Section VIII. the Development of the Nervous System Chapter 52

Total Page:16

File Type:pdf, Size:1020Kb

Section VIII. the Development of the Nervous System Chapter 52 Section VIII. The Development of the Nervous System Chapter 52. The Induction and Patterning of the Nervous System Chapter 53. The Generation and Survival of Nerve Cells Chapter 54. The Guidance of Axons to Their Targets Chapter 55. Formation and Regeneration of Synapses Chapter 56. Sensory Experience and the Fine- Tuning of Synaptic Connections Chapter 52: The Induction and Patterning of the Nervous System z 楊定一 (Ding-I Yang, Ph.D.) z 腦科學研究所 z 辦公室:圖資大樓851室; 分機號碼:7386 z 實驗室:圖資大樓850室; 分機號碼:6150 z E-mail: [email protected] An Overall View z The entire nervous system arises from the ectoderm. z Inductive signals control neural cell differentiation: --neural plate is induced by signals from adjacent mesoderm involving inhibition of bone morphogenetic protein signals. z Neural plate is patterned along its dorsoventral axis by signals from adjacent nonneuronal cells: --ventral neural tube by sonic hedgehog. --dorsal neural tube by bone morphogenetic proteins. --dorsoventral patterning is maintained throughout the rostrocaudal length of the neural tube. An Overall View z The rostrocaudal axis of the neural tube is patterned in several stages: --the hindbrain is organized in segmental units by Hox genes. --the midbrain is patterned by signals from a neural organizing center. --the developing forebrain is subdivided along its rostrocaudal axis. z Regional differentiation of the cerebral cortex depends on afferent input as well as intrinsic programs of cell differentiation. 背部的 嘴側的 尾側的 腹部的 The medial surface of the brain 冠狀的 前後向的 The entire nervous system arises from the ectoderm z Endoderm: the innermost layer gives rise to gut, lungs, and liver. z Mesoderm: the middle layer gives rise to connective tissues, muscle, and the vascular system. z Ectoderm: the outermost layer gives rise to the major tissue of the CNS and PNS. Neural and glial cells derive from neural plate. Ectodermal cells failed to differentiate into neural/glial cells give rise to the epidermis of the skin. Development of Nerve Cell Connections z First, a uniform population of neural progenitors, the cells of the neural plate, are recruited from a large sheet of ectodermal cells. z Second, the cells of neural plate rapidly begin to acquire differentiated properties, giving rise to both immature neurons and glia cells. z Third, immature neurons migrate from zones of cell proliferation to their final positions and extend axons toward their target cells. A process of selective synapse formation is initiated. z Fourth, electrical and chemical signals passed across synapses can control patterns of connectivity and the phenotype of the neurons themselves. The neural plate folds in stages to form the neural tube. Folding of neural plate form the neural groove first. This is followed by dorsal closure of the neural folds to form the neural tube (next slide). The process of the neural tube maturation is called neurulation. The caudal region of the neural tube gives rise to the spinal cord, and the rostral region becomes the brain. The proliferation of rostral part of the neural tube initially forms three brain vesicles: the forebrain, the midbrain, and the hindbrain. 終腦(endbrain) 前腦(prosomere, forebrain) 間腦 (between-brain) 中腦(midbrain) 菱形腦(rhombomere, hindbrain) chick embryo Three-vesicle stage Five-vesicle stage cephalic flexure straighten out later (midbrain-hindbrain) cervical flexure (hindbrain-spinal cord) Six major regions of the mature central nervous system Inductive signals control neural cell differentiation z Inducing factors are signaling molecules provided by other cells. z The molecules that are activated or induced in the cells upon exposure to an inducing factor from another cell. A cell’s fate is determined in part by the signals to which it is exposed, which is largely a consequence of where it is originally located in the embryo, and in part by the gene expression profiles as a consequence of its developmental history. Competence zThe ability of the cell to respond to inductive signals. It depends on the precise repertory of receptors, transduction molecules, and transcription factors expressed by these cells. Neural plate is induced by signals from adjacent nonneuronal mesoderm z The differentiation of the neural plate from uncommitted ectoderm in amphibian embryos depends on signals