A Partial Story of Glacial Lake Missoula and the Missoula Floods

Total Page:16

File Type:pdf, Size:1020Kb

A Partial Story of Glacial Lake Missoula and the Missoula Floods University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2002 Ice water land and time: A partial story of Glacial Lake Missoula and the Missoula floods Daniel Peter Berger The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Berger, Daniel Peter, "Ice water land and time: A partial story of Glacial Lake Missoula and the Missoula floods" (2002). Graduate Student Theses, Dissertations, & Professional Papers. 7515. https://scholarworks.umt.edu/etd/7515 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. i m Maureen and Mike MANSFIELD LIBRARY Tlie University oIVIONTANA. f Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. ** Please check "Yes" or "No" and provide signature Yes, I grant permission No, I do not grant permission______ Author’s Signature D ate______ 3/^ — Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ICE, WATER, LAND, AND TIME; A PARTIAL STORY OF GLACIAL LAKE MISSOULA AND THE MISSOULA FLOODS By Daniel Peter Berger B.A. Syracuse University, New York, 1996 presented in partial fulfillment of the requirements for the degree of Master of Science The University of Montana May, 2002 roved by lirperson Dean, Graduate School Gp - 3 - date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP38316 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiwartation Publishing UMI EP38316 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Pro.Q^st ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Berger, Daniel P. M.S. May 2002 Environmental Studies Ice, Water, Land, and Time: A Partial Story of Glacial Lake Missoula and the Missoula Floods. Director: Donald Snow^^^^^^^^g During the end of the last ice age, an ice dam in northern Idaho blocked the Clark Fork River creating Glacial Lake Missoula, which spanned from the Montana/Idaho border nearly 200 miles east to Drummond, Montana. When the dam burst, 500 cubic miles of water rushing at speeds of up to 65 miles an hour ripped across eastern Washington in three braided channels, rejoined at Walulla Gap on the Columbia River, then tore through the Columbia River Gorge to the Pacific Ocean. This lake. North America's largest freshwater inland sea, was said to have flooded and filled between 40 and 100 times, each break releasing up to ten times the current total flow of all of Earth's rivers. These cataclysmic floods scoured the soft, fleshy earth of eastern Washington right down to the bare basalt, creating the channeled scablands and dry coulees, including the 700-foot deep Grand Coulee. The phenomenon was unlike anything anyone has ever seen. The National Park Service has joined with the non-profit Ice Age Floods Institute and a host of local communities to display and interpret the lake and flood features, visible from Missoula, Montana to Portland, Oregon, in a proposedNational Ice Age Geologic Trail. In a study released in the fall of 2001, the Park Service proposed the four- state trail though Montana, Idaho, Washington, and Oregon, which would include spur trails, roadside kiosks, and visitor centers, to celebrate the events and to weave the story of the glacial lakes and their floods back into the lives of those living or visiting the Northwest. The trail is unique for the Park Service because it would acquire no new land but would instead work with local, state, and other national agencies and private landowners to manage interpretation and preservation of the lake and flood features. Today you can see the dramatic effects of the lake and the flood on the Clark Fork, Columbia, Snake and Yakima Rivers, on the channeled scablands in Oregon and Washington and in other places such as Mount Sentinel in Missoula and the Camas Prairie near Dixon, Montana. 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Ice, Water, Land and Time: A Partial Story of Glacial Lake Missoula and the Missoula Floods Table of Contents; Abstract.........................................................................................................ii Acknowledgements.................................................................................. iv Prologue........................................................................................................ V Map 1........................................................................................................... vii Introduction................................................................................................. 1 The F loods...................................................................................................7 The Lake......................................................................................................46 A s Ice........................................................................... 62 Soil................................................................................................................ 76 Designation.................................................................................................86 Field Trip....................................................................................................100 A Plea......................................................................................................... 117 Bibliography..............................................................................................118 Map 2.........................................................................................................end ''All maps reprinted without permission. Ill Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgements I'd like to thank a number of