Distribution and Ecologic Aspects of Central Pacific Salpidae (Tunicata) 1

Total Page:16

File Type:pdf, Size:1020Kb

Distribution and Ecologic Aspects of Central Pacific Salpidae (Tunicata) 1 Distribution and Ecologic Aspects of Central Pacific Salpidae (Tunicata) 1 JAMES 1. YOUNT 2 THE PRESENT REPORT is a continuation of a carried out, insofar as the available data general salp study, the first section of which would permit, in an attempt to elucidate already has been reported (Yount, 1954). It these points. In addition, little information concerns the distribution and ecology of the exists defining the actual role or position of salps collected during two cruises by the salps in the plankton community (the niche "Hugh M. Smith" of the Pacific Oceanic as defined by Elton, 1927); consequently, the Fishery Investigations of the United States niche of the different salp species was inves­ Fish and Wildlife Service (referred to in the tigated as thoroughly as possible. remainder of this report as POFI) in the central Pacific Ocean . Nineteen out of a total ACKNOWLEDGEMENTS of 22 recognized world species were found in I wish to express my gratitude to R. W. these collections. Hiatt and 1. D. Tuthill for their help through­ Knowledge of the distribution of salps was out this investigation. O. E. Sette of POFI, reviewed by Traustedt (1885), Apstein (1894, in addition to permitting me to use the plank ­ 1906), Metcalf (1918), Ihle (1935), and ton collections, reviewed the manuscript in Thompson (1948). Various other investiga­ part . I also wish to thank T. S. Austin of tors have added to this general knowledge in POFI for his help with regard to the section regard to certain species. Certain points in Physicochemical Factors of the Environment. ]. regard to geographic distribution, however, E. King of POFI helped by furnishing in­ needed clarification. Among these was an in­ formation on total plankton volumes and vestigation of the usefulness of salps as in­ numbers of the collections examined . dicator species of oceanic currents within the area of study. Moreover, knowledge of sea­ MATERIALS AND METHODS sonal effects on salps, of the relation of salp abundance to the abundance of other zoo­ The animals used were taken from a large plankton, and of the relation of salp abun­ series of plankton captures made by POFI in dance to physicochemical environmental an area that extended from 270 N . to 150 S. factors was very limited. Thus studies were and from 1760 W. to 1550 W. In this area, the "Hugh M . Smith" made cruise 5 inJune, 1 Contribution No . 99, Hawaii Marine l aborato ry, July, and August of 1950, and cruise 8 in in cooperation with the Department of Zo ology and January, February, and March of 1951, thus Entomology, University of Hawaii. Part of a thesis submitted to the Department of Zoology, Uni versity permitting seasonal comparisons. The study of Hawaii, in partial fulfillment of the requirements for of abundance and distribution was confined the degree of Doctor of Phil osophy. to cruises 5 and 8; of these cruises, all samples 2 Department of Biology, University of Florida , Gainesville, Florida. Manuscript received August 27, (51) from cruise 5, and 30 samples out of 106 1956. from cruise 8, were studied. 111 112 PACIFIC SCIENCE, Vol. XII, April, 1958 The total plankton data used here were to them is the distribution of temperature, reported by Kin g and Demond (1953); Crom­ density, currents, salinity, and oxygen. On well (1953, 1954) reported all hydrographic the other hand, distribution of light and of observations used here. As King and Demond nutrient chemicals, factors which influence stated, the plankton net descended obliquely phytoplankton production, is probably only to 200 meters, then made an oblique ascent indirectly important to salps. Which among to the surface. Thus the net strained , during these are limiting factors for salps is almost approximately 30 minutes, a total of about wholly unknown. 1,000 cubic meters of water. This net was In the open ocean, salinity is presumed not described in King and Demond's report as limiting because of its small variation, from being 1 meter in diameter, with a mesh width about 34 to 36 0/00' Salps seem to be absent of 0.65 mm ., but I should point out here that from areas of very low or high salinity, such it was an open net. For this reason, vertical as may be foun d in certain waters. For ex­ distribution of the captured animals is un­ ample, Apstein (1906) reported no salps from known. the region off the mouth of the Congo River All animals larger than about 5 cm. were in Africa, a situation apparently related to the removed from each POFI plankton sample low salinity (30.4 0/ 00) in the area; and Ihle (King and Demond, 1953). The sample was (1935) noted that some species of salps were then divided into two equal portions, one of absent from the eastern part of the Mediter­ which was not used by