<<

GENETICDIFFERENTIATIONOF ORIENTALIS MILL. VARIETIESWITHRESPECTTOmatK REGIONOF CHLOROPLASTGENOME ATHESISSUBMITTEDTO THEGRADUATESCHOOLOFNATURALANDAPPLIEDSCIENCES OF MIDDLEEASTTECHNICALUNIVERSITY BY ASLIÖZDĐLEK INPARTIALFULFILLMENTOFTHEREQUIREMENTS FOR THEDEGREEOFMASTEROFSCIENCE IN BIOLOGY AUGUST2007

ApprovaloftheThesis GENETICDIFFERENTIATIONOF MILL. VARIETIESWITHRESPECTTO matK REGIONOFCHLOROPLAST GENOME submittedby ASLI ÖZDĐLEK inpartialfulfillmentoftherequirementsforthe degreeof MasterofScienceinBiologyDepartment,MiddleEastTechnical University by, Prof.Dr.CananÖZGEN ______ Dean,GraduateSchoolof NaturalandAppliedSciences Prof.Dr.ZekiKaya ______ HeadoftheDepartment, Biology Prof.Dr.ZekiKaya ______ Supervisor, BiologyDept.,METU ExaminingCommitteeMembers Prof.Dr.ĐnciTogan ______ BiologyDept.,METU Prof.Dr.ZekiKaya ______ BiologyDept.,METU Prof.Dr.HayriDuman ______ BiologyDept.,GaziUniversity Assoc.Prof.Dr.SertaçÖnde ______ BiologyDept.,METU Assoc.Prof.Dr.ĐrfanKandemir ______ BiologyDept.,ZonguldakKaraelmasUniversity Date: ______

Iherebydeclarethatallinformationinthisdocument has been obtained and presentedinaccordancewithacademicrulesandethicalconduct.Ialsodeclare that,asrequiredbytheserulesandconduct,Ihavefullycitedandreferenced allmaterialandresultsthatarenotoriginaltothiswork. Name,LastName:AslıÖZDĐLEK Signature:

iii ABSTRACT GENETICDIFFERENTIATIONOF LIQUIDAMBARORIENTALIS MILL. VARIETIESWITHRESPECTTOmatK REGIONOFCHLOROPLAST GENOME ÖZDĐLEK,Aslı M.S.,DepartmentofBiology Supervisor:Prof.Dr.ZekiKaya August2007,87pages Liquidambar L.isrepresentedwithmainly4intheworldandoneof these species , Turkish sweet gum (Liquidambar orientalis Mill.) which is a relict endemicspeciesisnaturallyfoundinonlysouthwestern,mainly inMuğla Province. The limited distribution of species with two disputed varieties (var. integriloba Fiori and var. orientalis ) and increased anthropogenic threats to its geneticresourcessignifytheimportanceofstudyinggeneticdiversityinthespecies tohavebetterconservationandmanagementprograms.Forthispurpose,18different populations were sampled throughout the species range and matK region of chloroplast DNA (cpDNA) was sequenced to assess the genetic structure of the species. Turkish Liquidambar orientalis populations were evaluated at two categories:varietylevelandgeographiclevel.Also,twosectorsof matK regionwere examined to assess which part of the region was more variable. All molecular analysiswasconductedinthisstudybyusingMEGAversion3.1andArlequin2.000 softwares.

iv Moleculer diversity analysis indicated that the population located in Fethiye Günlükbaıdistricthasthehighestnumberofpolymorphicsites.Thispopulationis alsogeneticallythemostdistantfromtheothers(averagegeneticdistance0.0038). Among the studied varieties, the average genetic distance within var. integriloba (0.0016) which also includes population FethiyeGünlükbaı was the greatest. Amongthegeographicregions,Muğla1includingFethiyeKöyceğizAydındistrict as well as population FethiyeGünlükbaı showed the highest average genetic distances within the region with a value of 0.0015. According to the molecular variance results, among varieties and among geographic regions, there was no significant differentiation, but great amount of total variation was found (~86%) within Turkish sweet gum populations. With respect to the Fst values among varieties,thehighestgeneticdifferentiationwasobservedbetweenvar.orientalis and unknowngroup(0.040).Furthermore,basedontheresultsofphylogeneticanalysis, Turkish populations of L. orientalis have genetically closer to USA relative ( L. styraciflua L.) than Chinese relatives ( L.acalycina H.T Chang and L. formosana Hance).

In conclusion, 10 Turkish sweet gum populations were found to be important for conservationissues.Furthermore,eightoftheselocatedinMuğlaprovinceandsixth of them belong to var. integriloba . Especially FethiyeGünlükbaı, ÇetibeliandMuğlaKıyrapopulationsshouldbeincludedineither insitu or exsitu or inbothconservationprogramsinthefuture.

Keywords: Liquidambarorientalis , matK gene,cpDNA

v ÖZ KLOROPLASTGENOMUNDAKĐ matK GENBÖLGESĐNEGÖRE LIQUIDAMBARORIENTALIS MILL.VARYETELERĐNĐNGENETĐK FARKLILAMASI ÖZDĐLEKAslı Y.Lisans,BiyolojiBölümü TezYöneticisi:Prof.Dr.ZekiKaya Ağustos2007,87sayfa Dünyaüzerinde4anatürletemsiledilen LiquidambarL.cinsininbirtürüde güneybatıanadoludaözellikleMuğlailidolaylarında doğal olarak yayılı gösteren Türk sığlası yada Anadolu sığlası (Liquidambar orientalis Mill.)’dır. Türk sığlası Türkiye için reliktendemik bir türdür. Đki varyetesiyle bilinen türün sınırlı bir bölgede yayılı göstermesi (var. integriloba Fiori and var. orientalis ) gen kaynaklarına olan tehditleri arttırmaktadır. Bu da türün genetik çeitliliğinin çalıılmasıyla iyi bir koruma stratejisinin gelitirilmesinin ve gen kaynaklarının idaresinin önemini ortaya koymaktadır. Bu nedenle, türün 18 farklı toplumu örneklendivekloroplastDNA(cpDNA)’sındabulunan matK bölgesinindizianalizi yapılaraktürünbubölgeiçingenetikyapılamasıbelirlendi.Türksığlatoplumlarının matK DNAdiziverileriikiaamadadeğerlendirildi:varyetelerseviyesivecoğrafik bölgeler seviyesi. Ayrıca, matK gen bölgesi iki kısımda incelenerek hangi kısmın dahafazlaçeitlilikgösterdiğibelirlendi.TümverisetleriMEGA3.1veArlequin 2.000bilgisayarprogramlarıyladeğerlendirildi.