people for helping me make this thesis possible. First, I'd like to thank my committee, Donald Snow, my chair, Sheri Venema and Marc Hendrix. Without their support and guidance, this would not have come together. Next I would like to thank the Environmental Studies Program at the University of Montana for giving me the creative leeway and academic support to pursue such a project. I'd also like to thank the Ron and Nancy Erickson Award, the Matthew Hansen Endowment, and the B.A. Dawson Endowment for their financial assistance. Special thanks to my friends who have supported me during my three years in graduate school, especially those fellow writers and photographers who have taken this long journey along with me. I couldn't have med it without them. And of course, extra thanks to my mother, to whom I owe the whole of my magnificent and wonderful life. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Prologue It is supposed that during the end of the last ice age, an ice dam in northern Idaho blocked the Clark Fork River in Montana creating glacial Lake Missoula, which spanned from the Montana/Idaho border nearly 200 miles east to Drummond, Montana. When the dam burst, 500 cubic miles of water rushing at speeds of up to 65 miles an hour ripped across eastern Washington in three braided channels, rejoined at Walulla Gap on the Columbia River, then tore through the Columbia River Gorge to the Pacific Ocean. This lake. North America's largest freshwater inland sea, was said to have flooded and filled between 40 and 100 times, each break releasing up to ten times the current total flow of all of Earth's rivers. These cataclysmic floods scoured the soft, fleshy earth of eastern Washington right down to the bare basalt, creating the channeled scablands and dry coulees, including the 700-foot deep Grand Coulee. The phenomenon was unlike anything anyone has seen since. The National Park Service has joined with the non-profit Ice Age Floods Institute and a host of local communities to display and interpret the lake and flood features, visible from Missoula, Montana to Portland, Oregon, in a proposedNational Ice Age Geologic Trail. In a study released in the fall of 2001, the Park Service proposed the four-state trail though Montana, Idaho, Washington, and Oregon, dude spur trails, roadside kiosks, and visitor
Recommended publications
  • Vegetation and Fire at the Last Glacial Maximum in Tropical South America
    Past Climate Variability in South America and Surrounding Regions Developments in Paleoenvironmental Research VOLUME 14 Aims and Scope: Paleoenvironmental research continues to enjoy tremendous interest and progress in the scientific community. The overall aims and scope of the Developments in Paleoenvironmental Research book series is to capture this excitement and doc- ument these developments. Volumes related to any aspect of paleoenvironmental research, encompassing any time period, are within the scope of the series. For example, relevant topics include studies focused on terrestrial, peatland, lacustrine, riverine, estuarine, and marine systems, ice cores, cave deposits, palynology, iso- topes, geochemistry, sedimentology, paleontology, etc. Methodological and taxo- nomic volumes relevant to paleoenvironmental research are also encouraged. The series will include edited volumes on a particular subject, geographic region, or time period, conference and workshop proceedings, as well as monographs. Prospective authors and/or editors should consult the series editor for more details. The series editor also welcomes any comments or suggestions for future volumes. EDITOR AND BOARD OF ADVISORS Series Editor: John P. Smol, Queen’s University, Canada Advisory Board: Keith Alverson, Intergovernmental Oceanographic Commission (IOC), UNESCO, France H. John B. Birks, University of Bergen and Bjerknes Centre for Climate Research, Norway Raymond S. Bradley, University of Massachusetts, USA Glen M. MacDonald, University of California, USA For futher
    [Show full text]
  • Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework Due Thursday Nov
    Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we’ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and erosional features of glaciers! 3. 3. Earth-Sun orbital parameters, relevance to interglacial periods ! A glacier is a river of ice. Glaciers can range in size from: 100s of m (mountain glaciers) to 100s of km (continental ice sheets) Most glaciers are 1000s to 100,000s of years old! The Snowline is the lowest elevation of a perennial (2 yrs) snow field. Glaciers can only form above the snowline, where snow does not completely melt in the summer. Requirements: Cold temperatures Polar latitudes or high elevations Sufficient snow Flat area for snow to accumulate Permafrost is permanently frozen soil beneath a seasonal active layer that supports plant life Glaciers are made of compressed, recrystallized snow. Snow buildup in the zone of accumulation flows downhill into the zone of wastage. Glacier-Covered Areas Glacier Coverage (km2) No glaciers in Australia! 160,000 glaciers total 47 countries have glaciers 94% of Earth’s ice is in Greenland and Antarctica Mountain Glaciers are Retreating Worldwide The Antarctic Ice Sheet The Greenland Ice Sheet Glaciers flow downhill through ductile (plastic) deformation & by basal sliding. Brittle deformation near the surface makes cracks, or crevasses. Antarctic ice sheet: ductile flow extends into the ocean to form an ice shelf. Wilkins Ice shelf Breakup http://www.youtube.com/watch?v=XUltAHerfpk The Greenland Ice Sheet has fewer and smaller ice shelves. Erosional Features Unique erosional landforms remain after glaciers melt.
