Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins Eric M. Erkenbracka,1,2 aDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved October 5, 2016 (received for review August 3, 2016) Developmental gene regulatory networks (GRNs) are assemblages of to study in sea urchins, whose lineages have undergone multiple gene regulatory interactions that direct ontogeny of animal body changes in life history strategies (8). Importantly, an excellent fossil plans. Studies of GRNs operating in the early development of record affords dating of evolutionary events (9), which has established euechinoid sea urchins have revealed that little appreciable change has that the sister subclasses of sea urchins—cidaroids and euechinoids— occurred since their divergence ∼90 million years ago (mya). These diverged at least 268 million years ago (mya) (10). Differences in observations suggest that strong conservation of GRN architecture the timing of developmental events in embryogenesis of cida- was maintained in early development of the sea urchin lineage. Test- roids and euechinoids have long been a topic of interest, but ing whether this holds for all sea urchins necessitates comparative have become the subject of molecular research only recently analyses of echinoid taxa that diverged deeper in geological time. (11–18). Recent studies highlighted extensive divergence of skeletogenic me- Research on the early development of the euechinoid purple soderm specification in the sister clade of euechinoids, the cidaroids, sea urchin Strongylocentrotus purpuratus (Sp) has brought into suggesting that comparative analyses of cidaroid GRN architecture high resolution the players and molecular logic directing devel- may confer a greater understanding of the evolutionary dynamics of opmental GRNs that specify Sp’s early embryonic domains developmental GRNs.
    [Show full text]
  • Sperm Penetration and Early Patterning in the Mouse 5805
    Development 129, 5803-5813 5803 © 2002 The Company of Biologists Ltd doi:10.1242/dev.00170 Early patterning of the mouse embryo – contributions of sperm and egg Karolina Piotrowska* and Magdalena Zernicka-Goetz† Wellcome Trust/Cancer Research UK Institute, and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK *On leave from the Department of Experimental Embryology, Polish Academy of Sciences, Jastrzebiec, Poland †Author for correspondence (e-mail: [email protected]) Accepted 12 September 2002 SUMMARY The first cleavage of the fertilised mouse egg divides the 2-cell blastomere to divide in parthenogenetic embryo does zygote into two cells that have a tendency to follow not necessarily contribute more cells to the blastocyst. distinguishable fates. One divides first and contributes its However, even when descendants of the first dividing progeny predominantly to the embryonic part of the blastomere do predominate, they show no strong blastocyst, while the other, later dividing cell, contributes predisposition to occupy the embryonic part. Thus mainly to the abembryonic part. We have previously blastomere fate does not appear to be decided by observed that both the plane of this first cleavage and the differential cell division alone. Finally, when the cortical subsequent order of blastomere division tend to correlate cytoplasm at the site of sperm entry is removed, the first with the position of the fertilisation cone that forms after cleavage plane no longer tends to divide the embryo sperm entry. But does sperm entry contribute to assigning into embryonic and abembryonic parts. Together these the distinguishable fates to the first two blastomeres or is results indicate that in normal development fertilisation their fate an intrinsic property of the egg itself? To answer contributes to setting up embryonic patterning, alongside this question we examined the distribution of the progeny the role of the egg.
    [Show full text]
  • Human Blastocyst Morphological Quality Is Significantly Improved In
    Human blastocyst morphological quality is significantly improved in embryos classified as fast on day 3 (R10 cells), bringing into question current embryological dogma Martha Luna, M.D.,a,b Alan B. Copperman, M.D.,a,b Marlena Duke, M.Sc.,a,b Diego Ezcurra, D.V.M.,c Benjamin Sandler, M.D.,a,b and Jason Barritt, Ph.D.a,b a Mount Sinai School of Medicine, Department of Obstetrics and Gynecology, Department of Reproductive Endocrinology and Infertility, and b Reproductive Medicine Associates of New York, New York, New York; and c EMD Serono, Rockland, Massachusetts Objective: To evaluate developmental potential of fast cleaving day 3 embryos. Design: Retrospective analysis. Setting: Academic reproductive center. Patient(s): Three thousand five hundred twenty-nine embryos. Intervention(s): Day 3 embryos were classified according to cell number: slow cleaving: %6 cells, intermediate cleaving: 7–9 cells, and fast cleaving: R10 cells, and further evaluated on day 5. The preimplantation genetic diagnosis (PGD) results of 43 fast cleaving embryos were correlated to blastocyst formation. Clinical outcomes of transfers involving only fast cleaving embryos (n ¼ 4) were evaluated. Main Outcome Measure(s): Blastocyst morphology correlated to day 3 blastomere number. Relationship between euploidy and blastocyst formation of fast cleaving embryos. Implantation, pregnancy (PR), and birth rates resulting from fast embryo transfers. Result(s): Blastocyst formation rate was significantly greater in the intermediate cleaving (72.7%) and fast cleav- ing (54.2%) groups when compared to the slow cleaving group (38%). Highest quality blastocysts were formed significantly more often in the fast cleaving group. Twenty fast cleaving embryos that underwent PGD, formed blastocysts, of which 45% (9/20) were diagnosed as euploid.