secreted by a specialized group of cells later called the organizer region. z Dorsal lip of the blastopore destined to form the dorsal mesoderm was excised and transplanted underneath the ventral ectoderm of a host embryo, a region that normally gives rise to ventral epidermal tissue. The transplanted cells follow normal developmental program to generate mesoderm. However, the host ventral ectoderm formed a duplicate body axis that included a complete second nervous system. The organizer graft experiment done by Spemann and Mangold in 1924. dorsal lip of the blastopore destined to form the dorsal mesoderm Neural induction involves inhibition of BMP signals z When early ectoderm is dissociated into single cells to prevent intercellular signaling and cultured without added factors, these single cells form neural tissue. z Bone morphogenetic proteins (BMPs), a group of TGF-β-related proteins, mediate the suppressive signal inhibiting ectodermal differentiation into neural tissues. z BMP signaling promotes the differentiation of ectoderm into epidermis. Cells expressing dominant negative mutant of BMP receptors differentiate into neural tissue. Follistatin, noggin, and chordin are endogenous neural inducers z Cells in the organizer region express three secreted proteins-follistatin, noggin, and chordin-each of which is able to induce ectoderm to differentiate into neural tissue. z All three proteins bind to BMPs and act as endogenous neural inducers. z The differentiation of neural plate cells triggered by inhibition of BMP signaling appears to involve the expression of transcription factors of the Sox gene family. Neural plate is patterned along dorsoventral axis by signal from adjacent nonneuronal cell z Mature spinal cord neurons process sensory input (dorsal half) and coordinate motor output (ventral half). z Motor neurons are generated lateral to the floor plate, a population of specialized glial cells in the ventral half of the neural tube. Interneurons are formed dorsal to the position of motor neurons. z In the dorsal half of neural tube, two types of cells form initially: neural crest cells that populate the PNS and specialized glial cells that form roof plate. Cells lateral to the roof plate differentiate into dorsal sensory interneurons. z SHH patterns the ventral neural tube. z BMP patterns the dorsal neural tube. axial mesoderm/ notochord epidermal ectoderm flanking lateral edges of neural plate dorsal tips of neural fold floor plate cells roof plate and adjacent dorsal neural tube floor plate dorsal neural tube floor plate z Sonic hedgehog (SHH) is a family member of secreted proteins related to Hedgehog, a gene that controls embryonic development of Drosophila. z SHH by itself is capable of inducing differentiation of floor plate cells, motor neurons, and different subclasses of ventral interneurons. Blockade of SHH functions eliminates the ability of notochord to induce all of the cell types normally generated in the ventral neural tube. MN: motor neuron SHH expression V1: ventral interneuron V2: ventral interneuron FP: floor plate floor plate notochord z SHH acts not only as an inducer but also as a morphogen, the inductive signal that can direct different cell fates at different concentration thresholds. z A concentration gradient of SHH forms in ventral neural tube that is controlled by diffusion of SHH from the notochord and floor plate. z Inactive SHH precursor is cleaved autocatalytically by a serine protease-like activity contained within C- terminal domain of SHH itself. z Active N-terminal domain of SHH is covalently attached with lipophilic cholesterol. This modification tether most of the SHH to the surface of notochord and floor plate cells, while also allowing diffusion of small amounts of SHH. Binding to SHH to PTC releases SMO from the PTC/SMO heterodimeric receptor complex. PTC: patched SMO: smoothened transcription factor z BMP signals mediate the differentiation of dorsal neural tube cells including neural crest cells, roof plate cells, and dorsal interneurons. z BMPs activate dimeric receptors that are serine- threonine kinases. BMP binds to type II receptor, which in turn activates type I receptor. Type I receptor than phosphorylates SMAD proteins, leading to ultimate transcription of target genes (next slide). unphosphorylated cytoplasmic proteins Inductive Signaling in Dorsal and Ventral Neural Tube z Ventral patterning is regulated by the activities of a single protein SHH, which generates