    [Show full text]
  • Surficial Geologic Map of the Lenore Quadrangle, Nez Perce County, Idaho
    IDAHO GEOLOGICAL SURVEY DIGITAL WEB MAP 14 MOSCOW-BOISE-POCATELLO OTHBERG, BRECKENRIDGE, AND WEISZ Disclaimer: This Digital Web Map is an informal report and may be revised and formally published at a later time. Its content and format S URFICIAL G EOLOGIC M AP OF THE L ENORE Q UADRANGLE, N EZ P ERCE C OUNTY, I DAHO may not conform to agency standards. Kurt L. Othberg, Roy M. Breckenridge, and Daniel W. Weisz 2003 Qac CORRELATION OF MAP UNITS Qls Qls Qcb Qcb Surficial Latah Columbia River QTlbr Deposits Formation Basalt Qls m Qac Qam Qoam Qas Qac HOLOCENE QTlbr Qad Qls Qcb Qcg Qm 13,000 years Qad Qag QUATERNARY PLEISTOCENE QTlbr QTlbr Qac Qls QTlbr Qac PLIOCENE TERTIARY Qac Tl Tcb MIOCENE Qcb QTlbr INTRODUCTION Qcg Colluvium from granitic and metamorphic rocks (Holocene and Pleistocene)— Primarily poorly sorted muddy gravel composed of angular and subangular pebbles, cobbles, and boulders in a matrix of sand, silt, and clay. Emplaced The surficial geologic map of the Lenore quadrangle identifies earth materials by gravity movements in Bedrock Creek canyon where there are outcrops on the surface and in the shallow subsurface. It is intended for those interested of pre-Tertiary granitic rocks and quartzite. Includes local debris-flow deposits in the area's natural resources, urban and rural growth, and private and and isolated rock outcrops. Includes colluvium and debris-flow deposits Qac public land development. The information relates to assessing diverse QTlbr from the upslope basalt section, and areas of thin loess (typically less than conditions and activities, such as slope stability, construction design, sewage 5 feet).
    [Show full text]
  • Washington Geology
    JULY 1978 VOLUME 6 - NUMBER 3 A PLBLICATION OF THE DEPARTMENT OF NATURAL RESOURCES WASHINGTON GEOWGIC NEWSLETTER BERT L.COLE COMMISSIONER OF PUBLIC LANDS RALPH A BESWICK, Supervisor VAUGHN E. LIVINGSTON,JR.,State Geologist DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGY AND EARTH RESOURCES DEPARTMENT Of NATURAL RESOURCES, DIVISION OF GEOLOGY AND EARTH RESOURCES, OLYMPIA, WASHINGTON, 98504 LOCATION MAP : DIVISION OF GEOLOGY AND EARTH RESOURCES DEPT. SOCIAL AND HEALTH SERVICES t ~ i~L f ...J ~ i ,...... N g a: ~ ~OGY ANO EARTH <t tt RESOURCES D u -, t STATE CAPITOL ... TACOMA S~TILE- IDEPT. HIGHWAYS CITY CENTER FREEWAY EXIT PORTLA~ STATE CAPITOL EXIT Vaughn E. (Ted) Livingston, Jr., Supervisor Geologic Staff J. Eric Schuster, Assistant Supervisor Minerals and Energy Geologists Land Use Geologists Carl McFarland James G. Rigby Allen J. Fiksdal Keith L. Stoffel Clint Milne Glennda B. Tucker Kurt L. 0th berg Gerald W. Thorsen Wayne S. Moen Ellis R. Vonheeder Pamela Palmer Weldon W. Rau Charles W. Walker Regulations and Operations Surface Mined Land Reclamation and Oil and Gos Conservation Act Donald M. Ford, Assistant Supervisor Publications: Library: Laboratory: Secretaries: Loura Broy Connie Manson Arnold W. Bowman Patricia Ames Keith Ikerd Cherie Dunwoody Wonda Walker Kim Summers Pamela Whitlock Mailing address: Deportment of Natural Resources Division of Geology and Earth Resou rces Olympia, WA 98504 (206) 753-6183 ORIGIN OF THE GRAND COULEE AND DRY FALLS by Ted Livingston Washington State hos many interesting geo­ original terrain until in the Grand Coulee area it was logic features. Among the more outstanding dre the completely buried. During the course of these erup­ Grand Coulee and Dry Falls .
    [Show full text]
  • Flood Basalts and Glacier Floods—Roadside Geology
    u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1.
