Plant Communities 1 Ecotone and Edge Effect • an Ecotone Is a Zone of Junction Or a Transition Area Between Two Biomes (Diverse Ecosystems)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Environmental Science (Ce-101) Unit- I
Lecture Notes of Environmental Science ENVIRONMENTAL SCIENCE (CE-101) UNIT- I Introduction to Environmental Science: The science of Environment studies is a multi-disciplinary science because it comprises various branches of studies like chemistry, physics, medical science, life science, agriculture, public health, sanitary engineering etc. It is the science of physical phenomena in the environment. It studies of the sources, reactions, transport, effect and fate of physical a biological species in the air, water and soil and the effect of from human activity upon these. Environment – The word environment comes from the greek word “environner” meaning surroundings around us. Scope of Environmental studies: The environment consists of four segments as under: 1. Atmosphere: The atmosphere implies the protective blanket of gases, surrounding the earth: It sustains life on the earth. It saves it from the hostile environment of outer space. It absorbs most of the cosmic rays from outer space and a major portion of the electromagnetic radiation from the sun. It transmits only here ultraviolet, visible, near infrared radiation (300 to 2500 nm) and radio waves. (0.14 to 40 m) while filtering out tissue-damaging ultraviolet waves below about 300 nm. The atmosphere is composed of nitrogen and oxygen. Besides, argon, carbon dioxide, and trace gases. 2. Hydrosphere: The Hydrosphere comprises all types of water resources oceans, seas, lakes, rivers, streams, reservoir, polar icecaps, glaciers, and groundwater. Nature 97% of the earth’s water supply is in the oceans, Prepared by: Er. Arshad Abbas Deptt. of Civil Engg. KMCUAF University Lucknow About 2% of the water resources are locked in the polar icecaps and glaciers. -
Variety of Organisms in an Ecosystem Or Biome Climax Community
Lessons for 5th Six Weeks (Weeks 4-6) 1) Copy the following vocabulary words onto a blank sheet of paper. Biodiversity – variety of organisms in an ecosystem or biome Climax community – dominant community of plants and animals that come to live in an area Ecological succession – the changing sequence of communities that live in an ecosystem during a given time period Limiting factor – a condition or resource that keeps a population at a certain size Microhabitat – a small or specialized habitat within a larger habitat Niche – the unique role or job of an organism in an ecosystem Pioneer species – first organisms to live in an area Primary succession – a process that develops a biotic community in a previously uninhabited and barren habitat with little or no soil Secondary succession – a process started by an event that reduces an already established ecosystem to a smaller population of species Sustainability – ability to maintain ecological processes over long periods of time; ability of an ecosystem to maintain its structure and function over time 2) Copy the following notes onto a blank sheet of paper. TEK 7.10A - Observe and describe how different environments, including microhabitats in schoolyards and biomes, support different varieties of organisms. Observe, Describe HOW DIFFERENT ENVIRONMENTS SUPPORT DIFFERENT VARIETIES OF ORGANISMS Including, but not limited to: • Different environments o Microhabitats in schoolyards o Biomes • Support different varieties of organisms through o Providing for basic needs . Possible examples may include: 7th Grade Science - Watson . Climate . Vegetation . Location . Water TEK 7.10B - Describe how biodiversity contributes to the sustainability of an ecosystem. -
The Bodwad Sarvajanik Co-Op.Education Society Ltd., Bodwad Arts, Commerce and Science College, Bodawd Question Bank Class :-S.Y
The Bodwad Sarvajanik Co-Op.Education Society Ltd., Bodwad Arts, Commerce and Science College, Bodawd Question Bank Class :-S.Y.B.Sc SEM:- IV Subject: - BOTANY- 402 Plant Ecology 1. The science which deals with relationship between organisms and their environment is called a) Morphology b) Palynology c) Taxonomy d) Ecology 2. The meaning of Greek word Oikas a) Nature b) Environment c) House d) Temple 3. The term ecology coined by a) Odum b) Tansley c) Haeckel d) None 4. Autecology deals with the study of a) Ecology of individual species b) Ecology of many species c) Ecology of community d) All of these 5. Synecology deals with the study of a) Ecology of individual species b) Ecology of many species c) Ecology of community d) All of these 6. The branch of ecology which deals with the study of the organisms and geological environments of past is called a) Cytoecology b) Palecology c) Synecology d) Autoecology 7. Ecology deals with the study of a) Living beings b) Living and non living components c) Reciprocal relationship between living and non living components d) Biotic and Abiotic components 8. Phylloclade is modified a) Root b) Leaf c) Stem d) Bud 9. Cuscuta is a) Parasite b) Epiphyte c) Symbiont d) Lichen 10. Mycorrhiza is example of a) Symbiotic relationship b) Parasitic relationship c) Saprophytic relationship d) Negative interaction 11. Edaphic ecological factors are concerned with a) Rainfall b) Light c) Competition d) Soil 12. The soil is said to be physiologically dry when a) Temperature band light available to plants is insufficient b) There is abundance of water in soil c) Soil water is with high concentration of salts d) Both b and c 13. -