    [Show full text]
  • Animal Form & Function
    Animals Animal Form & Function By far, most diversity of bauplane (body forms). And most variations within bauplane. Animals are Animated “ANIMAL” ≠ MAMMAL — Fascinating Behaviors Animal Cells • Eukaryotic • No cell wall No plastids No central vacuole • Multicellular: – extensive specialization & differentiation – unique cell-cell junctions Heyer 1 Animals Animals Blastulation & Gastrulation • Motile • Early embryonic development in animals 3 In most animals, cleavage results in the formation of a multicellular stage called a 1 The zygote of an animal • Highly differentiated blastula. The blastula of many animals is a undergoes a succession of mitotic tissues cell divisions called cleavage. hollow ball of cells. Blastocoel • Intercellular junctions Cleavage Cleavage – tissue-specific cadherins 6 The endoderm of the archenteron develops into Eight-cell stage Blastula Cross section Zygote • Extracellular protein the the animal’s of blastula fibers digestive tract. Blastocoel Endoderm – collagen 5 The blind pouch formed by gastrulation, called Ectoderm • Diploid life cycle the archenteron, opens to the outside Gastrula Gastrulation via the blastopore. Blastopore 4 Most animals also undergo gastrulation, a • Blastula/gastrula rearrangement of the embryo in which one end of the embryo folds inward, expands, and eventually fills the embryo blastocoel, producing layers of embryonic tissues: the Figure 32.2 ectoderm (outer layer) and the endoderm (inner layer). Primary embryonic germ layers Primary embryonic germ layers • Diploblastic: two germ
    [Show full text]
  • T-Brain Regulates Archenteron Induction Signal 5207 Range of Amplification
    Development 129, 5205-5216 (2002) 5205 Printed in Great Britain © The Company of Biologists Limited 2002 DEV5034 T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo Takuya Fuchikami1, Keiko Mitsunaga-Nakatsubo1, Shonan Amemiya2, Toshiya Hosomi1, Takashi Watanabe1, Daisuke Kurokawa1,*, Miho Kataoka1, Yoshito Harada3, Nori Satoh3, Shinichiro Kusunoki4, Kazuko Takata1, Taishin Shimotori1, Takashi Yamamoto1, Naoaki Sakamoto1, Hiraku Shimada1 and Koji Akasaka1,† 1Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan 2Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 3Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan 4LSL, Nerima-ku, Tokyo 178-0061, Japan *Present address: Evolutionary Regeneration Biology Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan †Author for correspondence (e-mail: [email protected]) Accepted 30 July 2002 SUMMARY Signals from micromere descendants play a crucial role in cells, the initial specification of primary mesenchyme cells, sea urchin development. In this study, we demonstrate that or the specification of endoderm. HpTb expression is these micromere descendants express HpTb, a T-brain controlled by nuclear localization of β-catenin, suggesting homolog of Hemicentrotus pulcherrimus. HpTb is expressed that
    [Show full text]
  • Apoptosis in Amphibian Development
    Advances in Bioscience and Biotechnology, 2012, 3, 669-678 ABB http://dx.doi.org/10.4236/abb.2012.326087 Published Online October 2012 (http://www.SciRP.org/journal/abb/) Apoptosis in amphibian development Jean-Marie Exbrayat, Elara N. Moudilou, Lucie Abrouk, Claire Brun Université de Lyon, UMRS 449, Biologie Générale, Université Catholique de Lyon, Reproduction et Développement Comparé, Ecole Pratique des Hautes Etudes, Lyon, France Email: [email protected] Received 13 August 2012; revised 20 September 2012; accepted 28 September 2012 ABSTRACT divide to give the first two blastomeres which continue to divide becoming a morula. An inner cavity, the blasto- Amphibians and more particularly X. laevis are mod- coel, appears in the mass cell of the embryo, becoming a els often used for studying apoptosis during embry- blastula. During this period of cleavage, the size and onic development. Using several methods, searchers shape of embryos do not vary. Before mid blastula tran- determined the localization of programmed cell sition (MBT), zygotic genes do not express excepted deaths (PCD). Several experimental methods also those encoding for proteins implicated in membrane have been used to understand the regulatory mecha- building. Maternal mRNAs previously accumulated in nisms of apoptosis, throughout development, contrib- the oocytes remain present in the cytoplasm of zygote uting to elucidate the general action of several genes and they are distributed into the cytoplasm of blas- and proteins. Apoptosis occurs very early, with a first tomeres during cleavage. These maternal mRNAs encode program under control of maternal genes expressed for proteins which will be implicated in expression of before MBT, in order to eliminate damaged cells be- zygotic genes.