different cell types at different concentrations. z Dorsal patterning is regulated by several members of the BMP family, each of which may induce a particular set of cells. z Both inductive signaling is initially expressed by nonneural cells (epidermal ectoderm dorsally and notochord ventrally). Then these signals are transferred to specialized glial cells at midline of neural tube (roof plate dorsally and floor plate ventrally). z SHH induces formation of distinct classes of ventral neurons at different rostrocaudal levels. z At different levels of the hindbrain and midbrain, motor neurons (green), serotonergic neurons (blue), and dopaminergic neurons (purple) differentiate close to cells that express SHH. z In the telencephalon, the ventral or diecephalon,
Recommended publications
  • The Divergent Homeobox Gene Pbxf Is Expressed in the Postnatal Subventricular Zone and Interneurons of the Olfactory Bulb
    The Journal of Neuroscience, May 1, 1996, 76(9):2972-2982 The Divergent Homeobox Gene PBXf Is Expressed in the Postnatal Subventricular Zone and Interneurons of the Olfactory Bulb Lori Redmond,’ Susan Hockfield,’ and Maria A. Morabito* LS’ection of Neurobiology, and *Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066 In the mammalian brain, an important phase of neurogenesis postnatally in the SVZ, in the migratory pathway to the olfactory occurs postnatally in the subventricular zone (SVZ). This region bulb, and in the layers of the olfactory bulb that are the targets consists of a heterogeneous population of cells, some mitoti- of these migratory neurons. Combining in situ hybridization for tally active, others postmitotic. A subset of mitotically active PBX7 with immunostaining for markers of cell proliferation SVZ precursor cells gives rise to a population of neurons that (PCNA), postmitotic neurons (class III p-tubulin), and glia migrates over a long distance to their final destination, the (GFAP), we show that SVZ proliferating cells and their neuronal olfactory bulb. Other SVZ precursor cells continue to proliferate progeny express rat /33X7 mRNA, whereas glial cells do not or undergo cell death. The combination of genes that regulates express detectable levels of PBX7. The expression of 133x7 in proliferation and cell fate determination of SVZ precursor cells SVZ precursor cells and postmitotic neurons suggests a role for remains to be identified. We have used the rat homolog of the PBX7 in the generation of olfactory bulb interneurons and in human homeobox gene fBX7 in Northern analysis and in situ mammalian neurogenesis.
    [Show full text]
  • Phenotypic Characterization of Macrophages in the Endometrium of the Pregnant Cow Lilian J
    ORIGINAL ARTICLE Phenotypic Characterization of Macrophages in the Endometrium of the Pregnant Cow Lilian J. Oliveira, Peter J. Hansen Department of Animal Sciences, University of Florida, Gainesville, FL, USA Keywords Problem Cow, endometrium, macrophage, placentome, Macrophages are recruited in large number to the interplacentomal pregnancy endometrium of the cow during pregnancy. We evaluated whether endometrial macrophages also accumulate in placentomal regions of Correspondence Peter J. Hansen, Department of Animal endometrium during pregnancy and whether endometrial macrophages Sciences, University of Florida, PO Box are regionally differentiated. 110910, Gainesville FL 32611-0910 USA. E-mail: [email protected]fl.edu Method of study Interplacentomal endometrium and placentomes were subjected to Submitted June 18, 2009; dual-color immunofluorescence using CD68 as a pan-macrophage accepted September 8, 2009. marker. Citation Results Oliveira L J, Hansen PJ. Phenotypic CD68+ cells were abundant in stroma of the interplacentomal endome- Characterization of macrophages in the trium and caruncular septa of the placentomes. CD68+ cells were not endometrium of the pregnant cow. Am J Reprod Immunol 2009; 62: 418–426 present in fetal villi of the placentomes or in the interplacentomal cho- rion. Regardless of location, the majority of CD68+ cells also expressed + + doi:10.1111/j.1600-0897.2009.00761.x CD14. In interplacentomal endometrium, CD68 CD11b cells were pres- ent in deeper areas of the stroma but not in shallow endometrial stroma. In caruncular septa of the placentome, CD68+ cells were nega- tive for CD11b. CD68+ cells in the interplacentomal endometrium were negative for MHC class II while most CD68+ cells in caruncular septa were positive for MHC class II.