GEOGRAPHY Teacher’S Resource A/AS Level for AQA GEOGRAPHY Teacher’S Resource
Brighter Thinking GEOGRAPHY Teacher’s Resource A/AS Level for AQA GEOGRAPHY Teacher’s Resource A/AS Level for AQA University Printing House, Cambridge CB2 8BS, United Kingdom Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781316603314 (Cambridge Elevate edition) www.cambridge.org/9781316603321 (Free Online) © Cambridge University Press 2016 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2016 A catalogue record for this publication is available from the British Library ISBN 978-1-316-60331-4 Cambridge Elevate edition ISBN 978-1-316-60332-1 Free Online Additional resources for this publication at www.cambridge.org/education Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. NOTICE TO TEACHERS IN THE UK It is illegal to reproduce any part of this work in material form (including photocopying and electronic storage) except under the following circumstances: (i) where you are abiding -
Birds of the Nova Scotia— New Brunswick Border Region by George F
Birds of the Nova Scotia— New Brunswick border region by George F. Boyer Occasional Paper Number 8 Second edition Canadian Wildlife Service Environment Canada Environnement Canada Wildlife Service Service de la Faune Birds of the Nova Scotia - New Brunswick border region by George F. Boyer With addendum by A. J. Erskine and A. D. Smith Canadian Wildlife Service Occasional Paper Number 8 Second edition Issued under the authority of the Honourable Jack Davis, PC, MP Minister of the Environment John S. Tener, Director Canadian Wildlife Service 5 Information Canada, Ottawa, 1972 Catalogue No. CW69-1/8 First edition 1966 Design: Gottschalk-)-Ash Ltd. 4 George Boyer banding a barn swallow in June 1952. The author George Boyer was born in Woodstock, New Brunswick, on August 24, 1916. He graduated in Forestry from the University of New Brunswick in 1938 and served with the Canadian Army from 1939 to 1945. He joined the Canadian Wildlife Service in 1947, and worked out of the Sackville office until 1956. During that time he obtained an M.S. in zoology from the University of Illinois. He car ried on private research from April 1956 until July 1957, when he rejoined CWS. He worked out of Maple, Ontario, until his death, while on a field trip near Aultsville. While at Sackville, Mr. Boyer worked chiefly on waterfowl of the Nova Scotia-New Brunswick border region, with special emphasis on Pintails and Black Ducks. He also studied merganser- salmon interrelationships on the Miramichi River system, Woodcock, and the effects on bird popu lations of spruce budworm control spraying in the Upsalquitch area. -
Effects of Age on Hummock Succession in Bogs
Effects of age on hummock succession in bogs By Joel Vallier Abstract Ecological succession is the change in communities over time. We chose to study the successional stages of hummocks in a bog using age. We hypothesized that hummock plant richness should increase then decrease with age because of successional flora species mixing. We also hypothesized that hummock density, and hummock size will increase with age. Our study site was a bog at Mud Lake located in Cheboygan County, Michigan. We set up two 100 meter transects, divided them into zones based on age then recorded hummock surface area and hummock density. Plant richness was also recorded. There was a significant difference in plant richness with hummock age but only when surface area was used a covariant. Surface area was not significantly different among different aged zones. Hummock density did not have any correlation with age. Places were successional flora species mixed provided more plant richness and also showed trends of higher surface area. The tree line altered our results in the youngest zones because it had late successional species mixed with early successional species. This gave one of our youngest zones the highest plant richness. This shows that trends exist between hummock size, and plant richness but the surrounding morphology has a large impact. Introduction Succession within an ecological community is the change in species composition over time. This can change the biodiversity of the environment by altering conditions making it more adaptable by other species (Katz, 1926). This can be seen in the classic hydrosere succession model, where infilling of a shallow lake by sediments produces a sequential trend of vegetation communities staring with marsh shrub and moss species and ending with climax forests composed mostly of woody species (Klinger, 1996). -
ZOOLOGY Principles of Ecology Community