    [Show full text]
  • Development of the Urogenital System of the Dog
    DEVELOPMENT OF THE UROGENITAL SYSTEM OF THE DOG MAJID AHMED AL-RADHAWI LICENCE, Higher Teachers' Training College, Baghdad, Iraq, 1954 A. THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Zoology KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE 1958 LD C-2- TABLE OF CONTENTS INTRODUCTION AND HEVIEW OF LITERATURE 1 MATERIALS AND METHODS 3 OBSERVATIONS 5 Group I, Embryos from 8-16 Somites 5 Group II, Embryos from 17-26 Somites 10 Group III, Embryos from 27-29 Somites 12 Group 17, Embryos from 34-41 Somites 15 Group V , Embryos from 41-53 Somites 18 Subgroup A, Embryos from 41-<7 Somites 18 Subgroup B, Embryos from 4-7-53 Somites 20 Group VI, Embryos Showing Indifferent Gonad 22 Group VII, Embryos with Differentiatle Gonad 24 Subgroup A, Embryos with Seoondarily Divertioulated Pelvis ... 25 Subgroup B, Embryos with the Anlagen of the Uriniferous Tubules . 26 Subgroup C, Embryos with Advanced Gonad 27 DISCUSSION AND GENERAL CONSIDERATION 27 Formation of the Kidney .... 27 The Pronephros 31 The Mesonephros 35 The Metanephros 38 The Ureter 39 The Urogenital Sinus 4.0 The Mullerian Duot 40 The Gonad 41 1 iii TABLE OF CONTENTS The Genital Ridge Stage 41 The Indifferent Stage , 41 The Determining Stage, The Testes . 42 The Ovary 42 SUMMARI , 42 ACKNOWLEDGMENTS 46 LITERATURE CITED 47 APJENDEC 51 j INTRODUCTION AND REVIEW OF LITERATURE Nephrogenesis has been adequately described in only a few mammals, Buchanan and Fraser (1918), Fraser (1920), and MoCrady (1938) studied nephrogenesis in marsupials. Keibel (1903) reported on studies on Echidna Van der Strioht (1913) on the batj Torrey (1943) on the rat; and Bonnet (1888) and Davles and Davies (1950) on the sheep.
    [Show full text]
  • Essential Role of Non-Canonical Wnt Signalling in Neural Crest Migration Jaime De Calisto1,2, Claudio Araya1,2, Lorena Marchant1,2, Chaudhary F
    Research article 2587 Essential role of non-canonical Wnt signalling in neural crest migration Jaime De Calisto1,2, Claudio Araya1,2, Lorena Marchant1,2, Chaudhary F. Riaz1 and Roberto Mayor1,2,3,* 1Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK 2Millennium Nucleus in Developmental Biology, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 3Fundacion Ciencia para la Vida, Zanartu 1482, Santiago, Chile *Author for correspondence (e-mail: [email protected]) Accepted 8 April 2005 Development 132, 2587-2597 Published by The Company of Biologists 2005 doi:10.1242/dev.01857 Summary Migration of neural crest cells is an elaborate process that the Wnt receptor Frizzled7 (Fz7). Furthermore, loss- and requires the delamination of cells from an epithelium and gain-of-function experiments reveal that Wnt11 plays an cell movement into an extracellular matrix. In this work, it essential role in neural crest migration. Inhibition of neural is shown for the first time that the non-canonical Wnt crest migration by blocking Wnt11 activity can be rescued signalling [planar cell polarity (PCP) or Wnt-Ca2+] by intracellular activation of the non-canonical Wnt pathway controls migration of neural crest cells. By using pathway. When Wnt11 is expressed opposite its normal site specific Dsh mutants, we show that the canonical Wnt of expression, neural crest migration is blocked. Finally, signalling pathway is needed for neural crest induction, time-lapse analysis of cell movement and cell protrusion in while the non-canonical Wnt pathway is required for neural crest cultured in vitro shows that the PCP or Wnt- neural crest migration.
