Bibliography of PHYSI~AL LIMNOLOGY
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Henry Melson Stommel<Br> 27 September, 1920Œ17 January
Journal of Marine Research, 50, i-viii, 1992 Henry Melson Stommel 27 September, 1920-17 January, 1992 Henry Stommel's heart stopped beating shortly after midnight on Friday, January 17, 1992, four days after he had undergone surgery for liver cancer at Deaconness Hospital in Brookline, Mass. His death brought to an end the career of a man who, for 45 years, was the most significant scientific contributor to the development of oceanography and who brought a rare degree of harmony and collegiality to the field. When Hank arrived at the Woods Hole Oceanographic Institution in 1944 there was little reason to suppose that anything momentous had taken place. As an undergraduate at Yale he had been advised by a counselor that, since he evidently had no talent for science, he should take up law. In 1944 he was a second-year graduate student in Astronomy at Yale and was a conscientious objector to war. The job at Woods Hole was a way of serving his country without going to the battlefield. The Yale Astronomy Department from which he had come was strongly focused on celestial mechanics, and Hank had developed an interest in the marine environ- ment through his study of celestial navigation, one of the courses that he taught. He had read a lot about the ocean and decided to prepare a synthesis that he dedicated to the students in the navy program in which he had been teaching. It was a trait that was to stay with him thoughout his life; he would be heard. Over a three-week period he wrote a 208-page book, Science of the Seven Seas, which was published by Cornell Maritime Press in 1945. -
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001. Preface This bibliography attempts to list all substantial autobiographies, biographies, festschrifts and obituaries of prominent oceanographers, marine biologists, fisheries scientists, and other scientists who worked in the marine environment published in journals and books after 1922, the publication date of Herdman’s Founders of Oceanography. The bibliography does not include newspaper obituaries, government documents, or citations to brief entries in general biographical sources. Items are listed alphabetically by author, and then chronologically by date of publication under a legend that includes the full name of the individual, his/her date of birth in European style(day, month in roman numeral, year), followed by his/her place of birth, then his date of death and place of death. Entries are in author-editor style following the Chicago Manual of Style (Chicago and London: University of Chicago Press, 14th ed., 1993). Citations are annotated to list the language if it is not obvious from the text. Annotations will also indicate if the citation includes a list of the scientist’s papers, if there is a relationship between the author of the citation and the scientist, or if the citation is written for a particular audience. This bibliography of biographies of scientists of the sea is based on Jacqueline Carpine-Lancre’s bibliography of biographies first published annually beginning with issue 4 of the History of Oceanography Newsletter (September 1992). It was supplemented by a bibliography maintained by Eric L. Mills and citations in the biographical files of the Archives of the Scripps Institution of Oceanography, UCSD. -
The Cordilleran Ice Sheet 3 4 Derek B
1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide. -
TRINITY COLLEGE Cambridge Trinity College Cambridge College Trinity Annual Record Annual