Paper : 12 Principles of Ecology Module : 20 Community: Community characteristics, types of biodiversity, diversity index, abundance, species richness, vertical and horizontal stratification: Part IV Development Team Principal Investigator: Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator: Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator: Prof. D.K. Singh Department of Zoology, University of Delhi Content Writer: Dr. Haren Ram Chiary and Dr. Kapinder Kirori Mal College, University of Delhi Content Reviewer: Prof. K.S. Rao Department of Botany, University of Delhi 1 Principles of Ecology ZOOLOGY Community: Community characteristics, types of biodiversity, diversity index, abundance, species richness, vertical and horizontal stratification: Part IV Description of Module Subject Name ZOOLOGY Paper Name Zool 12, Principles of Ecology Module Name/Title Community Module Id M20, Community characteristics, types of biodiversity, diversity index, abundance, species richness, vertical and horizontal stratification : Part-IV Keywords Succession, Primary succession, secondary succession, Sera, Climax community, Hydrosere, Lithosere, theories of climax community Contents 1. Learning Objective 2. Introduction 3. History of study of succession 4. Ecological succession and types: Primary and secondary succession 5. Stages of Primary and secondary succession 6. Process of succession in Hydrosere 7. Process of succession in Lithosere 8. Theories of climax community 9. Summary 2 Principles -
Chapter 5: Vegetation of Sphagnum-Dominated Peatlands
CHAPTER 5: VEGETATION OF SPHAGNUM-DOMINATED PEATLANDS As discussed in the previous chapters, peatland ecosystems have unique chemical, physical, and biological properties that have given rise to equally unique plant communities. As indicated in Chapter 1, extensive literature exists on the classification, description, and ecology of peatland ecosystems in Europe, the northeastern United States, Canada, and the Rocky Mountains. In addition to the references cited in Chapter 1, there is some other relatively recent literature on peatlands (Verhoeven 1992; Heinselman 1963, 1970; Chadde et al., 1998). Except for efforts on the classification and ecology of peatlands in British Columbia by the National Wetlands Working Group (1988), the Burns Bog Ecosystem Review (Hebda et al. 2000), and the preliminary classification of native, low elevation, freshwater vegetation in western Washington (Kunze 1994), scant information exists on peatlands within the more temperate lowland or maritime climates of the Pacific Northwest (Oregon, Washington, and British Columbia). 5.1 Introduction There are a number of classification schemes and many different peatland types, but most use vegetation in addition to hydrology, chemistry and topological characteristics to differentiate among peatlands. The subject of this report are acidic peatlands that support acidophilic (acid-loving) and xerophytic vegetation, such as Sphagnum mosses and ericaceous shrubs. Ecosystems in Washington state appear to represent a mosaic of vegetation communities at various stages of succession and are herein referred to collectively as Sphagnum-dominated peatlands. Although there has been some recognition of the unique ecological and societal values of peatlands in Washington, a statewide classification scheme has not been formally adopted or widely recognized in the scientific community. -
Unit 6 - Evolution Living Environment Answer Key to Practice Exam- Parts a and B-1
Unit 6 - Evolution Living Environment Answer Key to Practice Exam- Parts A and B-1 Base your answers to questions 1 through 3 on the diagram below and on your knowledge of biology. The diagram represents a food web in an ecosystem. 1. If the population of hawks in this area increases, their prey populations might decrease. Later, with fewer prey, the hawk population might decrease. The prey populations might then increase. This is an example of A) an ecosystem that is completely out of balance B) how ecosystems maintain stability over time C) interaction between biotic and abiotic factors within an ecosystem D) ecological succession in an ecosystem 2. Missing from the diagram of this ecosystem are the A) biotic factors and decomposers B) abiotic factors and decomposers C) autotrophs, only D) heterotrophs, only 3. Which row in the chart below best identifies the relationships between the mice and the wheat? A) 1 B) 2 C) 3 D) 4 4. All of Earth's water, land, and atmosphere within 5. The study of the interactions between organisms and which life exists is known as their interrelationships with the physical environment is known as A) a population B) a community C) a biome D) the biosphere A) ecology B) cytology C) embryology D) physiology Page 1 Unit 6 - Evolution 6. The science of ecology is best defined as the study of 8. The graph below represents some changes in the number of individuals in a particular population in a A) the classification of plants and animals stable ecosystem over a period of time. -
ENVIRONMENTAL SYSTEMS and SOCIETIES SL IB Academy Environmental Systems and Societies Study Guide