POFI personnel. The ranean Sea, perhaps indicating a relationship latter portions were used for the present study. to the high salinity (up to 40 0/ 00 off Syria). Therefore, in calculations where comparisons In regard to temperature, also, little is were necessary, salp numbers and volumes known abou t limits of tolerance for the va­ were estimated by doubli ng the figure ob­ rious species, although all salp species-ex­ tained from each half sample. In addition , cept an antarctic form, Ihlea magalhanica- . many of the removed salps larger than 5 cm. are found principally in warm regions of the were examined and identified. Number deter­ ocean. Occasionally they are found in high minations ofsalps were made by direct count­ latitudes, presumably carried there by current ing, whereas volume determinations of the tongues, for example, in the Bering Sea (Met­ salps were made for each plankton sample by calf, 1918), the Gulf of Maine (Bigelow, . means of water displacement in a graduated 1926), the North Sea (Fraser, 1949, 1954), cylinder. In order to determine the relation and waters of southern Australia (Thompson, between salp volume and volume ofthe other 1948). Salps have also been found at great plankton in the same sample, the salp volume depths (more than 1,000 meters) where the determinations were divided by the amount temperature was low (Apstein, 1906; Michael, of water strained (taken from King and De­ 1918; Sewell, 1926, 1953; Leavitt, 1935, 1938). mond) and compared with the total volumes The limits of tolerance for both salinity and of zooplankton, less salps, reported by King temperature in the various species are thus and Demond. unknown and can only be inferred from re­ ABUNDANCE OF SALPS ports of distribution. Factors that influence variation in organi c Physicochemical Factors of the Environment productivity must also be considered for a A study of the ecology of salps should clear understanding of variation in salp abun­ .consider all aspects of their environment such dance. Areas ofmaximum biological produc­ as food, enemies, and the distribution of tivity are found in coastal waters, in temperate physicochemical factors of the waters in which and higher latitudes, and in regions of up­ they are found . Of possible direct importance welling. Productivity in these areas is based Central Pacific Salpidae - YOUNT 113 chiefly on vertical mixing of the waters meridians studied are in a continuous state of (Sverdrup, et al., 1942: 785; Tait, 1952: 76; upwelling they are "young ," that is, they Harvey, 1955: 99) and additions of dissolved have a high concentration of nutrient chemi­ nutrients from the land (Kiinne, 1950: 57; cals, being more or less continuously replen ­ Dakin, 1952: 7), which bring nutrients to the ished from below . euphotic zone where they can be used . In Another factor should be considered in temperate waters, vertical mixing and result­ regard to enrichment: phosphates probably . ant enrichment are useful for production prin­ affect salps only indirectly. As only plants are cipally in the spring and fall; in midwinter the considered able to utilize dissolved nutrients standing crop of organisms is low, due pri­ such as phosphates for biological production, marily to insufficient light intensity, while in salps are prob ably affected by phosphates only midsummer the low standing crop is appar­ by way of their food, which consists primarily ently the result of depletion of nutrients in ofphytoplankters. Salps thus stand one troph­ the euph otic zone (Russell and Yonge, 1936: ic level away from the dissolved nutrients as 246). In tropical waters, on the other hand , shown by their trophic relationships: dis­ there is generally a low concentration of nu­ solved nutrients ~ phytoplankton (produc­ trients in the euphotic zone with an attendant ers) ~ herbivorous zooplankton (primary low standing crop throughout the year, ap­ consumers). Time , therefore, is required for parently because upper tropical waters (to a the phosphates to be used by the phyto­ depth of about 300 meters) are characterized plankton in order that the primary consumers by a three-layer system-an upper warm layer, can be affected by the increased production. a transition layer, and a lower cool one­ For this reason, it is possible that the salps present during a large portion of the year. captured at the same time would show little Thus sinking of decomposing substances from correlation, station to station, with the phos ­ the surface layer to a depth below the transi­ phates. However, the increased phosphate tion layer results in a removal of nutrients found in the region of upwelling is a zonal from the euphotic zone until vertical mixing cond ition and thus not transient, and results of the waters again brings the nutrients back. in generally larger standin g crops of plankton The enrichment in the zone between about in this region (Cromwell, 1953; King and 2° N .
