Caractérisation De Disques De Poussi`Ere Exozodiacale Par

Total Page:16

File Type:pdf, Size:1020Kb

Caractérisation De Disques De Poussi`Ere Exozodiacale Par Facult´edes Sciences D´epartement d'Astrophysique, G´eophysique et Oc´eanographie Caract´erisationde disques de poussi`ere exozodiacale par interf´erom´etrie stellaire en infrarouge proche et moyen THESE` pr´esent´eepour l'obtention du dipl^omede Docteur en Sciences par Lindsay Marion Soutenue publiquement le 4 octobre 2017 devant le Jury compos´ede : Pr´esident: Pr. Serge Habraken Directeur de th`ese: Dr. Olivier Absil Examinateurs : Dr. Jean-Philippe Berger Dr. Denis Defrere` Pr. Lucas Labadie Pr. J´er^ome Loicq Dr. Bertrand Mennesson Pr. Jean Surdej Space sciences, Technologies and Astrophysics Research Institute Mis en page avec la classe thloria. i Remerciements Je voudrais en tout premier lieu remercier mon promoteur, Olivier Absil pour m’avoir soutenue dans ce projet et avoir suscité mon intérêt pour l’interférométrie durant mon travail de fin d’études de Master. Je souhaiterais également le remercier pour m’avoir rassurée et conseillée lors de mes moments de doute et pour m’avoir fourni les pistes de réflexion adéquates à chaque fois que je pensais ne jamais y arriver. Je souhaiterais également remercier Jean Surdej pour son encadrement indirect, les échanges fructueux que j’ai pu avoir avec lui et ses conseils avisés. Je voudrais également remercier Denis Defrère pour son aide et son accueil lors de mon séjour en Arizona, puis pour ses conseils une fois de retour en Belgique et pour la relecture partielle de ce manuscrit. Je remercie également Jean-Charles Augereau pour son accueil lors de mon séjour à Gre- noble ainsi que pour les nombreux échanges qui en ont découlés et m’ont permis d’ap- prendre à maitriser le package IDL GRaTeR sans quoi une partie de ce travail n’aurait pu être réalisé. Je tiens à remercier Emmanuel Di Folco pour son accueil lors de mon séjour à Bordeaux et pour ses nombreux conseils dans la réduction de données MIDI que je n’avais encore jamais prise en main. Je voudrais aussi remercier l’ensemble de mon comité de thèse, Serge Habraken, Jérôme Loicq, Lucas Labadie, Bertrand Mennesson et encore une fois, Denis Defrère, Jean Surdej et Olivier Absil pour accepter de lire et évaluer ce manuscrit. Je tiens tout particulièrement à remercier ma famille, mes parents, Nathalie et Claude, ainsi que mon frère, Jesse, pour leur soutien moral non seulement durant cette thèse mais aussi depuis le début de mes études. Si j’ai pu parvenir à terminer ce manuscrit, c’est grâce à eux, et à leur soutien depuis que j’ai entrepris cette folle aventure qu’est l’université. Je souhaiterais également remercier mon compagnon, Gauthier, pour avoir supporté mes sauts d’humeur au cours de ces derniers mois et les avoir subis sans broncher. Enfin, je souhaiterais remercier mes collègues, en particulier Olivier Absil, Olivier Wertz, Ludovic Delchambre, et Denis Defrère pour m’avoir trainé en dehors du bureau lors des temps de midi...Finalement, le whist me manquera ! Ce doctorat a été financé par une bourse du Fond National pour la Recherche Scientifique (boursière FRIA). ii Table des matières Table des figures vii Liste des tableaux xi Notations and acronymes xiii Prologue 1 Introduction7 1 Les disques de débris9 1.1 Le système solaire................................9 1.1.1 La formation du système solaire....................9 1.1.2 Le système solaire actuel........................ 14 1.2 Les disques de débris.............................. 19 1.2.1 Les disques froids............................ 19 1.2.2 Les disques chauds : la poussière exozodiacale............ 22 2 L’interférométrie stellaire 25 2.1 Introduction : l’expérience des fentes de Young................ 