vi Molekülerçeitlilikanalizi,FethiyeGünlükbaıbölgesindebulunantoplumun fazlamiktardapolimorfikbölgeyesahipolduğunugöstermektedir.Butoplumaynı zamanda genetik açıdan diğer toplumlardan en farklı olan toplumdur (ortalama genetik mesafe 0.0038). Çalıılan tüm varyeteler arasında, aynı zamanda Fethiye Günlükbaıtoplumunudaiçinealanvaryete integriloba ,varyeteiçiortalamagenetik mesafe olarak en yüksek değere sahiptir (0.0016). Coğrafik bölgeler arasında, FethiyeKöyceğizAydınbölgesiniiçerenMuğla1,FethiyeGünlükbaıtoplumunda olduğugibi0.0015değeriyleenyüksekcoğrafikbölgeiçiortalamagenetikmesafe değerinigöstermektedir.Molekülervaryanssonuçlarınagöre,varyetelervecoğrafik bölgelerarasındaönemlibirfarklılıkolmadığı,fakatTürksığlasıtoplumlarıiçinde yüksekorandavaryasyonbulunduğusaptanmıtır(~86%).VaryetelerarasındakiF st değerlerinegöreenyüksekgenetikfarklılamanınvaryete integrilobailebilinmeyen grup arasında olduğu belirlendi. Ayrıca, bu çalımada elde edilen sonuçlar, Türk sığla toplumlarının ( L. orientalis ) genetik olarak Amerika’daki akrabasına ( L. styraciflua ), Çin’deki akrabalarına ( L. acalycina H.T Chang and L. formosana Hance)oranladahayakınolduğunugöstermektedir. Yapılan tüm analiz sonuçlarına göre, 10 Türk sığlası toplumu, koruma kapsamınaalınmasıbakımındanönemlibulunmutur.Ayrıca,çalıılan10toplumdan 6’sınınvaryete integriloba ’yaaitolduğuvebu10toplumun8’ininMuğlabölgesinde bulunduğu saptanmıtır. Özellikle, FethiyeGünlükbaı, MarmarisÇetibeli ve MuğlaKıyra toplumları gelecekte, insitu , exsitu veya her iki koruma programı kapsamındadikkatealınmasıgerekmektedir. AnahtarKelimeler: Liquidambarorientalis , matK gene,cpDNA

vii tomyunique...

viii ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor, Prof. Dr. Zeki Kaya for his guidance, supervisionandendlesspatiencethroughoutthestudy.

Iwouldliketoexpressmythankstoalljurymembersfortheirhelpfulcommentsand criticismsonthemanuscript.

IwishtoexpressmydeepgratitudetoDr.Yasemin Đçgen, Dr. Burcu Çengel, Dr. Gaye Kandemir and Assoc. Prof. Dr. Đrfan Kandemir for their continuous help, advice,collaborationandencouragementineverystepofthisstudy.

I wish to thank Ercan Velioğlu, Süleyman Iık Derilgen, Murat Nur, Belkıs Korkmaz,OsmanEeandRumiSabuncuforprovidingsources.

IwouldliketothankallmycolleaguesfromDepartmentofBiology,Genetics andTissueCultureLaboratoryfortheirsupportandfriendship.Iwanttothankalso myfriendsFerhundeAysinandNihalimekÖzek.

SpecialthankstomymotherHamideÖzdilek,myfatherSururiÖzdilek,mylovely sisterArzuÖzdilekandmylovelylittlebrotherKeremÖzdilek.

Thisthesieswassupportedbytheresearchfund:TUBITAKTOVAG104O154and BAP0811DPT2002K12510.

ix TABLEOFCONTENTS ABSTRACT ...... iv ÖZ...... vi DEDICATION ...... viii ACKNOWLEDGMENTS...... ix TABLEOFCONTENTS ...... x LISTOFFIGURES...... xiii LISTOFTABLES ...... xiv LISTOFABBREVIATIONS ...... xvi CHAPTERS 1.INTRODUCTION...... 1 1.1 Liquidambar L...... 1 1.1.1Liquidambarorientalis ...... 3 1.1.2Distributionofthespecies...... 6 1.1.3Importanceofthespecies ...... 7 1.1.4CurrentstatusofTurkishsweetgumforestsandconservation Program ...... 8 1.2DNAsequencestudiesinplantsystematics ...... 9 1.2.1 ChloroplastDNA...... 9 1.2.2 ThematuraseKinase( matK) gene ...... 10 1.2.3Significanceofthe matK gene...... 11 2.JUSTIFICATIONOFTHESTUDY...... 12 3.OBJECTIVESOFTHESTUDY ...... 13 4.MATERIALSANDMETHODS ...... 14 4.1Plantmaterial...... 13 4.2DNAisolation...... 17 4.3DNAquantification ...... 20 4.4Primerdesignsfor matK region...... 22

x 4.5OptimizationofPCR(PolymeraseChainReaction)conditionsforTurkish sweetgum...... 23 4.6Optimizationofreactionconditions...... 23 4.7PCRreactioncyclesandvisualizationofPCRproduct ...... 24 4.8Datacollection...... 26 4.9Analysisofsequencedataof matK region ...... 26 4.10Moleculardiversityandphylogeneticanalysisbasedonsequencedataof matK region ...... 29 4.10.1PopulationgeneticstructureinferredbyAnalysisofMolecularVariance (AMOVA...... 30 4.10.2ConstructionofphylogeneticforTurkishsweetgum ...... 34 4.10.3ModelsforestimatinggeneticdistancesofTurkishsweetgum...... 35

4.10.4Estimationofpairwisegeneticdistances(F st )amongpopulationsand constructionofphylogenetictrees...... 36 4.10.5MinumumSpanningamonghaplotypesofTurkishsweetgum .... 36 5.RESULTS...... 37 5.1Moleculardiversityinthe matK region...... 37 5.1.1MoleculardiversitywithinTurkishsweetgumpopulations ...... 39 5.2MolecularvariancesamongTurkishsweetgumpopulations ...... 41 5.2.1GeneticdistanceswithinTurkishsweetgumpopulations ...... 41 5.3MolecularvariancesamongTurkishsweetgumvarieties ...... 42 5.3.1GeneticdistancesamongTurkishsweetgumpopulationsandas Varieties...... 44 5.4MolecularvariancesamonggeographiclocationsofTurkishsweet Gum...... 45 5.4.1AveragegeneticdistancesamonggeographiclocationsofTurkishsweet gumpopulations ...... 46 5.5Geneticdifferencesofamong Liquidambar species aswellasamong