2016 TRINITY COLLEGE cambridge trinity college cambridge annual record annual record 2016 Trinity College Cambridge Annual Record 2015–2016 Trinity College Cambridge CB2 1TQ Telephone: 01223 338400 e-mail: [email protected] website: www.trin.cam.ac.uk Contents 5 Editorial 11 Commemoration 12 Chapel Address 15 The Health of the College 18 The Master’s Response on Behalf of the College 25 Alumni Relations & Development 26 Alumni Relations and Associations 37 Dining Privileges 38 Annual Gatherings 39 Alumni Achievements CONTENTS 44 Donations to the College Library 47 College Activities 48 First & Third Trinity Boat Club 53 Field Clubs 71 Students’ Union and Societies 80 College Choir 83 Features 84 Hermes 86 Inside a Pirate’s Cookbook 93 “… Through a Glass Darkly…” 102 Robert Smith, John Harrison, and a College Clock 109 ‘We need to talk about Erskine’ 117 My time as advisor to the BBC’s War and Peace TRINITY ANNUAL RECORD 2016 | 3 123 Fellows, Staff, and Students 124 The Master and Fellows 139 Appointments and Distinctions 141 In Memoriam 155 A Ninetieth Birthday Speech 158 An Eightieth Birthday Speech 167 College Notes 181 The Register 182 In Memoriam 186 Addresses wanted CONTENTS TRINITY ANNUAL RECORD 2016 | 4 Editorial It is with some trepidation that I step into Boyd Hilton’s shoes and take on the editorship of this journal. He managed the transition to ‘glossy’ with flair and panache. As historian of the College and sometime holder of many of its working offices, he also brought a knowledge of its past and an understanding of its mysteries that I am unable to match. -
National Academy of Sciences July 1, 1979 Officers
NATIONAL ACADEMY OF SCIENCES JULY 1, 1979 OFFICERS Term expires President-PHILIP HANDLER June 30, 1981 Vice-President-SAUNDERS MAC LANE June 30, 1981 Home Secretary-BRYCE CRAWFORD,JR. June 30, 1983 Foreign Secretary-THOMAS F. MALONE June 30, 1982 Treasurer-E. R. PIORE June 30, 1980 Executive Officer Comptroller Robert M. White David Williams COUNCIL Abelson, Philip H. (1981) Markert,C. L. (1980) Berg, Paul (1982) Nierenberg,William A. (1982) Berliner, Robert W. (1981) Piore, E. R. (1980) Bing, R. H. (1980) Ranney, H. M. (1980) Crawford,Bryce, Jr. (1983) Simon, Herbert A. (1981) Friedman, Herbert (1982) Solow, R. M. (1980) Handler, Philip (1981) Thomas, Lewis (1982) Mac Lane, Saunders (1981) Townes, Charles H. (1981) Malone, Thomas F. (1982) Downloaded by guest on September 30, 2021 SECTIONS The Academyis divided into the followingSections, to which membersare assigned at their own choice: (11) Mathematics (31) Engineering (12) Astronomy (32) Applied Biology (13) Physics (33) Applied Physical and (14) Chemistry Mathematical Sciences (15) Geology (41) Medical Genetics Hema- (16) Geophysics tology, and Oncology (21) Biochemistry (42) Medical Physiology, En- (22) Cellularand Develop- docrinology,and Me- mental Biology tabolism (23) Physiological and Phar- (43) Medical Microbiology macologicalSciences and Immunology (24) Neurobiology (51) Anthropology (25) Botany (52) Psychology (26) Genetics (53) Social and Political Sci- (27) Population Biology, Evo- ences lution, and Ecology (54) Economic Sciences In the alphabetical list of members,the numbersin parentheses, followingyear of election, indicate the respective Class and Section of the member. CLASSES The members of Sections are grouped in the following Classes: I. Physical and Mathematical Sciences (Sections 11, 12, 13, 14, 15, 16). -
Members Oi Commissions, Hoards, and Committees'
members oi commissions, hoards, and committees' EXECUTIVE COMMITTEE : C. W. Newton R. M. White G. P. Cressman J. E. Wallace W. A. Baum J. Simpson K. C. Spengler D. F. Landrigan COMMITTEES OF THE EXECUTIVE COMMITTEE Awards Chairman: Prof. Morton G. Wurtele, Dept. of Meteorology, University of California at Los Angeles, 405 Hilgard Ave., Los Angeles, Calif. 90024 Dr. Norman E. Gaut, President, Environmental Research 8c Technology, Inc., 696 Virginia Rd., Concord, Mass. 01742 Prof. David D. Houghton, Dept. of Meteorology, University of Wisconsin, Madison, Wis. 53706 Dr. John B. Hovermale, National Meteorological Ctr., National Weather Service, NOAA, Washington, D.C. 20233 Dr. Douglas K. Lilly, NCAR, P.O. Box 3000, Boulder, Colo. 80303 1 The Executive Director is an ex officio member of all commissions, boards, and committees. 