Recommended publications
  • An Observation of Two Oceanic Salp Swarms in the Tasman Sea: Thetys Vagina and Cyclosalpa Affinis Natasha Henschke1,2,3*, Jason D
    Henschke et al. Marine Biodiversity Records (2016) 9:21 DOI 10.1186/s41200-016-0023-8 MARINE RECORD Open Access An observation of two oceanic salp swarms in the Tasman Sea: Thetys vagina and Cyclosalpa affinis Natasha Henschke1,2,3*, Jason D. Everett1,2,3 and Iain M. Suthers1,2,3 Abstract Background: Large oceanic salps are rarely encountered. The highest recorded biomasses of the salps Thetys vagina (852 g WW m−3)andCyclosalpa affinis (1149 g WW m−3) were observed in the Tasman Sea during January 2009. Results: Due to their fast sinking rates the carcasses and faecal pellets of these and other large salps play a significant role in carbon transport to the seafloor. We calculated that faecal pellets from these swarms could have contributed up to 67 % of the mean organic daily carbon flux in the area. This suggests that the flux of carbon from salp swarms are not accurately captured in current estimates. Conclusion: This study contributes information on salp abundance and biomass to a relatively understudied field, improving estimates for biogeochemical cycles. Background (Henschke et al., 2013) can increase the carbon flux in an The role of gelatinous zooplankton, such as salps, pyro- area up to ten-fold the daily average (Fischer et al., 1988) somes and cnidarians, in ocean food webs and biogeo- for a sustained period of time (Smith et al. 2014). chemical cycling has garnered increased attention in Due to their regular occurrence (Henschke et al., recent years (Lebrato et al., 2011; Henschke et al., 2013; 2014) and coastal dominance (Henschke et al 2011), Lebrato et al., 2013; Smith et al.
    [Show full text]
  • Trophic Ecology of Gelatinous Zooplankton in Oceanic Food Webs of the Eastern Tropical Atlantic Assessed by Stable Isotope Analysis
    Limnol. Oceanogr. 9999, 2020, 1–17 © 2020 The Authors. Limnology and Oceanography published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lno.11605 Tackling the jelly web: Trophic ecology of gelatinous zooplankton in oceanic food webs of the eastern tropical Atlantic assessed by stable isotope analysis Xupeng Chi ,1,2* Jan Dierking,2 Henk-Jan Hoving,2 Florian Lüskow,3,4 Anneke Denda,5 Bernd Christiansen,5 Ulrich Sommer,2 Thomas Hansen,2 Jamileh Javidpour2,6 1CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China 2Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 3Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada 4Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada 5Institute of Marine Ecosystem and Fishery Science (IMF), Universität Hamburg, Hamburg, Germany 6Department of Biology, University of Southern Denmark, Odense M, Denmark Abstract Gelatinous zooplankton can be present in high biomass and taxonomic diversity in planktonic oceanic food webs, yet the trophic structuring and importance of this “jelly web” remain incompletely understood. To address this knowledge gap, we provide a holistic trophic characterization of a jelly web in the eastern tropical Atlantic, based on δ13C and δ15N stable isotope analysis of a unique gelatinous zooplankton sample set. The jelly web covered most of the isotopic niche space of the entire planktonic oceanic food web, spanning > 3 tro- phic levels, ranging from herbivores (e.g., pyrosomes) to higher predators (e.g., ctenophores), highlighting the diverse functional roles and broad possible food web relevance of gelatinous zooplankton.