25 2.2 Interférences entre deux ondes......................... 27 2.2.1 Les ondes électromagnétiques..................... 27 2.2.2 Degré complexe de cohérence mutuelle................ 29 2.2.3 Le théorème de Van-Cittert Zernike.................. 32 2.3 L’interférométrie stellaire............................ 36 2.3.1 Visibilité d’une source circulaire.................... 37 2.3.2 La clôture de phase........................... 39 2.4 L’interférométrie de nulling.......................... 40 2.4.1 Cas d’une source étendue........................ 42 iv Table des matières 3 La détection d’exozodis par interférométrie 45 3.1 Observations, détections et analyse statistique................ 45 3.2 Modélisation des exozodis........................... 48 3.3 Scenarii de création de la poussière exozodiacale............... 51 3.3.1 Approvisionnement du disque en poussière.............. 51 3.3.2 Piégeage de la poussière à proximité de l’étoile............ 55 4 Objectifs et motivations de ce travail 61 Interférométrie en infrarouge proche 63 5 Recherche d’exozodis chauds et de compagnons avec PIONIER 65 5.1 Le programme d’observation exozodi..................... 65 5.2 Article : Searching for faint companions with VLTI/ PIONIER. II. 92 main sequence stars from the Exozodi survey .................... 70 6 Étude de la connexion entre la présence de poussière tiède et chaude 83 6.1 Article : A near-infrared interferometric survey of debris-disk stars. VII. The hot/warm dust connection ........................ 83 Interférométrie en infrarouge moyen 107 7 Mesure de la fréquence des disques tièdes avec le LBTI 109 7.1 Le Large Binocular Telescope Interferometer................. 110 7.1.1 Description du télescope........................ 110 7.1.2 Description de l’instrument...................... 110 7.1.3 Principe de recombinaison pour la détection d’exozodis....... 112 7.2 Le programme d’observation HOSTS..................... 112 7.3 Réduction des données et améliorations.................... 115 7.3.1 Obtention et calibration des données................. 115 7.3.2 La méthode classique de réduction des données........... 116 7.3.3 La méthode statistique de réduction des données........... 119 7.4 Premiers résultats................................ 122 8 Caractérisation du disque autour de β Pic avec VLTI/MIDI 125 8.1 Une vue multi-spectrale du disque de débris de β Pic............ 126 8.1.1 Le disque externe de β Pic....................... 126 8.1.2 Le disque interne de β Pic....................... 127 v 8.2 Description des observations MIDI...................... 128 8.2.1 L’instrument MIDI........................... 130 8.2.2 Description des données obtenues sur β Pic.............. 131 8.3 Réduction et calibration des données MIDI.................. 135 8.3.1 Le logiciel de réduction MIA...................... 135 8.3.2 Le logiciel de réduction EWS..................... 136 8.3.3 Influence du facteur de lissage dans EWS............... 136 8.3.4 Moyennage des flux corrélés...................... 137 8.3.5 Calibration des flux corrélés...................... 138 8.4 Modélisation préliminaire avec GRaTeR................... 142 Conclusion 149 9 Résumé des résultats et perspectives futures 151 Bibliographie 157 vi Table des matières Table des figures 1 Message envoyé depuis Arecibo en 1974....................3 2 Principe de détection d’exoplanètes avec Kepler................4 3 Exoplanètes potentiellement habitables.....................4 4 Système Kepler-186...............................5 5 Comparaison entre le soleil et TRAPPIST-1..................6 1.1 Vue d’artiste de la nébuleuse solaire...................... 10 1.2 Représentation de la ligne de glace dans le système solaire.......... 