2 Addresses listed on page 892. Bulletin American Meteorological Society 893 Unauthenticated | Downloaded 10/09/21 06:24 AM UTC 894 Vol.. 60, No. 8, August 1979 Nominating Chairman: Dr. Karl R. Johannessen, Associate Director, National Weather Service, NOAA, Silver Spring, Md. 20910 Prof. Roscoe R. Braham, Jr., Dept. of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Ave., Chicago, 111. 60637 Robert D. Elliott, North American Weather Consultants, 600 Norman Firestone Rd., Santa Barbara Municipal Airport, Goleta, Calif. 93017 Rear Adm. William J. Kotsch (USN, Ret.), 1772 Shaftsbury Ave., Crofton, Md. 21114 Dr. Margaret A. LeMone, NCAR, P.O. Box 3000, Boulder, Colo. 80307 Admissions Chairman: Charles H. Pierce, 42 Brunswick Rd., Arlington, Mass. 02174 Donald A. Chisholm, Meteorology Div., Air Force Geophysics Lab., Hanscom AFB, Mass. 01731 Paul E. -
Geomorphic and Sedimentological History of the Central Lake Agassiz Basin
Electronic Capture, 2008 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. Recommended citation: J.T. Teller, L.H. Thorleifson, G. Matile and W.C. Brisbin, 1996. Sedimentology, Geomorphology and History of the Central Lake Agassiz Basin Field Trip Guidebook B2; Geological Association of CanadalMineralogical Association of Canada Annual Meeting, Winnipeg, Manitoba, May 27-29, 1996. © 1996: This book, orportions ofit, may not be reproduced in any form without written permission ofthe Geological Association ofCanada, Winnipeg Section. Additional copies can be purchased from the Geological Association of Canada, Winnipeg Section. Details are given on the back cover. SEDIMENTOLOGY, GEOMORPHOLOGY, AND HISTORY OF THE CENTRAL LAKE AGASSIZ BASIN TABLE OF CONTENTS The Winnipeg Area 1 General Introduction to Lake Agassiz 4 DAY 1: Winnipeg to Delta Marsh Field Station 6 STOP 1: Delta Marsh Field Station. ...................... .. 10 DAY2: Delta Marsh Field Station to Brandon to Bruxelles, Return En Route to Next Stop 14 STOP 2: Campbell Beach Ridge at Arden 14 En Route to Next Stop 18 STOP 3: Distal Sediments of Assiniboine Fan-Delta 18 En Route to Next Stop 19 STOP 4: Flood Gravels at Head of Assiniboine Fan-Delta 24 En Route to Next Stop 24 STOP 5: Stott Buffalo Jump and Assiniboine Spillway - LUNCH 28 En Route to Next Stop 28 STOP 6: Spruce Woods 29 En Route to Next Stop 31 STOP 7: Bruxelles Glaciotectonic Cut 34 STOP 8: Pembina Spillway View 34 DAY 3: Delta Marsh Field Station to Latimer Gully to Winnipeg En Route to Next Stop 36 STOP 9: Distal Fan Sediment , 36 STOP 10: Valley Fill Sediments (Latimer Gully) 36 STOP 11: Deep Basin Landforms of Lake Agassiz 42 References Cited 49 Appendix "Review of Lake Agassiz history" (L.H. -
The Missoula Flood
THE MISSOULA FLOOD Dry Falls in Grand Coulee, Washington, was the largest waterfall in the world during the Missoula Flood. Height of falls is 385 ft [117 m]. Flood waters were actually about 260 ft deep [80 m] above the top of the falls, so a more appropriate name might be Dry Cataract. KEENAN LEE DEPARTMENT OF GEOLOGY AND GEOLOGICAL ENGINEERING COLORADO SCHOOL OF MINES GOLDEN COLORADO 80401 2009 The Missoula Flood 2 CONTENTS Page OVERVIEW 2 THE GLACIAL DAM 3 LAKE MISSOULA 5 THE DAM FAILURE 6 THE MISSOULA FLOOD ABOVE THE ICE DAM 6 Catastrophic Flood Features in Eddy Narrows 6 Catastrophic Flood Features in Perma Narrows 7 Catastrophic Flood Features at Camas Prairie 9 THE MISSOULA FLOOD BELOW THE ICE DAM 13 Rathdrum Prairie and Spokane 13 Cheny – Palouse Scablands 14 Grand Coulee 15 Wallula Gap and Columbia River Gorge 15 Portland to the Pacific Ocean 16 MULTIPLE MISSOULA FLOODS 17 AGE OF MISSOULA FLOODS 18 SOME REFERENCES 19 OVERVIEW About 15 000 years ago in latest Pleistocene time, glaciers from the Cordilleran ice sheet in Canada advanced southward and dammed two rivers, the Columbia River and one of its major tributaries, the Clark Fork River [Fig. 1]. One lobe of the ice sheet dammed the Columbia River, creating Lake Columbia and diverting the Columbia River into the Grand Coulee. Another lobe of the ice sheet advanced southward down the Purcell Trench to the present Lake Pend Oreille in Idaho and dammed the Clark Fork River. This created an enormous Lake Missoula, with a volume of water greater than that of Lake Erie and Lake Ontario combined [530 mi3 or 2200 km3]. -