    [Show full text]
  • Archenteron Precursor Cells Can Organize Secondary Axial Structures in the Sea Urchin Embryo
    Development 124, 3461-3470 (1997) 3461 Printed in Great Britain © The Company of Biologists Limited 1997 DEV3652 Archenteron precursor cells can organize secondary axial structures in the sea urchin embryo Hélène Benink1, Gregory Wray2 and Jeff Hardin1,3,* 1Department of Zoology and 3Program in Cell and Molecular Biology, University of Wisconsin, Madison, 1117 West Johnson Street, Madison, WI 53706, USA 2Department of Ecology and Evolution, SUNY, Stony Brook, NY 11794, USA *Author for correspondence: (e-mail: [email protected]) SUMMARY Local cell-cell signals play a crucial role in establishing terning sites within the ectoderm. The ectopic skeletal major tissue territories in early embryos. The sea urchin elements are bilaterally symmetric, and flank the ectopic embryo is a useful model system for studying these inter- archenteron, in some cases resulting in mirror-image, actions in deuterostomes. Previous studies showed that symmetric skeletal elements. Since the induced patterned ectopically implanted micromeres from the 16-cell embryo ectoderm and supernumerary skeletal elements are derived can induce ectopic guts and additional skeletal elements in from the host, the ectopic presumptive archenteron tissue sea urchin embryos. Using a chimeric embryo approach, we can act to ‘organize’ ectopic axial structures in the sea show that implanted archenteron precursors differentiate urchin embryo. autonomously to produce a correctly proportioned and patterned gut. In addition, the ectopically implanted pre- sumptive archenteron tissue induces ectopic skeletal pat- Key words: induction, gastrulation, sea urchin, endoderm INTRODUCTION mapping studies have shown that veg1 descendants contribute tissue to the vegetal regions of the archenteron by the late Progressive refinement of the embryonic body plan via local gastrula stage (Logan and McClay, 1997); by this time veg1 inductive interactions is a common theme among animal and veg2 descendants intermingle within the wall of the archen- embryos.
    [Show full text]
  • The Protection of the Human Embryo in Vitro
    Strasbourg, 19 June 2003 CDBI-CO-GT3 (2003) 13 STEERING COMMITTEE ON BIOETHICS (CDBI) THE PROTECTION OF THE HUMAN EMBRYO IN VITRO Report by the Working Party on the Protection of the Human Embryo and Fetus (CDBI-CO-GT3) Table of contents I. General introduction on the context and objectives of the report ............................................... 3 II. General concepts............................................................................................................................... 4 A. Biology of development ....................................................................................................................... 4 B. Philosophical views on the “nature” and status of the embryo............................................................ 4 C. The protection of the embryo............................................................................................................... 8 D. Commercialisation of the embryo and its parts ................................................................................... 9 E. The destiny of the embryo ................................................................................................................... 9 F. “Freedom of procreation” and instrumentalisation of women............................................................10 III. In vitro fertilisation (IVF).................................................................................................................. 12 A. Presentation of the procedure ...........................................................................................................12
    [Show full text]
  • Embryonic Regeneration by Relocalization of the Spemann
    Embryonic regeneration by relocalization of the PNAS PLUS Spemann organizer during twinning in Xenopus Yuki Moriyamaa,b,1 and Edward M. De Robertisa,b,2 aHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095; and bDepartment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1662 Contributed by Edward M. De Robertis, April 3, 2018 (sent for review February 16, 2018; reviewed by Makoto Asashima, Atsushi Suzuki, and Naoto Ueno) The formation of identical twins from a single egg has fascinated side of the embryo in regularly cleaving embryos (9). The op- developmental biologists for a very long time. Previous work had posite, darker side of the embryo gives rise to the ventral (belly) shown that Xenopus blastulae bisected along the dorsal–ventral side. The displacement of egg cytoplasmic determinants along (D-V) midline (i.e., the sagittal plane) could generate twins but at microtubules toward the dorsal side triggers an early Wnt signal very low frequencies. Here, we have improved this method by (10), which is responsible for localizing the subsequent formation using an eyelash knife and changing saline solutions, reaching of the Spemann organizer signaling center in the marginal zone frequencies of twinning of 50% or more. This allowed mechanistic at the gastrula stage. The Spemann organizer is a tissue that analysis of the twinning process. We unexpectedly observed that secretes a mixture of growth factor antagonists, such as Chordin, the epidermis of the resulting twins was asymmetrically pig- Noggin, Follistatin, Cerberus, Frzb1, and Dickkopf, which are mented at the tailbud stage of regenerating tadpoles.
    [Show full text]