    [Show full text]
  • Ard David Brodeur
    Richard David Brodeur Estuarine and Ocean Ecology Program Northwest Fisheries Science Center National Oceanic and Atmospheric Administration Newport, OR 97365; Tel. 541-867-0336 email: [email protected]; ORCID: 0000-0002-6629-5564 website: https://www.researchgate.net/profile/Richard_Brodeur/contributions Research Interests Recruitment processes in marine fishes; the feeding habits and trophic interactions of pelagic and demersal nekton; the ecology, zoogeography and behavior of marine fishes; salmon marine ecology; bioacoustics, fisheries oceanography including environmental and biotic effects on the abundance and distribution patterns of fishes and zooplankton. Education Ph.D. Fisheries University of Washington, Seattle, WA 1990 M.S. Oceanography Oregon State University, Corvallis, OR 1983 B.S. Fishery Biology University of Massachusetts, Amherst, MA 1976 Positions Held Research Fishery Biologist (1991- ), National Marine Fisheries Service, Seattle & Newport, OR NMFS Scientific Editor (2008-2011), National Marine Fisheries Service, Newport, OR Visiting Investigator (2006), Pacific Islands Fisheries Science Center, Honolulu, HI Visiting Investigator (1998), Pacific Fisheries Environmental Laboratory, Pacific Grove, CA Uchida Visiting Fellow (1993), Ocean Research Institute, Tokyo, Japan Postdoctoral Fellow (1990-1991), Pacific Biological Station, Nanaimo, B.C., Canada Fishery Biologist (1987-1990), National Marine Fisheries Service, Seattle, WA Fishery Biologist (1987-1990), Fisheries Research Institute, Univ. of Wash., Seattle, WA Senior Research Assistant (1985-1987), Research Assistant (1979-1984), School of Oceanography, Oregon State University, Corvallis, OR Fishery Biologist (Summers 1981, 1983) National Marine Fisheries Service, Auke Bay, AK Biological Technician (Summer 1979) Office of Scientific Studies, National Park Service, Wellfleet, MA Biological Technician (1977-1979) National Marine Fisheries Service, Woods Hole, MA Volunteer (1976 and 1978) Woods Hole Oceanographic Institution, Woods Hole, MA Research Assistant (Summers 1975-1977) Mass.
    [Show full text]
  • The Secret Lives of JELLYFISH Long Regarded As Minor Players in Ocean Ecology, Jellyfish Are Actually Important Parts of the Marine Food Web
    The secret lives of JELLYFISH Long regarded as minor players in ocean ecology, jellyfish are actually important parts of the marine food web. BY GARRY HAMILTON ennifer Purcell watches intently as the boom of the research ship Moon jellyfish (Aurelia Skookum slowly eases a 3-metre-long plankton net out of Puget Sound aurita) contain more Jnear Olympia, Washington. The marine biologist sports a rain suit, calories than some which seems odd for a sunny day in August until the bottom of the net other jellyfish. is manoeuvred in her direction, its mesh straining from a load of moon jellyfish (Aurelia aurita). Slime drips from the bulging net, and long ten- tacles dangle like a scene from an alien horror film. But it does not bother Purcell, a researcher at Western Washington University’s marine centre in Anacortes. Pushing up her sleeves, she plunges in her hands and begins to count and measure the messy haul with an assuredness borne from nearly 40 years studying these animals. 432 | NATURE | VOL 531 | 24 MARCH 2016 © 2016 Macmillan Publishers Limited. All rights reserved FEATURE NEWS Most marine scientists do not share her enthusiasm for the creatures. also inaccessible, living far out at sea or deep below the light zone. They Purcell has spent much of her career locked in a battle to find funding often live in scattered aggregations that are prone to dramatic popula- and to convince ocean researchers that jellyfish deserve attention. But tion swings, making them difficult to census. Lacking hard parts, they’re she hasn’t had much luck.