Article in Press
ARTICLE IN PRESS Quaternary Science Reviews 24 (2005) 1533–1541 Correspondence$ Fresh arguments against the Shaw megaflood hypothesis. that the Lake Agassiz flood was the ‘‘largest in the last A reply to comments by David Sharpe on ‘‘Paleohy- 100,000 years’’ refers to a different publication (Clarke draulics of the last outburst flood from glacial Lake et al., 2003). We agree that, in terms of peak discharge, Agassiz and the 8200 BP cold event’’ both the Missoula floods (e.g., Clarke et al., 1984; O’Connor and Baker, 1992) and the Altay event (Baker et al., 1993) were indeed larger (roughly 17 Sv for Missoula and 418 Sv for Altay) but the released water 1. The megaflood hypothesis volume was a small fraction of that released from glacial Lake Agassiz (Table 1). Furthermore, the focus of We disagree with the premise underlying most of Clarke et al. (2003) was on abrupt climate change David Sharpe’s comments, namely that the Shaw triggered by freshwater injection to the North Atlantic subglacial megaflood hypothesis enjoys sufficient main- Ocean at 8200 BP: Freshwater volume rather than peak streamacceptance that we were negligent in failing to flood discharge is the relevant measure of flood cite it. Although the literature on Shavian megafloods magnitude for activation of this climate switch. Sharpe’s has grown over the past decade, it is less clear that the comment that ‘‘improved knowledge of additional flood ideas have gained ground. As a recent datum, Benn and terrains is important in assessing the impact of specific Evans (2005) assert that ‘‘most Quaternary scientists outburst floods on rapid climate change’’ seems to miss give little or no credence to the [Shaw] megaflood the point that flood intensity, which controls the interpretation, and it conflicts with an overwhelming geomorphic imprint, is only a second-order influence body of modern research on past and present ice sheet on the climate impact. -
8-Ton Rock Centerpiece of New Museum Exhibit
8-ton rock centerpiece of new museum exhibit • PERRY BACKUS [email protected] May 12, 2020 Ravalli County Museum Board member Dennis Moore helps Donaldson Brothers employees Vern Weidow and Mark Jessop set an 8-ton glacial rock into place on the museum grounds. By mid-June, the rock will become the centerpiece of a new permanent exhibit about Glacial Lake Missoula and its impact on the Bitterroot Valley. Ravalli County Museum Executive Director Tamar Stanley and museum board member Dennis Moore stand next to the newly delivered 8-ton boulder that will serve as the museum's new permanent exhibit that explains a portion of the natural history of the Bitterroot Valley. To fully understand the significance of Ravalli County Museum’s newest exhibit, visitors will need to come armed with imagination and a willingness to look skyward. The 8-ton rock that was carefully lowered into place on the museum’s lawn Monday is there to take them on a journey thousands of years back in time. The first thing they might do is look toward the towering Bitterroot Range just west of Hamilton. It was once home to the huge boulder that geologists call a glacial erratic. It found its way to the valley floor through the upheaval caused by glaciers more than 15,000 years ago. And then for thousands of years more, its home was the bottom of the massive Glacial Lake Missoula. To get an idea of the depth of the lake that would have covered Hamilton back then, visitors can lift their eyes to the top of the museum’s cupola and then imagine six of those buildings stacked upon each other. -