    [Show full text]
  • MN20, a D2 Cyclin, Is Transiently Expressed in Selected Neural Populations During Embryogenesis
    The Journal of Neuroscience, January 1, 1996, 76(1):21 O-21 9 MN20, a D2 Cyclin, Is Transiently Expressed in Selected Neural Populations during Embryogenesis M. Elizabeth Ross, Michelle L. Carter, and Jang Hern Lee Labor-a tory of Molecular Neurobiology and Development, Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455 Although the regulation of proliferation and differentiation thalamus, but not hippocampus, striatum, or thalamus. Com- during brain development has long been considered to be parison with 5bromodeoxyuridine labeling of cells in S interrelated, the mechanisms that coordinate the control of phase indicated that MN20 expression in embryonic cere- cell division and histogenesis are poorly understood. The cell bellum and cerebral cortex was most pronounced in young cycle is a dynamic process that is governed by the concerted neurons that recently had become postmitotic. Although action of numerous cell cycle regulatory proteins in response expressed in other embryonic cerebellar neurons, MN20 was to signals both intrinsic and extrinsic to the cell. Thus, pro- detected in granule precursors only postnatally, after their teins that regulate the cell cycle are well suited to provide a migration from the rhombic lip to the external germinal layer. link between processes that control neuroblast proliferation This indicates that MN20/D2 cyclin is induced in cerebellar and differentiation. We reported previously the isolation from granule precursors as they become competent to differenti- brain of a message form of D2 cyclin, one of several cyclin ate. The spatial distribution of MN20 expression in the de- proteins known to promote the progression from Gl to S veloping brain suggests that regional differences in cell cycle phase.
    [Show full text]
  • Research on the Basic Biology of the Digestive System
    Photomicrograph showing expression of the Lgr5-lacZ reporter gene in the base of small intestinal crypts in adult mice. Through this type of research, scientists have been able to identify stem cells within the adult intestine that are capable of forming the cell types needed to continually renew this organ throughout life. Image courtesy of Dr. Hans Clevers. Reprinted by permission from MacMillan Publishers Ltd: Nature, 449:1003-1007, copyright 2007. Opportunities and Challenges in Digestive Diseases Research: Recommendations of the National Commission on Digestive Diseases Research on the Basic Biology of the Digestive System SUMMARY OF RESEARCH GOALS The Commission proposes multiple research goals to achieve the overarching mission of understanding the basic biologic underpinnings of the structurally and functionally complex digestive system. Developing new technologies to isolate, characterize, cultivate, and manipulate stem cells of the digestive system may provide new approaches to understand the pathogenesis and develop new therapies for digestive diseases. Uncovering the mechanisms that control development and differentiation of the digestive tract before birth and in neonatal life could generate new insights for regenerative therapies to treat digestive cancers and other diseases, as well as provide new insights into disease pathogenesis. Studying the fundamental mechanisms of digestion could point to new strategies for treating disorders of nutrient and fluidabsorption, secretion, and metabolism. The enteric nervous system links the digestive system and the brain and controls motility within the gastrointestinal (GI) tract. Research on the function and organization of the enteric nervous system will enable a better understanding of gut motility in digestive health and disease. The intestinal microflora are essential to normal digestive function; studying the composition and activity of commensal organisms in healthy individuals could reveal important links between alterations in the microflora and human disease.
    [Show full text]
  • Regionalisation of Human ES Cell Derived Neural Precursors
    Regionalisation of human ES cell derived neural precursors DISSERTATION zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Johanna Viola Driehaus aus Lüneburg Bonn, 2008 Anfertigung mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Oliver Brüstle 2. Gutachter: Prof. Dr. Dieter Fürst Tag der Promotion: 27. Februar 2009 Diese Dissertation wurde durch ein Graduiertenstipendium der Konrad-Adenauer- Stiftung e.V gefördert. Sie ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. Erscheinungsjahr: 2009 Für meine Eltern Table of Contents Abbreviations..................................................................................................................... 8 1 Introduction................................................................................................................... 11 1.1 Stem cells ............................................................................................................................................................... 11 1.1.1 Embryonic stem cells..................................................................................................................................... 13 1.1.1.1 Derivation and characteristics of human embryonic stem cells.......................................................... 13 1.1.1.2 Developments
    [Show full text]
  • A Rice Homeobox Gene, OSHJ, Is Expressed Before Organ
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 8117-8122, July 1996 Plant Biology A rice homeobox gene, OSHJ, is expressed before organ differentiation in a specific region during early embryogenesis (embryo/in situ hybridization/organless mutant) YUTAKA SATO*, SOON-KWAN HONGt, AKEMI TAGIRIt, HIDEMI KITANO§, NAOKI YAMAMOTOt, YASUO NAGATOt, AND MAKOTO MATSUOKA*¶ *Nagoya University, BioScience Center, Chikusa, Nagoya 464-01, Japan; tFaculty of Agriculture, University of Tokyo, Tokyo 113, Japan; tNational Institute of Agrobiological Resources, Tsukuba, Ibaraki 305, Japan; and §Department of Biology, Aichi University of Education, Kariya 448, Japan Communicated by Takayoshi Higuchi, Nihon University, Tokyo, Japan, March 25, 1996 (received for review October 20, 1995) ABSTRACT Homeobox genes encode a large family of One of the powerful approaches for understanding the homeodomain proteins that play a key role in the pattern molecular mechanisms involved in plant embryogenesis is to formation of animal embryos. By analogy, homeobox genes in identify molecular rnarkers that can be used both to monitor plants are thought to mediate important processes in their cell specification events during early embryogenesis and to embryogenesis, but there is very little evidence to support this gain an entry into regulatory networks that are activated in notion. Here we described the temporal and spatial expression different embryonic regions after fertilization (10). With this patterns of a rice homeobox gene, OSHI, during rice embry- approach, it has been demonstrated that some genes are ogenesis. In situ hybridization analysis revealed that in the expressed in specific cell types, regions, and organs of embryo wild-type embryo, OSHI was first expressed at the globular (11, 12).