TurkishpopulationsofL.orientalis basedonF st values...... 47 5.6Phylogenetictrees...... 50

xi 5.7Theminimumspaningtreeof L.orientalis varieties ...... 56 6.DISCUSSION ...... 58 6.1Moleculardiversityinthe matK regionofTurkishsweetgumpopulations....58 6.2 Genetic differences among Turkish sweet gum populations at population, varietyandgeographiclocationlevelsofthepopulations ...... 60 6.3GeneticdifferencesamongLiquidambarspeciesincludingTurkishsweetgum populations ...... 61 6.4 The constructed phylogenetic trees as population, variety and geographic locationrespects ...... 62 6.5MST ...... 62 7.CONCLUSION...... 64 REFERENCES...... 66 APPENDICES...... 75 A.CHEMICALSANDEQUIPMENTS ...... 75 B.SEQUENCESOFTHEPRIMERS ...... 78 C.DATASETS...... 79 D.APARTOFTHEMEGADATAFILE...... 81 E.PHYLOGENETICTREES...... 86

xii LISTOFFIGURES Figure 1.1 The map indicates the distribution of family including Liquidambar species...... 2 Figure1.2ThetallestTurkishsweetgumtreeinTurkishsweetgum( Liquidambar orientalis Mill.)ForestNatureProtectionAreainIsparta ...... 4 Figure 1.3 The palmately five lobed of L. orientalis from Muğla Province, Turkey ...... 5 Figure1.4Acloseupoftheof L.orientalis ...... 5 Figure1.5L.orientalis’ (‘gumball’)with...... 6 Figure1.6NaturaldistributionoftheTurkishsweetgum ...... 7 Figure 4.1 Natural range of Turkish sweet gum and location of the 18 different populationssampledforthestudy...... 15 Figure4.2DNAyieldsofthe18differentmethods...... 17 Figure4.3Conjecturalrelativepositionsof matK primers ...... 23 Figure5.1ThephylogenetictreeregardingvarietiesofTurkishsweetgumderived fromneighbourjoiningmethodsusingpdistance...... 51 Figure5.2Thephylogenetictreeregardingthegeographiclocationsofpopulations derivedfromtheneighbourjoiningmethodsusingpdistance...... 53 Figure 5.3 The phylogenetic tree regarding 18 Turkish sweet gum populations derivedfromtheneighbourjoiningmethodsusingpdistance...... 55 Figure5.4Minimumspaningtreeof28operationaltaxonomicalunits(OTUs)ofL. orientalisvarietiesand10outgroups...... 57 FigureE.1Phylogenetictreeswithtwoindividualsfromeach18populations...... 86 Figure E.2 Phylogenetic trees with all sequences obtained from each 18 populations ...... 87

xiii LISTOFTABLES Table4.1.DescriptiveinformationonstudiedTurkishsweetgumpopulations...... 16 Table4.2.TheprotocolsappliedinDNAisolationstudies ...... 18 Table4.3.CTABprotocol...... 19 Table4.4.Average,minimumandmaximumDNAconcentrationsofthestudied18 populations ...... 21 Table4.5.Thelistoftheprimersusedforthesequencing ...... 22 Table4.6.ThereactionmixturestestedfortheoptimizationofPCR...... 24 Table4.7.Thecompositionof optimizedPCRreactionmixture...... 25 Table4.8.ThePCRcyclesoptimizedforamplificationof matK region...... 25 Table 4.9. The codes of individuals (genotypes) for each of 18 populations with matK sequenceofTurkishsweetgum(maindatasets...... 27 Table 4.10. The codes of genotypes available with sequences for each of 18 populationsofTurkishsweetgum(subdatasets) ...... 28 Table 4.11. Expected AMOVA table for testing variety effect in Turkish sweet gum...... 32 Table4.12.ExpectedAMOVAtablefortestingtheeffectofgeographicregionsof Turkishsweetgum ...... 33 Table 4.13. Expected AMOVA table for testing the effects of Turkish sweet gum populations ...... 34 Table 5.1. Estimated molecular diversity parameters for matKF1R3, matKF5R1 andentire matK generegion...... 38 Table5.2.EstimatedmoleculardiversityparametersforstudiedTurkishsweetgum populations ...... 40 Table5.3.AMOVAresultswithrespectto18Turkishsweetgumpopulations ...... 41 Table5.4.AveragegeneticdistanceswithinpopulationsofTurkishsweetgum ...... 42 Table5.5.AMOVAresultswithrespecttovarietiesofTurkishsweetgum ...... 43

xiv Table 5.6. Average genetic distances computed among populations of varieties of Turkishsweetgum...... 44 Table 5.7. AMOVA results with respect to geographic regions of Turkish sweet gum ...... 46 Table5.8.Averagegeneticdistancescomputedaccordingtothegeographiclocations ofTurkishsweetgum ...... 47

Table5.9. A)PairwisecomparisonofF st valuesamongTurkishsweetgumvarieties and Liquidambar species ...... 49

B)PairwiseF st valuesamong Liquidambar species...... 49 TableB.1.Sequencesoftheprimers...... 78 TableC.1.Individualnumbersof18populationswith2individuals ...... 79 TableC.2.Individualnumbersof18populationswith3individuals ...... 80 TableC.3.Individualnumbersof18populationswith4individuals ...... 80 xv LISTOFABBREVIATIONS AMOVA AnalysisofMolecularvariance βME BetaMercaptoethanol cpDNA ChloroplastDNA CTAB CetylTrimethylAmmoniumBromide DNA DeoxyribonucleicAcid dNTP DeoxyribonucleotideTriPhosphate EDTA EthyleneDiamineTetraAceticacid ETOH Ethanol ITS InternalTranscribedSpacerRegion IUCN TheWorldConservationUnion MEGA MolecularEvolutionaryGeneticAnalysis MST MinimumSpanningTree mtDNA MitochondrialDNA matK maturaseK NCBI NationalCenterforBiotechnologyInformation NJ Neighbourjoining nrDNA NuclearribosomalDNA ORF OpenReadingFrame OTUsOperationalTaxonomicalUnits PCR PolymeraseChainReaction rbcL RuBisCoLargesubunit SDS SodiumDodecylSulphate TAE TrisAcetateEDTA TE TrisEDTABuffer tRNA TransferRibonucleicAcid trnK LysinetRNA,

xvi CHAPTERI INTRODUCTION 1.1. Liquidambar L. Sweet gum ( Liquidambar L.)isagenuswithfourmainspecies( L. formosana , L. acalycina spreadincentral&southern, L.styraciflua foundineasternnorth America (Bogle, 1986) and L. orientalis naturally found in southwest of Turkey) (Figure 1.1). It is a flowering plant in the subfamily Bucklandioidae, family Altingiaceae, though formerly the species often treated in the (Örtel, 1988). Liquidambar istheuniquegenusintheHamamelidaceaethathas a disjoineddistributionwithspeciesoccurringinwestern,easternAsiaandNorth America(Li etal ,1997).Allmembersof Liquidambar speciesarelarge, trees(Figure1.2),generally2540mtall,withpalmatelylobedleaves(Figure1.3) arrangedspirallyonthestems.Theflowersaresmall,producedinadenseglobular 12cmdiameter(Figure1.4),pendulousona37cmstem.Thefruitis awoodymultiple24cmdiameter(popularlycalleda‘gumball’),containing numerousseeds(Figure1.5).