2009 Spokane Valley Rathdrum Prairie Aquifer Atlas
The Spokane Valley-Rathdrum Prairie Aquifer Atlas 2009 Update Contents Welcome! A Bi-State Aquifer Study Navigating the Atlas he Spokane Valley-Rathdrum Prairie Aquifer Atlas In response to concerns about continued growth, water The pages are organized into four (4) theme Tpresents a comprehensive summary of the region’s management issues, and water availability, a bi-state categories with a unique color for each . most precious groundwater resource and is a basic aquifer study was initiated in 2004 by the Idaho Department reference of the geographic, geologic and hydrologic of Water Resources, the Washington Department of characteristics of this Aquifer . It is intended for broad Ecology, and the U .S . Geological Survey . The study was Shaded Relief Map . Front Cover community use in education, planning, and general funded by: Congressional appropriations through the Contents . 1 technical information . The preparation and publication U .S . Environmental Protection Agency, state funding from of the original Atlas were partially funded by a United both the Washington and Idaho legislatures and staff Introduction . 2 States Environmental Protection Agency aquifer support from both state agencies . The total study cost was The wellhead protection grant . approximately $3 .5 million . Aquifer Historic Aquifer . 3 The Spokane Valley-Rathdrum Prairie Aquifer spans Building upon previous studies and new data from Aquifer Timeline . 4 two states (Washington and Idaho) and lies within four a coordinated ground and surface water monitoring counties (Kootenai, Bonner, Stevens and Spokane) . program conducted in 2004-2005, the study reassessed Aquifer from Space . 5 the hydrogeology and water budget of the Spokane Valley- Natural resources, such as the Aquifer, that cross Geography . -
Naturalistmontana Fall 2006
NaturalistMONTANA Fall 2006 Ancient Ecosystem Ice Age Natural History The Last Best River Backyard Phenology see Get Outside Guide, page 9 TO PROMOTE AND CULTIVATE THE APPRECIATION, UNDERSTANDING AND STEWARDSHIP OF NATURE THROUGH EDUCATION inside Fall 2006 NaturalistMONTANA Features 4 Bear Gulch Fossils Impressions of an ancient ecosystem 4 6 Floods, Flora and Fauna What do we know about the area’s ice age natural history? Departments 3 Tidings 6 9 Get Outside Guide Observing climate change, making an insect collection, Special calendar of events Pull-Out Section 13 Community Focus Lessons from the land 14 Far Afield Discoveries from Montana’s last best river 9 16 Imprints An inspiring exhibit, RiverFest 2006, new evening series, auction info and more 18 Magpie Market 19 Reflections 13 “Woodpecker,” by Sandra Alcosser Cover photo – Female green darner dragonfly, taken by Jamesen Colley, www.rawcapturephotography.com. Taken with a Pentax MZ-S 35mm film camera with a Tamron 90mm 1:1 macro lens, a Pentax ring flash and Fuji Provia 100F slide film. The exposure was f\16 with a shutter speed of 1\90 of a second and a fill flash provided by the ring flash. Correction – The photo on page 3 of the Spring/Summer 2006 issue, showing bighorn sheep amid cars on a roadway, was incorrectly credited. The photograph was taken by Marcel P. Huijser. 14 16 No material appearing in Montana Naturalist may be reproduced in part or in whole without the written consent of the publisher. All contents © 2006 The Montana Natural History Center. 2 MONTANA NATURALIST FALL 2006 tidings 120 Hickory Street Missoula, MT 59801 otice anything different about us? (406) 327-0405 We’ve undergone a gentle face lift [email protected] with a new streamlined logo, www.MontanaNaturalist.org Ndesigned by illustrator Nancy Seiler.