    [Show full text]
  • AR TICLE Recommended Names for Pleomorphic Genera In
    IMA FUNGUS · 6(2): 507–523 (2015) doi:10.5598/imafungus.2015.06.02.14 Recommended names for pleomorphic genera in Dothideomycetes ARTICLE Amy Y. Rossman1, Pedro W. Crous2,3, Kevin D. Hyde4,5, David L. Hawksworth6,7,8, André Aptroot9, Jose L. Bezerra10, Jayarama D. Bhat11, Eric Boehm12, Uwe Braun13, Saranyaphat Boonmee4,5, Erio Camporesi14, Putarak Chomnunti4,5, Dong-Qin Dai4,5, Melvina J. D’souza4,5, Asha Dissanayake4,5,15, E.B. Gareth Jones16, Johannes Z. Groenewald2, Margarita Hernández-Restrepo2,3, Sinang Hongsanan4,5, Walter M. Jaklitsch17, Ruvishika Jayawardena4,5,12, Li Wen Jing4,5, Paul M. Kirk18, James D. Lawrey19, Ausana Mapook4,5, Eric H.C. McKenzie20, Jutamart Monkai4,5, Alan J.L. Phillips21, Rungtiwa Phookamsak4,5, Huzefa A. Raja22, Keith A. Seifert23, Indunil Senanayake4,5, Bernard Slippers3, Satinee Suetrong24, Kazuaki Tanaka25, Joanne E. Taylor26, Kasun M. Thambugala4,5,27, Qing Tian4,5, Saowaluck Tibpromma4,5, Dhanushka N. Wanasinghe4,5,12, Nalin N. Wijayawardene4,5, Saowanee Wikee4,5, Joyce H.C. Woudenberg2, Hai-Xia Wu28,29, Jiye Yan12, Tao Yang2,30, Ying Zhang31 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; corresponding author e-mail: amydianer@ yahoo.com 2CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 3Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa 4Center of Excellence in Fungal Research, School of Science, Mae Fah
    [Show full text]
  • (Cciea) California Current Ecosystem Status Report, 2020
    Agenda Item G.1.a IEA Team Report 2 March 2020 SUPPLEMENTARY MATERIALS TO THE CALIFORNIA CURRENT INTEGRATED ECOSYSTEM ASSESSMENT (CCIEA) CALIFORNIA CURRENT ECOSYSTEM STATUS REPORT, 2020 Appendix A LIST OF CONTRIBUTORS TO THIS REPORT, BY AFFILIATION NWFSC, NOAA Fisheries SWFSC, NOAA Fisheries Mr. Kelly Andrews Dr. Eric Bjorkstedt Ms. Katie Barnas Dr. Steven Bograd Dr. Richard Brodeur Ms. Lynn deWitt Dr. Brian Burke Dr. John Field Dr. Jason Cope Dr. Newell (Toby) Garfield (co-lead editor) Dr. Correigh Greene Dr. Elliott Hazen Dr. Thomas Good Dr. Michael Jacox Dr. Chris Harvey (co-lead editor) Dr. Andrew Leising Dr. Daniel Holland Dr. Nate Mantua Dr. Kym Jacobson Mr. Keith Sakuma Dr. Stephanie Moore Dr. Jarrod Santora Dr. Stuart Munsch Dr. Andrew Thompson Dr. Karma Norman Dr. Brian Wells Dr. Jameal Samhouri Dr. Thomas Williams Dr. Nick Tolimieri (co-editor) University of California-Santa Cruz Ms. Margaret Williams Ms. Rebecca Miller Dr. Jeannette Zamon Dr. Barbara Muhling Pacific States Marine Fishery Commission Dr. Isaac Schroeder Ms. Amanda Phillips Humboldt State University Mr. Gregory Williams (co-editor) Ms. Roxanne Robertson Oregon State University California Department of Public Health Ms. Jennifer Fisher Ms. Christina Grant Ms. Cheryl Morgan Mr. Duy Trong Ms. Samantha Zeman Ms. Vanessa Zubkousky-White AFSC, NOAA Fisheries California Department of Fish and Wildlife Dr. Stephen Kasperski Ms. Christy Juhasz Dr. Sharon Melin CA Office of Env. Health Hazard Assessment NOAA Fisheries West Coast Region Dr. Rebecca Stanton Mr. Dan Lawson Oregon Department of Fish and Wildlife Farallon Institute Dr. Caren Braby Dr. William Sydeman Mr. Matthew Hunter Point Blue Conservation Science Oregon Department of Agriculture Dr.