    [Show full text]
  • Decidual Cell Polyploidization Necessitates Mitochondrial Activity
    Decidual Cell Polyploidization Necessitates Mitochondrial Activity Xinghong Ma1,2, Fei Gao1,2, Allison Rusie1,2, Jennifer Hemingway1,2, Alicia B. Ostmann1,2, Julie M. Sroga1,2, Anil G. Jegga3, Sanjoy K. Das1,2* 1 Division of Reproductive Sciences, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America, 2 Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America, 3 Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America Abstract Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy.
    [Show full text]
  • Evolution of Vertebrate Forebrain Development: How Many Different
    J. Anat. (2001) 199, pp. 35–52, with 4 figures Printed in the United Kingdom 35 Evolution of vertebrate forebrain development: how many different mechanisms? ANN C. FOLEY AND CLAUDIO D. STERN Department of Genetics and Development, Columbia University, New York, NY 10032, USA (Accepted 6 April 2001) Over the past 50 years and more, many models have been proposed to explain how the nervous system is initially induced and how it becomes subdivided into gross regions such as forebrain, midbrain, hindbrain and spinal cord. Among these models is the 2-signal model of Nieuwkoop & Nigtevecht (1954), who suggested that an initial signal (‘activation’) from the organiser both neuralises and specifies the forebrain, while later signals (‘transformation’) from the same region progressively caudalise portions of this initial territory. An opposing idea emerged from the work of Otto Mangold (1933) and other members of the Spemann laboratory: 2 or more distinct organisers, emitting different signals, were proposed to be responsible for inducing the head, trunk and tail regions. Since then, evidence has accumulated that supports one or the other model, but it has been very difficult to distinguish between them. Recently, a considerable body of work from mouse embryos has been interpreted as favouring the latter model, and as suggesting that a ‘head organiser’, required for the induction of the forebrain, is spatially separate from the classic organiser (Hensen’s node). An extraembryonic tissue, the ‘anterior visceral endoderm’ (AVE), was proposed to be the source of forebrain-inducing signals. It is difficult to find tissues that are directly equivalent embryologically or functionally to the AVE in other vertebrates, which led some (e.g.
    [Show full text]
  • In Search of Embryonic Inductors an Interview with Sulo Toivonen on His 80Th Birthday
    Int. J. DeL Biul. 33: l-(l (1989) 9 In search of embryonic inductors An interview with Sulo Toivonen on his 80th birthday JUAN ARECHAGA Department of Cell Biology. University of the Basque Country. E-48940 Leioa. VlZcaya(Spain) Professor Sulo Ilmari Toivonen has been a leading figure in a network of international contacts for Finnish embryologists Developmental Biology for more than forty years and is one of after the Second World War. the best known European experimental embryologists of the If we look into the laboratory results and the specific content post-WWII period. He was born on January 12. 1909, in of the publications of Dr. Toivonen and his group over the years, Somero, Finland, at a time when this country was still an auto- certain steps in their development become apparent. He began nomous Grand Duchy under the rule of the Russian Czar. While his scientific career as a mammalian embryologist working on studying at the University of Helsinki he was deeply influenced kidney development (Toivonen, 1934, 1945), a topic success- by Gunnar Ekman (1883-1937), Professor of Experimental fully explored later by his senior disciple Lauri Saxem, who with Zoology, who had been a pupil of Hans Spemann at Freiburg his own group used kidney development as a biological model in the twenties. Under the guidance of Dr. Ekman, Toivonen to study inductive cell interactions (see Saxem, 1987). However, earned his undergraduate degree in 1934, but he had to finish Toivonen's attention was soon attracted by one of the essential his Ph.D. thesis alone because of the early death of Ekman.