11 1.3 Vue d’artiste de la formation des planètes rocheuses et gazeuses....... 12 1.4 Représentation de la distribution de petits corps aux dufférentes phases du LHB........................................ 13 1.5 La zone habitable du système solaire...................... 14 1.6 La poussière zodiacale dans notre système solaire............... 15 1.7 Le “Pale blue dot”................................ 16 1.8 L’organisation du système solaire........................ 18 1.9 Analyse statistique de la population froide................... 21 1.10 Disque froid de β Pic et Fomalhaut....................... 21 1.11 Modélisation d’un système Soleil-Terre à 10 pc................ 23 1.12 Distribution d’énergie d’un système étoile+disque............... 24 2.1 Dispositif des fentes de Young.......................... 26 2.2 Illustration d’une source quasi-monochromatique............... 30 2.3 Variation de l’intensité du signal en fonction du degré complexe de cohé- rence mutuelle.................................. 32 2.4 Cas d’une source étendue............................ 33 2.5 Schématisation d’une source étendue située loin du plan d’observation... 35 2.6 Principe de l’interférométrie de nulling..................... 41 3.1 Représentation de la courbe de visibilité en fonction de la base interféro- métrique..................................... 46 3.2 Schématisation de l’effet Poynting-Robertson................. 52 3.3 Remplissage du disque interne par éjection de matériel par les planètes... 53 3.4 Résonance de moyen mouvement avec une planète excentrique........ 53 3.5 Simulation d’un impact Terre-Lune dans des observations JWST...... 55 vii viii Table des figures 3.6 Simulation de la résonance de moyen mouvement pour une planète de cinq masse terrestre.................................. 56 3.7 Effet combiné de la résonance de moyen mouvement et de l’effet Poynting- Robertson..................................... 57 3.8 Piégeage de la poussière par du gaz....................... 58 3.9 Illustration du mécanisme de piégeage magnétique.............. 59 5.1 Distribution de l’excès infrarouge dans l’échantillon Exozodi......... 66 5.2 Taux de détection d’exozodis en fonction du type spectral.......... 67 5.3 Taux de détection d’exozodis en
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • Better Tapit
    Barn 3 Hip No. Consigned by Claiborne Farm, Agent 1 Abrupt First Samurai . Giant’s Causeway Lea . {Freddie Frisson {Greenery . Galileo Abrupt . {High Savannah (GB) Bay colt; Political Force . Unbridled’s Song foaled 2017 {Ire . {Glitter Woman (2009) {Clash . Arch {Hit By LEA (2009), $2,362,398, Donn H. [G1]-ntr, Hal’s Hope S. [G3] twice, Com- monwealth Turf S. [G3], 2nd Woodbine Mile S. [G1], Breeders’ Cup Dirt Mile [G1], etc. His first foals are 3-year-olds of 2020. Sire of 16 wnrs, $932,816, including Muskoka Gold ($155,587, Cup and Saucer S., 2nd Grey S. [G3], etc.), Vast (to 3, 2020, $120,150, Hollywood Wildcat S.). 1st dam Ire, by Political Force. 4 wins at 3 and 4, $202,639, 2nd Mariah’s Storm S. (AP, $13,186), Meafara S. (AP, $13,014), 3rd Arlington Oaks [G3] (AP, $16,170), Mardi Gras H. (FG, $7,500), Happy Ticket S. (FG, $6,000). Sister to Flashy Campaign. Dam of 2 other foals of racing age-- Enrage (f. by Algorithms). Winner at 2, $64,086, 2nd Gin Talking S. (LRL, $20,000). Wrath (c. by Flatter). Winner at 3 and 4, 2020, $50,812. 2nd dam CLASH, by Arch. 2 wins, $86,771. Dam of 6 foals to race, 5 winners, incl.-- FASHION FAUX PAS (f. by Flatter). 3 wins at 2 and 3, 2019, $177,817, Sandpiper S. (TAM, $30,000), Light Hearted S. (DEL, $30,000), 2nd Delaware Oaks [G3] (DEL, $55,000), Mizdirection S. (AQU, $20,000), 3rd Hilltop S. (PIM, $10,000). Ire (f.