1 Figure1.1ThemapindicatesthedistributionofAltingiaceaefamilyincluding Liquidambar species(IckertBond et al ,2005)

2 1.1.1 Liquidambar orientalis Turkishsweetgumisadeciduoustreegrowingupto20mataslowrate.Itishardy to zone but is frost tender and in May, its seeds ripen from October to November.Formofthe L.orientalis leavesdesignatesdifferenceswithinthespecies (Efe,1987).Theflowersareunisexualandmonoecious(individualflowersareeither maleorfemale),butbothsexescanbefoundonthesameplant.Theyareinbloom fromMarchtoApril(AlanandKaya,2003)andpollinatedbybees. Thespeciesgrowsonslopesanddrysoil,butprefersrich,deepandmoistsoilssuch asbogs,riverbanksandcoastalareas.Itcangrowinsemishade(lightwoodland)or noshade. Turkishsweetgumproliferatesbysproutingsuckers,andinreasonableconditions, naturalregenerationisalsopossible(AlanandKaya,2003). Turkishsweetgumhasabalsamobtainedfromtheandinnerbark.Itisused for both as food additives (e.g. as a chewing gum and stabilizer for cakes) and medicinalpurposes(e.g.asanirritant,expectorant,skinsalve,astringentfacelotion, antibacterial, antiinflammatory, antiseptic,pectoralandstimulant).Itisalsotaken internally for the treatment of strokes, infantile convulsions, coma, heart disease, pruritisandtreatmentofcancer. Basedontheresultofpreviousstudies(Acatay,1963;ÖnalandÖzer,1985;Efe, 1987),TurkishsweetgumhasthreereportedvarietiesinTurkey.Theseare; 1. L.orientalis var. orientalis 2. L.orientalis var. integribola 3. L.orientalis var. suber 3 However,thereisnogeneticorwellfoundedsystematicdatathatwouldprovethese proposedvarietiestobevalid.TheresultsofthestudiesbyPemen(1972)andEfe (1987)arecontradicting.Forexample,thefindingofarevisionstudyfor‘Floraof Turkey’ontwovarieties(var. orientalis andvar. integriloba Fiori)classified,based onpresenceandabsenceoflobesonleaves,werenotobservedbythefieldstudiesof Efe(1987).

Figure 1.2 The tallest Turkish sweet gum tree in Turkish sweet gum (Liquidambar orientalis Mill.) Forest located Nature Conservation Area in Isparta(FakirandDoğanoğlu,2003) 4

Figure1.3Thepalmatelyfivelobedleavesof L. orientalis fromMuğlaProvince, Turkey(Photo:MuratAlan)

Figure1.4Acloseupoftheflowersof L. orientalis (Photo:MehmetaliBaaran)

5

Figure 1.5 L. orientalis’ fruit (‘gumball’) with seeds (Photo: Mehmet ali Baaran) 1.1.2Distributionofthespecies Turkishsweetgumhasalimiteddistributionwithinanaltituderangebetween0and 1100minTurkey.IthasnaturallydistributedinAnatoliaamongthebordersofÇine StreaminAydınfromnorth,seashoreofEenStream(Kocaçay)inMuğlatosouth, inSilifkefromeastandinBodrumtowest(Dirik,1986).Muğlaprovinceisthemain distributionareaofthespecies(Figure1.6). 6

Figure1.6NaturaldistributionoftheTurkishsweetgum(AlanandKaya,2003) 1.1.3Importanceofthespecies TurkishsweetgumisarelictendemicspeciesinTurkey,butduetoitspresencein Island,someconsideredthatTurkishsweetgumisnotanendemicspecies. Ontheotherhand,itwassuggestedthatthisspeciesmaybetakenfromTurkeytothe CyprusandRhodesIslandsandcultivatedinearlydays(Hu,1949;Akman,1995). It is an economically important species because of its natural balsam producing ability.Sweetgumoil(Liquidus)isusedinchemistry,pharmacology,and