    [Show full text]
  • High Abundance of Salps in the Coastal Gulf of Alaska During 2011
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/301733881 High abundance of salps in the coastal Gulf of Alaska during 2011: A first record of bloom occurrence for the northern Gulf Article in Deep Sea Research Part II Topical Studies in Oceanography · April 2016 DOI: 10.1016/j.dsr2.2016.04.009 CITATION READS 1 33 4 authors, including: Ayla J. Doubleday Moira Galbraith University of Alaska System Institute of Ocean Sciences, Sidney, BC, Cana… 3 PUBLICATIONS 16 CITATIONS 28 PUBLICATIONS 670 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: l. salmonis and c. clemensi attachment sites: chum salmon View project All content following this page was uploaded by Moira Galbraith on 10 June 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Deep-Sea Research II ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 High abundance of salps in the coastal Gulf of Alaska during 2011: A first record of bloom occurrence for the northern Gulf Kaizhi Li a, Ayla J. Doubleday b, Moira D. Galbraith c, Russell R. Hopcroft b,n a Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China b Institute of Marine Science, University of Alaska, Fairbanks, AK 99775-7220, USA c Institute of Ocean Sciences, Fisheries and Oceans Canada, P.O.
    [Show full text]
  • Phylum: Chordata
    PHYLUM: CHORDATA Authors Shirley Parker-Nance1 and Lara Atkinson2 Citation Parker-Nance S. and Atkinson LJ. 2018. Phylum Chordata In: Atkinson LJ and Sink KJ (eds) Field Guide to the Ofshore Marine Invertebrates of South Africa, Malachite Marketing and Media, Pretoria, pp. 477-490. 1 South African Environmental Observation Network, Elwandle Node, Port Elizabeth 2 South African Environmental Observation Network, Egagasini Node, Cape Town 477 Phylum: CHORDATA Subphylum: Tunicata Sea squirts and salps Urochordates, commonly known as tunicates Class Thaliacea (Salps) or sea squirts, are a subphylum of the Chordata, In contrast with ascidians, salps are free-swimming which includes all animals with dorsal, hollow in the water column. These organisms also ilter nerve cords and notochords (including humans). microscopic particles using a pharyngeal mucous At some stage in their life, all chordates have slits net. They move using jet propulsion and often at the beginning of the digestive tract (pharyngeal form long chains by budding of new individuals or slits), a dorsal nerve cord, a notochord and a post- blastozooids (asexual reproduction). These colonies, anal tail. The adult form of Urochordates does not or an aggregation of zooids, will remain together have a notochord, nerve cord or tail and are sessile, while continuing feeding, swimming, reproducing ilter-feeding marine animals. They occur as either and growing. Salps can range in size from 15-190 mm solitary or colonial organisms that ilter plankton. in length and are often colourless. These organisms Seawater is drawn into the body through a branchial can be found in both warm and cold oceans, with a siphon, into a branchial sac where food particles total of 52 known species that include South Africa are removed and collected by a thin layer of mucus within their broad distribution.
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • (Gulf Watch Alaska) Final Report the Seward Line: Marine Ecosystem
    Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth Danielson Institute of Marine Science University of Alaska Fairbanks 905 N. Koyukuk Dr. Fairbanks, AK 99775-7220 Suzanne Strom Shannon Point Marine Center Western Washington University 1900 Shannon Point Road, Anacortes, WA 98221 Kathy Kuletz U.S. Fish and Wildlife Service 1011 East Tudor Road Anchorage, AK 99503 July 2018 The Exxon Valdez Oil Spill Trustee Council administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The Council administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Action of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information, please write to: EVOS Trustee Council, 4230 University Dr., Ste. 220, Anchorage, Alaska 99508-4650, or [email protected], or O.E.O., U.S. Department of the Interior, Washington, D.C. 20240. Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth L.