    [Show full text]
  • Curriculum Vitae - 24 March 2020
    Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • Extra-Solar Planetary Systems
    From the Academy Extra-solar planetary systems Joan Najita*†, Willy Benz‡, and Artie Hatzes§ *National Optical Astronomy Observatories, 950 North Cherry Avenue, Tucson, AZ 85719; ‡Physikalisches Institut, Universita¨t Bern, Sidlerstrasse 5, Ch-3012, Bern, Switzerland; and §McDonald Observatory, University of Texas, Austin, TX 78712 he discovery of extra-solar planets has captured the imagi- Table 1. Properties of extra-solar planet candidates Tnation and interest of the public and scientific communities K, alike, and for the same reasons: we are all want to know the Parent star M sin i Period, days a,AU e m⅐sϪ1 answers to questions such as ‘‘Where do we come from?’’ and ‘‘Are we alone?’’ Throughout this century, popular culture has HD 187123 0.52 3.097 0.042 0. 72. presumed the existence of other worlds and extra-terrestrial ␶ Bootis 3.64 3.3126 0.042 0. 469. intelligence. As a result, the annals of popular culture are filled HD 75289 0.42 3.5097 0.046 0. 54. with thoughts on what extra-solar planets and their inhabitants 51 Peg 0.44 4.2308 0.051 0.01 56. are like. And now toward the end of the century, astronomers ␷ And b 0.71 4.617 0.059 0.034 73.0 have managed to confirm at least one aspect of this speculative HD 217107 1.28 7.11 0.07 0.14 140. search for understanding in finding convincing evidence of Gliese 86 3.6 15.83 0.11 0.042 379. planets beyond the solar system. ␳1 Cancri 0.85 14.656 0.12 0.03 75.8 The discovery of extra-solar planets has brought with it a HD 195019 3.43 18.3 0.14 0.05 268.
    [Show full text]
  • The Twofold Debris Disk Around HD 113766 A⋆
    A&A 551, A134 (2013) Astronomy DOI: 10.1051/0004-6361/201220904 & c ESO 2013 Astrophysics The twofold debris disk around HD 113766 A? Warm and cold dust as seen with VLTI/MIDI and Herschel/PACS J. Olofsson1, Th. Henning1, M. Nielbock1, J.-C. Augereau2, A. Juhàsz3, I. Oliveira4, O. Absil5, and A. Tamanai6 1 Max Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 2 UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), UMR 5274, Grenoble, France 3 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 4 Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259, USA 5 Département d’Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, 4000 Sart Tilman, Belgium 6 University Heidelberg, Kirchhoff-Institut für Physik, 69120 Heidelberg, Germany Received 13 December 2012 / Accepted 22 January 2013 ABSTRACT Context. Warm debris disks are a sub-sample of the large population of debris disks, and display excess emission in the mid-infrared. Around solar-type stars, very few objects (∼2% of all debris disks) show emission features in mid-IR spectroscopic observations that are attributed to small, warm silicate dust grains. The origin of this warm dust could be explained either by a recent catastrophic collision between several bodies or by transport from an outer belt similar to the Kuiper belt in the solar system. Aims. We present and analyze new far-IR Herschel/PACS photometric observations, supplemented by new and archival ground-based data in the mid-IR (VLTI/MIDI and VLT/VISIR), for one of these rare systems: the 10–16 Myr old debris disk around HD 113766 A.
    [Show full text]
  • Astro-Ph 2006第2週
    2020年 6月 第2週 新着論文サーベイ 6 月 8 日 (月曜日) [1] arxive:2006.03120 Title: ”Dual-Wavelength ALMA Observations of Dust Rings in Protoplanetary Disks” Author:Feng Long, Paola Pinilla, Gregory J. Herczeg, Sean M. Andrews, Daniel Harsono, Doug Johnstone, Enrico Ragusa, Ilaria Pascucci, David J. Wilner, Nathan Hendler, Jeff Jennings, Yao Liu, Giuseppe Lodato, Francois Menard, Gerrit van de Plas, Giovanni Dipierro Comments: accepted for publication in ApJ Subjects: Earth and Planetary Astrophysics (astro-ph.EP); Astrophysics of Galaxies (astro-ph.GA); Solar and Stellar Astrophysics (astro-ph.SR) [観測/ALMA] 原始惑星系円盤中にリング状の構造を持つDS Tau, GO Tau, DL Tau を 、ALMA で 観 測 し た 。波 長1.3 は mm と 2.9 mm の 2 バ ン ド で 、角 分 解 能 は と も0.1 に秒 角 。2 バ ン ド で リ ン グ の 端 の 位 置 は 同 じ で あ っ た 。こ の こ と を 、ダ ス ト 進化のモデルで説明した。 [2] arxive:2006.03113 Title: ”The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation” Author:J. L. Ortiz, P. Santos-Sanz, B. Sicardy, G. Benedetti-Rossi, D. Bérard, N. Morales, R. Duffard, F. Braga-Ribas, U. Hopp, C. Ries, V. Nascim- beni, F. Marzari, V. Granata, A. Pál, C. Kiss, T. Pribulla, R. Komžík, K. Hornoch, P. Pravec, P. Bacci, M. Maestripieri, L. Nerli, L. Mazzei, M. Bachini, F. Martinelli, G. Succi, F. Ciabattari, H. Mikuz, A. Carbog- nani, B. Gaehrken, S. Mottola, S. Hellmic, F. L. Rommel, E. Fernández- Valenzuela, A. Campo Bagatin, S. Cikota, A.