7 cosmetic industry. It has brownishyellowish color and specific aroma when it is fresh,includingcinnamic acid (acidofcinnamon),sytracin,sytrol,sytron,storesinol andstyrogenin.Sweetgumoilhasafixativefunctioninperfumesandusedinsoap production.Alloilproducedisexported,providinganincomeforlocalpeople.The speciesalsohassomevalueasanornamental,duetoitsattractiveformandcolour (AlanandKaya,2003). 1.1.4CurrentstatusofTurkishsweetgumforestsandconservationprogram Turkishsweetgumspeciesisthreatenedtoday.Thereisasharpdecreaseinnatural distributionofthespeciesfrom6312hain1949(Hu,1949)to1337 hain1987 (Đktüeren and Acar, 1987). Since it has a highly restricted distribution, species is consideredinvulnerablecategoryby‘TheWorldConservationUnion’(IUCN). Turkishsweetgum forestshavebeenbadlydamagedbecauseofopeningofirrigation canal,pasturageandthecontinuousexportofbalsam(pooroilproductionmethods), especially in the period 19681979. Generally, the stems of trees are purposely wounded for the production of the balsam. In addition, the land covered by the specieshasbeenundercontinuouspressurefromthelocalpopulation.Treesarecut downandforestsareclearedintogainarableland.Forallthesereasons,the occurenceofTurkishsweetgum hasbeengreatlyreduced.Atpresent,about1200 hectaresofnaturalTurkishsweetgumforestsremain(Efe,1987). Althoughthereisverylittleinformationavailableonthegeneticsofthisspecies,its ecologicalandbiologicalcharacteristicsprovidesomeindicationaboutthepatterns of genetic diversity. Trees growing from sea level to400m,areknownas“plain sweet gum”, while trees at higher altitudes are “mountain sweet gum”. Trees growingatthehigheraltitudesformsmallgroupsandtoleratefrostbetter. 8 Today,becauseofforestfires(Turkishsweetgumtreesincludeoilintheirstemsand thiscausesfireseasily),pooroilproductionandcontinuouspressurefromthelocal population, this valuable species faces serious problems which may lead to vanishing,although,therearetwogeneconservation forests located in Isparta and MuğlaProvinces,oneorchardinFethiyeGöcek,andfinallytwoseedstandsin Fethiye and Marmaris districts (Forest Trees and Seeds Breeding Research Directorate,http://www.ortohum.gov.tr,lastvisitedAugust2007). 1.2DNAsequencestudiesinplantsystematics Since,nucleicacidsequencingisapowerfultechnique,thedatageneratedbyDNA studieshavemadeitbecomeoneofthemostutilizedofthemolecularapproachesfor inferringphylogenetichistory.DNAsequencedataareoneofthemostinformative tool for molecular systematics. Thus, comparative analysis of DNA sequences is becoming increasingly important in plant systematics because the characters (nucleotides)arethebasicunitsofinformationencodedinallorganisms.Thus,for most studies, systematically informative variation is essentially inexhaustible. Furthermore,differentgenesorpartsofthegenomemightevolveatdifferentrates. Therefore,questionsat differenttaxonomiclevelscanbeaddressedusingdifferent genes or different regions of a gene as well as different genomes (organelle or nuclear)(Liang,1997). 1.2.1ChloroplastDNA Chloroplastisanorganellefoundineukaryoticcells,butithasageneticsystemof prokaryotic origin. have a chloroplast genome (cpDNA) in addition to the nuclear(nDNA)andmitochondrial(mtDNA)genomes.Thenucleargenomeisused insystematicbotanylessfrequently,becauseithasacomplexandrepetitive 9 characteristic.Becauseofitsrapidchangesinitsstructure,size,configuration,and geneorder,themitochondrialgenomeisusedatthespecieslevel. cpDNA; 1)isarelativelyabundantcomponentofplanttotalDNA,thusfacilitating extractionandanalysis; 2)containsprimarilysinglecopygenes; 3) has a conservative rate of 2 nucleotide substitution; and extensive background for molecular information on the chloroplast genome is available. Therefore,mostphylogeneticreconstructionsinplantsystematicsconductedsofaris focusedonmoleculardatageneratedfromthecpDNAgenes(Liang,1997). 1.2.2 ThematuraseKinase(matK) gene The chloroplast gene maturase Kinase ( matK) which is an open reading frame (ORF),locatedwithintheintronof trnK (lysine tRNA) gene, encodes a maturase, protein,usedinRNAsplicing(NeuhausandLink,1987;Wolfe etal ,1992;Mort et al ,2001) ThetRNA Lys (UUU)gene( trnK )containsagroupIIintronandthisgroupIIintron encodesthe matK (Hausner etal ,2006) Group II introns are selfsplicing RNAs and mobile elements which are found in eubacteria,archeaandtheorganellesoffungi,plants,andalgae(BonenandVogel, 2001;LambowitzandZimmerly,2004;Hausner etal ,2006)Becauseofitsencoding function,the trnK introndiffersfromtypicalgroupIIintrons(Hausner etal ,2006). 10 The matK ORFhasbeenusedasanindicatortoconstructplantphylogeniesbecause theORFevolvesrapidly,yetisubiquitousinplantsinevolutionarystudies(Hiluand Liang,1997;Kelchner,2002;Hausner etal ,2006). 1.2.3Significanceofthe matK gene TherearevariousstudieswherematK genesequenceisusedinphylogeneticanalysis so far. These studies include family, genera and species levels. In the study concerningthefamily,ithasbeendenotedthatthegene matK evolves approximately three times faster than rbcL (RuBisCo Large subunit) (Johnson and Soltis, 1994, 1995;Johnson et al .,1996),themostcommoncpDNAgeneusedin phylogenetic analysis (Chase et al ., 1993). In addition, the matK gene sequences have been used in Polemoniaceae (Steele and Vilgalys, 1994), Orchidaceae tribe Vandeae(JarrellandClegg,1995),Myrtaceae(Gadek etal ,1996),Poaceae(Liang and Hilu 1996), Apiaceae (Plunkett et al . 1996), and flowering plants in general (HiluandLiang,1997).The matKwasshowntohavehighervariationthananyother studiedchloroplastgenes.However,thevariationwasslightlyhigheratthe5’region than at the 3’ region, approximate even distribution was observed throughout the entiregene.Inaddition,thehighproportionoftransversion(achangefrompurineto apyrimidine,orviceversa,isatransversion)inthe matKgenemightprovidehigh phylogeneticinformation.Thesefactorsunderscoretheusefulnessofthe matK gene in systematic studies and suggest that comparative sequencing of mat K may be appropriateforphylogeneticreconstructionatsubfamily,family,generaandspecies levels(Tanaka etal ,1997).Furthermore, matK hasevolutionarypatternsandpace that separate it from most genes used in angiosperm phylogeny rearrangement (OlmsteadandPalmer,1994;HiluandLiang,1997;Hilu etal ,2003). 11 CHAPTERII JUSTIFICATION 1. Turkish sweet gum is an economically important species and has a potential of desired hereditary features. There is very little genetic knowledgeorongoingresearchonthisspecies. 2. Accordingtoevidence,althoughthespeciesspreadintothenorthern part of Anatolia in the past, its natural distribution is now limited to a smallareainsouthwesternTurkey. 3. Itisarelictendemicspecieswithrestrictednaturaldistribution.Natural distributionareaisreducedfromdaytodayduetoanthrophogenicfactors. Besides above reasons, Turkish sweet gum constitutes a crucially important forestecosystemanditisnecessarytodevelopaneffectiveconservationstrategy. The genetic structure of Turkish sweet gum populations urgently needs to be investigated for conservation purposes. Some practices: seed stands, nature conservationareasandclonalseedorchardsweretheconservationmeasurestobe takensofar.Forspecieswithlimitedgeneticinformation,itisoftenassumedthat genetic variation follows geographic and ecological variation. (Alan and Kaya, 2003). This study can help to eloborate such assumptions. For this reason, determination of genetical variation of Turkish sweet gum at the species and populationlevelsareofgreatimportance. 12 CHAPTERIII OBJECTIVES Themainobjectivesofthisstudyare; i. To obtain genetic data which could help to solve taxonomic problems of Turkishsweetgumatthevariety,speciesandgenuslevelsbymeansof matK generegion, ii. To determine genetic diversity patterns among natural populations of the species, iii. Todevelop insitu conservationstrategiesofgeneticresourcesofthespecies withtheaidofcurrentdata. iv. To explore the genetic and evolutionary relationships of L. orientalis with otherthreespeciesof LiquidambarwhicharenativesofAmericaandChina. Furthermore, to look for answers what are the rate and pattern of nucleotide variations in the matK gene in Turkish sweet gum and to imply evolutionary consequencesofthesevariations. 13 CHAPTERIV MATERIALSANDMETHODS 4.1Plantmaterial Inthisstudy,18differentpopulationsofTurkishsweetgumfromdifferentpartof the southwest of Turkey were collected in cooperation with the Forest Trees and SeedsBreedingResearchDirectorate,MinistryofEnvironmentandForestry.These populationsrepresentthewholenaturalrangeofthespeciesinTurkey(Figure4.1). Populationlocations,typeofpopulationandaltitudeofpopulationwereprovidedin detail in Table 4.1. Sample size (number of trees that leaf tissues obtained) was approximately3035treesforeachpopulation. 14