    [Show full text]
  • Proposed Generic Names for Dothideomycetes
    Naming and outline of Dothideomycetes–2014 Nalin N. Wijayawardene1, 2, Pedro W. Crous3, Paul M. Kirk4, David L. Hawksworth4, 5, 6, Dongqin Dai1, 2, Eric Boehm7, Saranyaphat Boonmee1, 2, Uwe Braun8, Putarak Chomnunti1, 2, , Melvina J. D'souza1, 2, Paul Diederich9, Asha Dissanayake1, 2, 10, Mingkhuan Doilom1, 2, Francesco Doveri11, Singang Hongsanan1, 2, E.B. Gareth Jones12, 13, Johannes Z. Groenewald3, Ruvishika Jayawardena1, 2, 10, James D. Lawrey14, Yan Mei Li15, 16, Yong Xiang Liu17, Robert Lücking18, Hugo Madrid3, Dimuthu S. Manamgoda1, 2, Jutamart Monkai1, 2, Lucia Muggia19, 20, Matthew P. Nelsen18, 21, Ka-Lai Pang22, Rungtiwa Phookamsak1, 2, Indunil Senanayake1, 2, Carol A. Shearer23, Satinee Suetrong24, Kazuaki Tanaka25, Kasun M. Thambugala1, 2, 17, Saowanee Wikee1, 2, Hai-Xia Wu15, 16, Ying Zhang26, Begoña Aguirre-Hudson5, Siti A. Alias27, André Aptroot28, Ali H. Bahkali29, Jose L. Bezerra30, Jayarama D. Bhat1, 2, 31, Ekachai Chukeatirote1, 2, Cécile Gueidan5, Kazuyuki Hirayama25, G. Sybren De Hoog3, Ji Chuan Kang32, Kerry Knudsen33, Wen Jing Li1, 2, Xinghong Li10, ZouYi Liu17, Ausana Mapook1, 2, Eric H.C. McKenzie34, Andrew N. Miller35, Peter E. Mortimer36, 37, Dhanushka Nadeeshan1, 2, Alan J.L. Phillips38, Huzefa A. Raja39, Christian Scheuer19, Felix Schumm40, Joanne E. Taylor41, Qing Tian1, 2, Saowaluck Tibpromma1, 2, Yong Wang42, Jianchu Xu3, 4, Jiye Yan10, Supalak Yacharoen1, 2, Min Zhang15, 16, Joyce Woudenberg3 and K. D. Hyde1, 2, 37, 38 1Institute of Excellence in Fungal Research and 2School of Science, Mae Fah Luang University,
    [Show full text]
  • The Tunicate Salpa Thompsoni Ecology in the Southern Ocean. I
    Marine Biology (2005) DOI 10.1007/s00227-005-0225-9 RESEARCH ARTICLE E. A. Pakhomov Æ C. D. Dubischar Æ V. Strass M. Brichta Æ U. V. Bathmann The tunicate Salpa thompsoni ecology in the Southern Ocean. I. Distribution, biomass, demography and feeding ecophysiology Received: 28 July 2004 / Accepted: 16 October 2005 Ó Springer-Verlag 2005 Abstract Distribution, density, and feeding dynamics of egestion rates previously estimated for low Antarctic the pelagic tunicate Salpa thompsoni have been investi- (50°S) habitats. It has been suggested that the salp gated during the expedition ANTARKTIS XVIII/5b to population was able to develop in the Eastern Bellings- the Eastern Bellingshausen Sea on board RV Polarstern in hausen Sea due to an intrusion into the area of the warm April 2001. This expedition was the German contribution Upper Circumpolar Deep Water to the field campaign of the Southern Ocean Global Ocean Ecosystems Dynamics Study (SO-GLOBEC). Salps were found at 31% of all RMT-8 and Bongo sta- tions. Their densities in the RMT-8 samples were low and Introduction did not exceed 4.8 ind mÀ2 and 7.4 mg C mÀ2. However, maximum salp densities sampled with the Bongo net There has been an increasing interest in the pelagic reached 56 ind mÀ2 and 341 mg C mÀ2. A bimodal salp tunicate Salpa thompsoni in the Southern Ocean during length frequency distribution was recorded over the shelf, recent decades (e.g. Huntley et al. 1989; Nishikawa et al. and suggested two recent budding events. This was also 1995; Pakhomov et al.
    [Show full text]