    [Show full text]
  • Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2019 Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone Rosemary C. Leone University of Montana, Missoula Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Glaciology Commons Let us know how access to this document benefits ou.y Recommended Citation Leone, Rosemary C., "Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone" (2019). Graduate Student Theses, Dissertations, & Professional Papers. 11474. https://scholarworks.umt.edu/etd/11474 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. ICE FLOW IMPACTS THE FIRN STRUCTURE OF GREENLAND’S PERCOLATION ZONE By ROSEMARY CLAIRE LEONE Bachelor of Science, Colorado School of Mines, Golden, CO, 2015 Thesis presented in partial fulfillMent of the requireMents for the degree of Master of Science in Geosciences The University of Montana Missoula, MT DeceMber 2019 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School Dr. Joel T. Harper, Chair DepartMent of Geosciences Dr. Toby W. Meierbachtol DepartMent of Geosciences Dr. Jesse V. Johnson DepartMent of Computer Science i Leone, RoseMary, M.S, Fall 2019 Geosciences Ice Flow Impacts the Firn Structure of Greenland’s Percolation Zone Chairperson: Dr. Joel T. Harper One diMensional siMulations of firn evolution neglect horizontal transport as the firn column Moves down slope during burial.
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • High Arctic Holocene Temperature Record from the Agassiz Ice Cap and Greenland Ice Sheet Evolution
    High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution Benoit S. Lecavaliera,1, David A. Fisherb, Glenn A. Milneb, Bo M. Vintherc, Lev Tarasova, Philippe Huybrechtsd, Denis Lacellee, Brittany Maine, James Zhengf, Jocelyne Bourgeoisg, and Arthur S. Dykeh,i aDepartment of Physics and Physical Oceanography, Memorial University, St. John’s, Canada, A1B 3X7; bDepartment of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada, K1N 6N5; cCentre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark, 2100; dEarth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium, 1050; eDepartment of Geography, University of Ottawa, Ottawa, Canada, K1N 6N5; fGeological Survey of Canada, Natural Resources Canada, Ottawa, Canada, K1A 0E8; gConsorminex Inc., Gatineau, Canada, J8R 3Y3; hDepartment of Earth Sciences, Dalhousie University, Halifax, Canada, B3H 4R2; and iDepartment of Anthropology, McGill University, Montreal, Canada, H3A 2T7 Edited by Jeffrey P. Severinghaus, Scripps Institution of Oceanography, La Jolla, CA, and approved April 18, 2017 (received for review October 2, 2016) We present a revised and extended high Arctic air temperature leading the authors to adopt a spatially homogeneous change in reconstruction from a single proxy that spans the past ∼12,000 y air temperature across the region spanned by these two ice caps. 18 (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Elles- By removing the temperature signal from the δ O record of mere Island, Canada) indicates an earlier and warmer Holocene other Greenland ice cores (Fig. 1A), the residual was used to thermal maximum with early Holocene temperatures that are estimate altitude changes of the ice surface through time.
    [Show full text]
  • Canyon Formation Constraints on the Discharge of Catastrophic Outburst
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Canyon formation constraints on the discharge of catastrophic 10.1002/2016JE005061 outburst floods of Earth and Mars Key Points: Mathieu G. A. Lapotre1, Michael P. Lamb1, and Rebecca M. E. Williams2 • A new model for canyon formation through waterfall retreat combines 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 2Planetary flood hydraulics and erosional mechanics Science Institute, Tucson, Arizona, USA • The model is used as a paleohydraulic tool to estimate the discharge of megafloods on Earth and Mars Abstract Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the • Compared with previous estimates, steep headwalls of these canyons suggest that some formed by upstream headwall propagation through predicted discharges are lower, fl durations higher, and water waterfall erosion processes. Because topography evolves in concert with water ow during canyon erosion, volumes are similar we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is fl fl Correspondence to: related to ood discharge. We develop a new theory for bedrock canyon formation by mega oods based M. G. A. Lapotre, on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed [email protected] for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; Citation: and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and Lapotre, M.