Figure 4.1 Natural range of Turkish sweet gum and location of the 18 populationssampledforthestudy(MapadoptedfromAlanandKaya,2003) 15 Table4.1.DescriptiveinformationonstudiedTurkishsweetgumpopulations # Populations Abbreviation Thevarietiesof Standtype Altitude Nameand ofthepopulations L. orientalis & (m) Locations (geograpgic groups) 1 AcıpayamAlcı AK unknown(1) Pure 1100 Population 2 Marmaris ÇE var. integriloba Vegatation 30 Çetibeli (2) mixed with in stream 3 Marmaris DE var. integriloba Pure 5 Değirmenyanı (2) Population 4 Fethiye FE var. integriloba Pure 5 Günlükbaı (2) Population 5 Muğla FI var. integriloba Pure 50 Kızılyaka (2) Population 6 Marmaris GC var. integriloba Pure 5 Günnücek (2) Population 7 Marmaris GN var. integriloba Pure 5 Günnücek (2) Population 8 Acıpayam GÜ unknown(1) Pure 1100 Bozdağ Population 9 Marmaris HÖ var. integriloba Vegatation 10 Hisarönü (2) mixedwithin stream 10 MuğlaKıyra KI var. integriloba Scatteredtrees 50 (2) 11 Köyceğiz KÖ var. integriloba Pure 10 Köyceğiz (2) Population 12 Gölhisar PA unknown(3) Nearstream 250 Pamucak 13 Serik SE unknown(3) Nearstream 30 14 SÖ unknown(3) Pure 550 Söğütdağ Population 15 Köyceğiz TB var. integriloba Clonal 10 Köyceğiz(TB) (2) 16 AydınUmurlu UM var. orientalis(2) Vegatation 250 mixedwithin stream 17 Muğla YA var. orientalis(4) Vegatation 250 Yatağan mixedwithin stream 18 MuğlaYılanlı YL var. orientalis(4) Vegatation 250 mixedwithin stream (GeographicGroups→Group1:,Group2:Muğla1,Group3:AntalyaandBurdur,Group4: Muğla2) 16 4.2DNAisolation Turkishsweetgumleaves,collectedinthefieldbyForestTreesandSeedsBreeding ResearchDirectorate,MinistryofEnvironmentandForestryin2002,werestoredat 80°C until DNA extraction. Leaf tissues were obtained from 30 trees in each populationandbestDNAyieldingtreesforeachpopulationweredetermined.Total cellular DNA was isolated using modified 2XCTAB (Cetyl Trimethyl Ammonium Bromide) method (Doyle and Doyle, 1987). Before selection of CTAB method, different methods were put into practice. These methods and their outcomes were giveninTable4.2.Figure4.2showstheDNAyieldsofthesemethods.Twodifferent detergentwereappliedasCTABandSDS(Sodiumdodecylsulfate),CTAB(Lane1 13and18)wasbetterthanSDS(Lane14,15,16and17).Selectedleafweightswere 15mg,25mg,50mgand75mgfromwhich25mgleafweightwaschosensincewhole DNAyieldswith25mgweresatisfactory.Celldebrisprecipitationwascarriedout. Forproteinseparation,Choloroform:octanol(24:1v/v)solutionwasusedandDNA precipitationwascarriedoutwithicecoldisopropanol.

Figure4.2DNAyieldsofthe18differentmethods.Misthelamda Hind IIIDNA sizemarkerinthegelphotograph.NumbersstandforDNAextractionmethods. PleaseseeTable4.2forthedescriptionsofnumericalcodes

17 Table4.2.TheprotocolsappliedinDNAisolationstudies Lane Method Leaf Celldebris Protein DNA DNA Weight precipitation separation precipitation Yield 1 CTAB 15mg + C:IAA * isopropanol good 2 CTAB 15mg C:IAA* isopropanol good 3 CTAB 15mg + C:O** isopropanol good 4 CTAB 15mg C:O** isopropanol good 5 CTAB 25mg + C:IAA* isopropanol very good 6 CTAB 25mg C:IAA* isopropanol very good 7 CTAB 25mg + C:O** isopropanol very good 8 CTAB 25mg C:O** isopropanol very good 9 CTAB 50mg + C:IAA* isopropanol pure 10 CTAB 50mg C:IAA* isopropanol very good 11 CTAB 50mg + C:O** isopropanol pure 12 CTAB 50mg C:O** isopropanol smear 13 CTAB 50mg + C:O** NaAc:EtOH very good 14 SDS 25mg + C:O** NaAc:EtOH good+sm ear 15 SDS 50mg + C:O** NaAc:EtOH good+sm ear 16 SDS 75mg + C:O** NaAc:EtOH pure 17 SDS 50mg + C:O** NaAc:EtOH pure 18 CTAB C:IAA* isopropanol fair Note: *ChloroformOctanol. ** Chloroformisoamylalcohol

18 DNAextractionfromfrozenleaftissuesusingCTAB(CetylTrimethylAmmonium Bromide,ChemicalcompositionisinAppendixA)methodwascarriedoutforall18 populations.First,25mgleaveswerecrushedwithbythehelpofliquidnitrogenand putitintheependorftubes.Then,themethodindicatedinTable4.3wasperformed andrepeatedforeachof12leafsamples(12trees).Atotalof216trees(leaftissues of12treesx18populations=216)wereusedforDNAextraction. Table4.3.CTABprotocol 1. 900 µl CTAB [1 M pH 8.0 Tris HCl, 50 ml+0.25 M EDTA (EthyleneDiamineTetraAceticAcid)pH8.0,40mL+41gNaCl+1 mLβME(BetaMercaptoethanol)completeto500mL],vortex 2. Incubateforabout1hourat65 °Cinwaterbath. 3. Spin14000rpm,10min. 4. Transferthesupernatanttocleanmicrofugetubes. 5. Add500 µlChloroform:Octanol(24:1v/v).Invertthetubes. 6. Spin14000rpm,15min. 7. Transferthesupernatanttocleanmicrofugetubes. 8. Add500 µlcoldisopropanol. 9. Placethetubes–80 °Catleastfor1hour. 10. Spin14000rpm,10min. 11. Removethesupernatant,washpellet500 µl,70%EtOH(Ethanol) twice. 12. Drythetubes. 13. Dissolvepelletwith25 µlof PCRgradeH2O. 14.DNAsampleswerestoredat20 °C 19 4.3DNAquantification ConcentrationDNAof12individualsofeach18populationsweredeterminedwith HoeferDyNAQuantTM200FluorometerusingthefluorometricassayofCesarone et al.(1979).Instrumentwaszeroedusing2mLofassay solution (Appendix A). Then, the instrument was calibrated to 100ng/ µL with DNA standard solution (AppendixA).2µLofDNAsamplewasplacedwith2mLofassaysolutionintothe cuvettethentheDNAmeasurmentwascarriedout.AfterDNAquantification,itwas determinedthatwhichDNAsamplescouldbeusedforPolymeraseChainReaction (PCR)experiments.Theaverage,minimumandmaximumDNAyieldsweregivenin Table4.4.

20 Table4.4.Average,minimumandmaximumDNAconcentrationsofthestudied 18populations DNAConcentrationng/mL L. orientalis var. integriloba Sample Mean±SD * Minimum Maximum size MarmarisÇetibeli(ÇE) 12 3.30±2.3 0 6 MarmarisDeğirmenyanı(DE) 12 3.50±2.8 0 9 FethiyeGünlükbaı(FE) 12 9.50±5.0 4 20 MuğlaKızılyaka(FI) 12 7.50±6.5 1 25 MarmarisGünnücek(GC) 12 8.75±4.4 2 14 MarmarisGünnücek(GN) 12 7.60±4.8 1 15 MarmarisHisarönü(HÖ) 12 4.25±2.5 1 8 MuğlaKıyra(KI) 12 3.17±3.2 1 10 KöyceğizKöyceğiz(KÖ) 12 7.75±5.6 1 21 Meanforvar. integrilba 120 5.97±2.47 3.17 9.50 L. orientalis var. orientalis Sample Mean±SD * Minimum Maximum size AydınUmurlu(UM) 12 2.25±1.9 0 6 MuğlaYatağan(YA) 12 6.25±4.3 2 17 MuğlaYılanlı(YL) 12 5.75±5.0 0 15 Meanforvar. orientalis 36 4.75±2.17 2.25 6.25 Unknown Sample Mean±SD * Minimum Maximum size GölhisarPamucak(PA) 12 7.91±5.3 2 19 AntalyaSerik(SE) 12 4.50±2.8 0 11 BurdurSöğütdağ(SÖ) 12 4.92±4.3 0 14 AcıpayamBozdağ(GÜ) 12 9.20±6.9 0 21 AcıpayamAlcı(AK) 12 12.00±4.8 3 23 Meanfor‘unknown’ 60 7.71±3.11 4.50 12.00 *SD=Standarddeviation