    [Show full text]
  • Early Differentiation and Migration of Cranial Neural Crest in the Opossum, Monodelphis Domestica
    EVOLUTION & DEVELOPMENT 5:2, 121–135 (2003) Early differentiation and migration of cranial neural crest in the opossum, Monodelphis domestica Janet L. Vaglia1 and Kathleen K. Smith* Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA *Author for correspondence (e-mail [email protected]) 1Present address: Department of Biology, Depauw University, Greencastle, IN 46135, USA. SUMMARY Marsupial mammals are born at a highly altri- als. For example, as in other vertebrates, cranial neural crest cial state. Nonetheless, the neonate must be capable of con- differentiates at the neural ectoderm/epidermal boundary siderable functional independence. Comparative studies and migrates as three major streams. However, when com- have shown that in marsupials the morphogenesis of many pared with other vertebrates, a number of timing differences structures critical to independent function are advanced rela- exist. The onset of cranial neural crest migration is early rel- tive to overall development. Many skeletal and muscular ele- ative to both neural tube development and somite formation ments in the facial region show particular heterochrony. in Monodelphis. First arch neural crest cell migration is par- Because neural crest cells are crucial to forming and pattern- ticularly advanced and begins before any somites appear or ing much of the face, this study investigates whether the tim- regional differentiation exists in the neural tube. Our study ing of cranial neural crest differentiation is also advanced. provides the first published description of cranial neural crest Histology and scanning electron microscopy of Monodelphis differentiation and migration in marsupials and offers insight domestica embryos show that many aspects of cranial neural into how shifts in early developmental processes can lead to crest differentiation and migration are conserved in marsupi- morphological change.
    [Show full text]
  • Embryonic Development of the Degu, Octodon Degus Mariana A
    Embryonic development of the degu, Octodon degus Mariana A. Rojas, M. A. Montenegro and B. Morales Department ofExperimental Morphology, University of Chile Medical School, Casilla 2988, Correo Central, Santiago, Chile Summary. Although the degu has a long gestation period (87 \m=+-\3 days) the pattern of development from mating to birth is similar to that of other rodents. However, each of the basic processes occurs more slowly than in myomorph rodents and the degu could therefore be useful for studies on embryonic development. Introduction The degù (Octodon degus; Family Octodontidae; Suborder Caviomorpha; Order Rodentia), sometimes also called the trumpet-tail mouse or mouse of the pircas (see Osgood, 1943), is one of the most common wild animals of the central region of Chile (28-58°S and 0-1800 m above sea level: Tamayo & Frassinetti, 1980), where the predominant vegetation is a matorral, an evergreen sclerophyllous scrub. The principal types of plants consist of a few basic life forms: evergreen sclerophyllous shrubs and trees such as Acacia caven, Muhlembeckia hastulata; drought-deciduous shrubs such as Trevoa trinervos and succulents (Montenegro, Hoffmann, Aljaro & Hoffmann, 1979). In the wild, the animals are diurnal (Yañez & Jaksic, 1978) and are probably seasonal breeders (Contreras & Bustos, 1977; Rojas, Rivera, Montenegro & Barros, 1977). There is a period of sexual inactivity from January until June (summer and autumn) and mating occurs between the end of June and early July (beginning of winter), coinciding with the shorter daylengths. The first parturitions mostly occur in September-October (spring) with second litters being born in December (summer), but a small number of females give birth in October and November (Rojas et al, 1977).
    [Show full text]
  • Regional Differentiation of Retinoic Acid-Induced Human Pluripotent Embryonic Carcinoma Stem Cell Neurons
    Regional Differentiation of Retinoic Acid-Induced Human Pluripotent Embryonic Carcinoma Stem Cell Neurons Dennis E. Coyle*, Jie Li, Mark Baccei Department of Anesthesiology, University of Cincinnati, Cincinnati, Ohio, United States of America Abstract The NTERA2 cl D1 (NT2) cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES) cells or very early neuroepitheial progenitors. NT2 cells can be induced to become postmitotic central nervous system neurons (NT2N) with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a monolayer differentiation paradigm using quantitative PCR (qPCR). Purified NT2N mainly expressed both GABAergic and glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within the CNS.
    [Show full text]