    [Show full text]
  • Washington's Channeled Scabland
    t\D l'llrl,. \·· ~. r~rn1 ,uR\fEY Ut,l\n . .. ,Y:ltate" tit1Washington ALBEIT D. ROSEWNI, Governor Department of Conservation EARL COE, Dlnctor DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By J HARLEN BRETZ 9TAT• PIUHTIHO PLANT ~ OLYMPIA, WASH., 1"511 State of Washington ALBERT D. ROSELLINI, Governor Department of Conservation EARL COE, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By .T HARLEN BRETZ l•or sate by Department or Conservation, Olympia, Washington. Price, 50 cents. FOREWORD Most travelers who have driven through eastern Washington have seen a geologic and scenic feature that is unique-nothing like it is to be found anywhere else in the world. This is the Channeled Scab­ land, a gigantic series of deeply cut channels in the erosion-resistant Columbia River basalt, the rock that covers most of the east-central and southeastern part of the state. Grand Coulee, with its spectac­ ular Dry Falls, is one of the most widely known features of this ex­ tensive set of dry channels. Many thousands of travelers must have wondered how this Chan­ neled Scabland came into being, and many geologists also have speculated as to its origin. Several geologists have published papers outlining their theories of the scabland's origin, but the geologist who has made the most thorough study of the problem and has ex­ amined the whole area and all the evidence having a bearing on the problem is Dr. J Harlen Bretz. Dr.
    [Show full text]
  • Quarrernary GEOLOGY of MINNESOTA and PARTS of ADJACENT STATES
    UNITED STATES DEPARTMENT OF THE INTERIOR Ray Lyman ,Wilbur, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director P~ofessional Paper 161 . QUArrERNARY GEOLOGY OF MINNESOTA AND PARTS OF ADJACENT STATES BY FRANK LEVERETT WITH CONTRIBUTIONS BY FREDERICK w. SARDE;30N Investigations made in cooperation with the MINNESOTA GEOLOGICAL SURVEY UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1932 ·For sale by the Superintendent of Documents, Washington, D. C. CONTENTS Page Page Abstract ________________________________________ _ 1 Wisconsin red drift-Continued. Introduction _____________________________________ _ 1 Weak moraines, etc.-Continued. Scope of field work ____________________________ _ 1 Beroun moraine _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 47 Earlier reports ________________________________ _ .2 Location__________ _ __ ____ _ _ __ ___ ______ 47 Glacial gathering grounds and ice lobes _________ _ 3 Topography___________________________ 47 Outline of the Pleistocene series of glacial deposits_ 3 Constitution of the drift in relation to rock The oldest or Nebraskan drift ______________ _ 5 outcrops____________________________ 48 Aftonian soil and Nebraskan gumbotiL ______ _ 5 Striae _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 48 Kansan drift _____________________________ _ 5 Ground moraine inside of Beroun moraine_ 48 Yarmouth beds and Kansan gumbotiL ______ _ 5 Mille Lacs morainic system_____________________ 48 Pre-Illinoian loess (Loveland loess) __________ _ 6 Location__________________________________
    [Show full text]
  • Top 26 Trails in Grant County 2020
    and 12 Watchable Wildlife Units For more information, please contact: Grant County Tourism Commission P.O. Box 37, Ephrata, WA 98823 509.765.7888 • 800.992.6234 In Grant County, Washington TourGrantCounty.com TOP TRAILS Grant County has some of the most scenic and pristine vistas, hiking trails and outdoor 26 recreational opportunities in Washington State. and 12 Watchable Wildlife Units Grant County is known for its varied landscapes on a high desert plateau with coulees, lakes, in Grant County Washington reservoirs, sand dunes, canals, rivers, creeks, and other waterways. These diverse ecosystems Grant County Tourism Commission For Additional copies please contact: support a remarkable variety of fish and PO Box 37 Jerry T. Gingrich wildlife species that contribute to the economic, Ephrata, Washington 98837 Grant County Tourism Commission recreational and cultural life of the County. www.tourgrantcounty.com Grant County Courthouse PO Box 37 Ephrata, WA 98837 No part of this book may be reproduced in (509) 754-2011, Ext. 2931 any form, or by any electronic, mechanical, or other means, without permission in For more information on writing from the Grant County Tourism Grant County accommodations Commission. www.tourgrantcounty.com © 2019, Grant County Tourism Commission Second printing, 10m Trails copy and photographs Book, map and cover design by: provided by: Denise Adam Graphic Design Cameron Smith, Lisa Laughlin, J. Kemble, Veradale, WA 99037 Shawn Cardwell, Mark Amara, (509) 891-0873 Emry Dinman, Harley Price, [email protected] Sebastian Moraga and Madison White Printed by: Rewriting and editing by: Mark Amara Pressworks 2717 N. Perry Street Watchable Wildlife copy and Spokane, Washington 99207 photographs provided by: (509) 462-7627 Washington Department of [email protected] Fish and Wildlife Photograph by Lisa Laughlin CONTENTS CONTENTS Grant County Trails and Hiking Grant County Watchable Wildlife Viewing Upper Grand Coulee Area 1.
    [Show full text]