21 4.4Primerdesignsfor matK region The matK geneis1512bpinlengthinsweetgumandisembeddedwithina2.5kb groupIIintron( trnK introns,shadedareasinFigure4.3)thatinterruptsthetwo trn K exons(whitepartinFigure4.3)(Sugiura,1992). In this study, 9 primers whose nucleotide compositions ranging from 18 to 21 nucleotideswereselectedbasedonapreviousstudyon Liquidambar species(Li et al .,1997).Additionally,7primerswith20nucleotideseachweredesignedaccording to the GeneBank data on Liquidambar orientalis. For sequencing studies, it was decided to choose 4 of 16 primers. These 4 primers and their sequences were provided in Table 4.5. The sequences of remaining primers can be found in AppendixB. Table4.5.Thelistoftheprimersusedforthesequencing Primer Primersequence(5’3’) Length Regiontobeamplified (basepairs) matKF1 ACTGTATCGCACTATGTATCA 21 5’siteof mat K (yellow+partialgreenpartin Figure4.1) mat KR3 GATCCGCTGTGATAATGAGA 20 mat K (green+partialyellowpartin Figure4.1) mat KF5 TGGAGYCCTTCTTGAGCG* 18 mat K (green+partialbluepartin Figure4.1) mat KR1 GAACTAGTCGGATGGAGTAG 20 3’siteof mat K (blue+partialgreenpartin Figure4.1) *Thisprimerwassynthesisedwithequalpartsof‘C’and‘T’atbaseposition6. 22

Figure 4.3 Conjectural relative positions of matK primers (shaded areas are introns).Greenpartisamplifiedbyboth matKF1 , matKR3 and matKF5, matKR1 (Li et al .,1997) 4.5OptimizationofPCR(PolymeraseChainReaction)conditionsforTurkish sweetgum

Although there are many studies related with matK regions of different species as well as one study related with the Liquidambar species, nevertheless, new PCR conditionsneededtobetestedtooptimizetheconditionforthecurrentstudy. 4.6Optimizationofreactionconditions

For 25L of reaction volume, MgCl 2, dNTP (deoxyribonucleotide triphosphate) mixture,primers,andtemplateDNAwereselectedandtested.Thecombinationsof theseparametersindifferentconcentrationswereprovidedinTable4.6.

23 Table4.6.ThereactionmixturestestedfortheoptimizationofPCRconditions

# dH 2O 10X MgCl 2 dNTP PrimerPairs TaqPol. DNA Total (L) Buffer (25mM) (mM) (100M) (5u/L) (3ng/L) (L)

1 17.9 2.5L 2.5L 0.25L 0.25L+ 0.1L 1.25L 25 0.25L 2 17.8 2.5L 2.5L 0.25L 0.3L+ 0.1L 1.25L 25 0.3L 3 17.7 2.5L 2.5L 0.25L 0.35L+ 0.1L 1.25L 25 0.35L 4 17.6 2.5L 2.5L 0.25L 0.4L+ 0.1L 1.25L 25 0.4L 5 9.025 1.25L 0.75L 0.125L 0.125L+ 0.1L 1L 12.5 0.125L 6 9 1.25L 1L 0.125L 0.125L + 0.1L 1L 12.5 0.125L 7 8.075 1.25L 1.25L 0.125L 0.125L+ 0.1L 1L 12.5 0.125L 8 8.05 1.25L 1.25L 0.15L 0.125L+ 0.1L 1L 12.5 0.125L PCRreactionmixturesweretestedwithtwodifferentamountsas12.5Land25L. The sixth reaction mixture gave a better band among all tested ones. For the sequenceanalysis55Lmixturewasneededandsixthreactionmixturewasmodified to55L.AmongthetotalPCRreactionmixture,5Lof10XBuffer(MgCl 2free),

4Lof25mMMgCl 2,0.5Lof10mMdNTPs,2Lof~3ng/LofDNA,0.5Lof

100Meachoftheprimersand0.4Lof5u/lTaq polymeraseand42.1LofdH 20 (Sterilewater)wasfoundtobethebestandusedforthe55LofPCRmixturefor sequenceanalysis(Table4.7).About5LofthePCRmixturewererunintoagorose gel to visualize the band quality. After detecting the good band, remainig 50L mixturewerestockedforsequencinganalysis.Thereactionmixtureswereprepared in thinwalled 0.2 mL Eppendorf tubes and run on a thermocycler (Eppendorf Mastercycler,Eppendorf,Canada,andTechnegeniusThermocycler,Techne,USA).

24 Table4.7.ThecompositionofoptimizedPCRreactionmixture Compenent Quantityused(l) Finalconcentration 10xBuffer 5 1x dNTPs(10mM) 0.5 0.1mM MgCl2(25mM) 4 2.3mM Primer(100M) 0.5 1M Tag DNApolymerase 0.4 2.5unit (5u/l) DNA(3ng/l) 2 6ng

dH2O(SterileWater) 42.1 Totalreactionmixture 55 4.7PCRreactioncyclesandvisualizationofPCRproduct AftertestingvariousPCRcycles,thePCRstepsdescribedinTable4.7wereselected fortheamplificationofthematKregion. Table4.8.ThePCRcyclesoptimizedforamplificationofthematK region Temperature(◦C) Time Cycle# Description 94◦C 5min. Initialdenaturation 1 94◦C 30sec. Denaturation 56◦C 30sec.30 Annealing 72◦C 45sec. Extension 72◦C 5min. 1 FinalExtension