    [Show full text]
  • Frequency of Debris Disks Around Solar-Type Stars: First Results from a Spitzer Mips Survey G
    The Astrophysical Journal, 636:1098–1113, 2006 January 10 A # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. FREQUENCY OF DEBRIS DISKS AROUND SOLAR-TYPE STARS: FIRST RESULTS FROM A SPITZER MIPS SURVEY G. Bryden,1 C. A. Beichman,2 D. E. Trilling,3 G. H. Rieke,3 E. K. Holmes,1,4 S. M. Lawler,1 K. R. Stapelfeldt,1 M. W. Werner,1 T. N. Gautier,1 M. Blaylock,3 K. D. Gordon,3 J. A. Stansberry,3 and K. Y. L. Su3 Received 2005 August 1; accepted 2005 September 12 ABSTRACT We have searched for infrared excesses around a well-defined sample of 69 FGK main-sequence field stars. These stars were selected without regard to their age, metallicity, or any previous detection of IR excess; they have a median age of 4 Gyr. We have detected 70 m excesses around seven stars at the 3 confidence level. This extra emission is produced by cool material (<100 K) located beyond 10 AU, well outside the ‘‘habitable zones’’ of these systems and consistent with the presence of Kuiper Belt analogs with 100 times more emitting surface area than in our own planetary system. Only one star, HD 69830, shows excess emission at 24 m, corresponding to dust with temper- À3 atures k300 K located inside of 1 AU. While debris disks with Ldust /L? 10 are rare around old FGK stars, we find À4 À5 that the disk frequency increases from 2% Æ 2% for Ldust /L? 10 to 12% Æ 5% for Ldust /L? 10 .
    [Show full text]
  • Interferometric Observations of Rapidly Rotating Stars
    Astron Astrophys Rev (2012) 20:51 DOI 10.1007/s00159-012-0051-2 REVIEW ARTICLE Interferometric observations of rapidly rotating stars Gerard T. van Belle Received: 10 October 2011 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Optical interferometry provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Through direct observation of rotationally distorted photospheres at sub-milliarcsecond scales, we are now able to characterize latitude dependencies of stellar radius, temperature structure, and even energy transport. These detailed new views of stars are leading to revised thinking in a broad array of associated topics, such as spectroscopy, stellar evolution, and exoplanet detection. As newly advanced techniques and instrumentation mature, this topic in astronomy is poised to greatly expand in depth and influence. Keywords Stars: rotation · Stars: imaging · Stars: fundamental parameters · Techniques: interferometric · Techniques: high angular resolution · Stars: individual: Altair, Alderamin, Achernar, Regulus, Vega, Rasalhague, Caph 1 Introduction One of the most fundamental stellar characteristics that is most frequently taken for granted is the shape of a star. This is perhaps somewhat unsurprising—in our direct experience of seeing stellar disks, there is only the sun, which is very nearly a perfect sphere: on an average radius of 959.28 ± 0.15 (Kuhn et al. 2004) there is only a variation of only 9.0 ± 1.8 mas (Rozelot et al. 2003) from equator to pole, indicating an oblateness (b/a − 1) of less than 10−5. However, for a surprisingly non-trivial number of stars, this degree of oblateness is in excess of 20% and, in certain cases, Portions of this manuscript were prepared while in residence at European Southern Observatory Karl-Schwarzschild-Str.
    [Show full text]