STUDY GUIDE ENVIRONMENTAL SYSTEMS AND SOCIETIES SL www.ib.academy IB Academy Environmental systems and societies Study Guide Available on learn.ib.academy Author: Laurence Gibbons Design Typesetting This work may be shared digitally and in printed form, but it may not be changed and then redistributed in any form. Copyright © 2020, IB Academy Version: ESS.2.1.200320 This work is published under the Creative Commons BY-NC-ND 4.0 International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0 This work may not used for commercial purposes other than by IB Academy, or parties directly licenced by IB Academy. If you acquired this guide by paying for it, or if you have received this guide as part of a paid service or product, directly or indirectly, we kindly ask that you contact us immediately. Laan van Puntenburg 2a ib.academy 3511ER, Utrecht [email protected] The Netherlands +31 (0) 30 4300 430 0 Welcome to the IB Academy guide book for IB Environmental Systems and Society Standard Level. This guide contains all the theory you should know for your final exam. To achieve top marks this theory should be complimented with case studies. Although not covered in this booklet, we provide some in our online podcast series. The guide starts with an explanation of systems and models which are the foundations for the whole course. We will then look at systems in the natural world before turning our attention to humans and their impact. Throughout the guide there are helpful hints from the former IB students who now teach with IB Academy. -
Chapter 5 Hmdscience.Com EN Online Vir Onmental Science Work Ecosystems How
DO NOT EDIT--Changes must be made through “File info” printcode=a Chapter 5 Section 1 Energy Flow in Ecosystems How Section 2 The Cycling of Matter Section 3 How Ecosystems Change Why It Matters Ecosystems This frog gets the energy it needs to survive by eating other organisms, such as damselflies. Frogs and damselflies are both consumers in an aquatic food chain. Work How does energy continue to be transferred in this food chain? CASESTUDY Learn how pollutants, like the pesticide DDT, are transferred through a food chain in the case study DDT in an Aquatic Food Chain on page 120. Online enVirOnmental Science HMDScience.com Go online to access additional resources, including labs, worksheets, multimedia, and resources in Spanish. Inc. Cosmos Blank/Photo Researchers, ©A. 116 DO NOT EDIT--Changes must be made through “File info” printcode=a Section 1 Energy Flow in Objectives Describe how energy is transferred from the sun Ecosystems to producers and then to consumers. organisms need energy to survive, grow, and reproduce. Different organisms Describe one way in which get energy from different sources, but the ultimate source of energy for almost all consumers depend on producers. organisms on earth is the sun. Identify two types of consumers. Explain how energy transfer in a Life Depends on the Sun food web is more complex than Energy from the sun enters an ecosystem when organisms use sunlight energy transfer in a food chain. to make sugar in a process called photosynthesis. During photosynthesis, plants, algae, and some bacteria capture light energy from the sun and Explain why an energy pyramid use it to convert carbon dioxide and water into sugar and oxygen, as is a representation of trophic shown in Figure 1.1. -
Chapter 15 Communities and Ecosystems Rosech15 0104043 437-474 2P 11/18/04 3:07 PM Page 439
RoseCh15_0104043_437-474_2p 11/18/04 2:32 PM Page 437 15 The feeding relationships between species can often be complicated. Communities and Ecosystems hen scientists first began studying bio- dioxide levels, which are covered in Chapter 16 logical communities, they were so fasci- (The Biosphere and the Physical Environment). Wnated with the interactions and The coordination and integration of biological dependencies between species that they saw the bi- communities has vast implications for the Earth. ological community as a superorganism. Whole For this reason, there are few biological topics as species were viewed as organs that performed spe- important for the future of life on Earth as the func- cific functions for the complete ecological superor- tioning of ecosystems. In this chapter, we survey ganism. The integration and communication how ecosystems function, from the flow of energy in between these “organs” was thought to be deliber- Module 15.1 (Energy Flow) and the recycling of nu- ate and well tuned. One way to think of this idea is trients in Module 15.15 (Ecosystems) to the porten- to imagine a stitched-together Frankenstein, each tous problem of the fragility of ecosystems. In sewn-on body part a distinct species. Modules 15.8 (Community Organization) and 15.4 Today biologists find the analogy between bio- (Equilibrium and Nonequilibrium Communities), logical communities and organisms superficial. To we consider the factors that determine the number be sure, there are populations within communities of species in a community. Surprisingly, in some that are highly dependent on each other. And it is communities predation and environmental distur- also true that biological communities and their bance may promote increased species diversity.