25 PCRproductswerevisualisedin1.7%agarosegels.Gelswererunin1XTAE(0.4M Tris Acetate) buffer at 9099 volts for 1 hour. After electrophoresis, DNA bands werestainedwith5g/mlethidiumbromideandvisualizedunderUVlight.Thegels were also photographed and digitialized by using a gel imaging system (Vilbor Lourmat,France). 4.8Datacollection After amplification of the matK region, PCR products were stored at 20°C until sequence analysis. A PCR purification process should be performed before the sequence analysis. Thus, both purification and sequencing studies were done by Refgen Biotechnology, METU Teknokent, Ankara. In sequence analysis, ABI 310 GeneticAnalyserUser'sManuelwasfollowedandsequencingwasperformedusing the Big Dye Cycle Sequencing Kit (applied biosystems) with a ABI 310 Genetic Analyser (PE applied Biosystem ) automatic sequencer. ThematK gene region was amplifiedastwopartswiththehelpof4primers.Thesepartswerealignedvisually before the analysis. For viewing the chromotogram data, Finch TV Version 1.4.0 developedbytheGeopizaResearchTeamwasutilized(Patterson etal.,20042006). 4.9AnalysisofsequencedataofthematK region Thealignedandproofreadsequencedataweregroupedintothreemaindatasets (Table4.9)andthreesubdatasets(Table4.10)fortheanalysis.Threemaindata setswerecreated;the5’regionofthe matK gene( matKF1R3),3’regionofthe matK gene( matKF5R1)andthewholesequenceofthe matK genethatcontained all individuals which were sequenced. Three subdata sets includes one representativeindividualfromeachpopulation(representativeMEGAdatacanbe seeninAppendixD)andotherthreedatasetsweregeneratedcontaining2,3and4 individuals from each populations (Appendix C). These data sets were also rearrangedaccordingtotheirrespectivevarietiesofTurkishsweetgumand 26 geographic locations of studied populations. The geographic locations and the varietiesthatpopulationsbelongwereprovidedinthe(Table4.1). Table4.9.Thecodesofindividuals(genotypes)foreachof18populationswith matK sequenceofTurkishsweetgum(maindatasets) POPULATIONS matK F1R3 matK F5R1 EntirematK region region region 1 AcıpayamAlcı 3,10 * 3,8,9,10 * 3,10 * 2 MarmarisÇetibeli 8,9,12 8,9,12 8,9,12 3 Marmaris 1,4,6,8 1,4,6,8 1,4,6,8 Değirmenyanı 4 FethiyeGünlükbaı 1,2,4 1,2,4,5 1,2,4 5 MuğlaKızılyaka 7,8 1,3,4,8 7,8 6 MarmarisGünnücek 1,7 1,7 1,7 7 MarmarisGünnücek 1,5,6,7 1,2,5,15 1,5 8 AcıpayamBozdağ 1,3,4 1,2,3,4 1,3,4 9 MarmarisHisarönü 1,4,5,9 1,4,5,9 1,4,5,9 10 MuğlaKıyra 1,5,6,13 1,5,6,13 1,5,6,13 11 KöyceğizKöyceğiz 1,2,3,4 1,2,3,4 1,2,3,4 12 GölhisarPamucak 1,4 1,4 1,4 13 AntalyaSerik 1,4,12 1,4,12 1,4,12 14 BurdurSöğütdağ 8,11 8,11 8,11 15 KöyceğizKöyceğiz 4,6,7,9 4,6,7,9 4,6,7,9 16 AydınUmurlu 22,33 22,33 22,33 17 MuğlaYatağan 3,6,7,12 3,6,7,12 3,6,7,12 18 MuğlaYılanlı 1,2,3,5 1,3,5,7 1,3,5 *Thesenumbersstandforgenotypecodeswithineachpopulation. 27 Table4.10.Thecodesofgenotypeswithavailablesequencesforeachof18 populationsofTurkishsweetgum(subdatasets) POPULATIONS matK F1R3 matK F5R1 EntirematK region region region 1 AcıpayamAlcı 3* 3* 10* 2 MarmarisÇetibeli 8 9 12 3 Marmaris 6 6 6 Değirmenyanı 4 FethiyeGünlükbaı 1 1 1 5 MuğlaKızılyaka 8 8 7 6 MarmarisGünnücek 7 1 7 7 MarmarisGünnücek 1 1 5 8 AcıpayamBozdağ 1 1 3 9 MarmarisHisarönü 5 5 5 10 MuğlaKıyra 5 1 6 11 KöyceğizKöyceğiz 1 3 4 12 GölhisarPamucak 1 1 1 13 AntalyaSerik 1 1 4 14 BurdurSöğütdağ 8 8 11 15 KöyceğizKöyceğiz 7 7 7 16 AydınUmurlu 22 22 22 17 MuğlaYatağan 3 3 3 18 MuğlaYılanlı 3 1 5 *Thesenumbersstandsforgenotypecodesforeachpopulation The DNA sequences were aligned vissually. Indels, insertion/deletion points in a sequence (in sequence alignments these are often referred to as "gaps") were not included in the analysis. The data sets of DNA sequences were collected and organized in MEGA format so that it could be analyzed with MEGA (Molecular EvolutionaryGeneticsAnalysis)3.1software(Kumar etal.,2004)anditcouldbe used for construction of input data for the analysis by Arlequin software (version 2.000forpopulationgeneticsdataanalysis)(Schneider etal .,2000).Thesequence statistics,containingnucleotidefrequencies,transition/transversion(tr/tv)ratioand variabilityindifferentregionsofthesequenceswerecalculatedbyMEGAprogram (Kumar etal .,2004). 28 4.10Moleculardiversityandphylogeneticanalysisbasedonsequencedataof matK region FromtheNCBI(NationalCenterforBiotechnologyInformation)site,10sequences oftheentire matK genewereselectedandincludedtocurrentdatasetstocompare with matK sequencesofthe18populationsofthe L.orientalis .These10accessions were: 1. Liquidambar orientalis Genbank accession number is AF015651 (Li et al., 1997). 2. Liquidambar orientalis Genbank accession number is AF304519 (Shi et al., 2001). 3. Liquidambar orientalis Genbank accession number is AF133220 (Shi et al., 2001). 4. Liquidambar acalycina Genbank accession number is AF133222 (Shi et al., 2001). 5. Liquidambar acalycina Genbank accession number is AF015649 (Li et al., 1997). 6. Liquidambar formosana Genbank accession number is AF133221 (Shi et al., 2001). 7. Liquidambar formosana Genbank accession number is AF015650 (Li et al., 1997). 8. Liquidambar styraciflua Genbank accession number is AF133219 (Shi et al., 2001). 9. Liquidambar styraciflua Genbank accession number is AF133218 (Shi et al., 2001). 10. Liquidambar styraciflua Genbank accession number is AF015652 (Shi et al., 2001).

29 Forthesequenceanalysis,theArlequinsoftware(Schneider etal .,2000)andMEGA 3.1software(Kumar etal.,2004)statisticsprogramswereused,andthefollowing parameters were estimated: The component of molecular variance by molecular diversity indices, Analysis of Molecular Variance Approach Analysis (AMOVA), pairwisecomparisonofF st betweenpopulations,pairwisedifferencesaccordingtop distance method, the average distances between populations, bootstrap test of phylogeny, minimum spanning tree were carried out with the data including L. orientalis datafromthisstudyand10accessionsfromotherspeciesobtainedfrom NCBI database. Finally, construction of phylogenetic trees for L. orientalis populations from Turkey alone and Liquidambar genus was carried out by using neighbourjoiningmethod(SaitouandNei,1987). 4.10.1PopulationgeneticstructureinferredbyAnalysisofMolecularVariance (AMOVA) The differentiationbetween varieties of Turkish sweet gum, geographic regions of TurkishsweetgumandthegeneticstructureofTurkishsweetgumpopulationswere investigatedbyananalysisofvarianceframework,asinitiallydefinedbyCockerham (1969,1973),andextendedbyothers(e.g.WeirandCockerham,1984).Thisisthe Analysis of Molecular Variance Approach and carried out by Arlequin Software (AMOVA,Excoffier etal .,1992).Itisessentiallysimilartootherapproachesbased onanalysisofvarianceofthegenefrequencies,butittakesintoaccountthenumber ofmutationsbetweenmolecularhaplotypes,whichfirstneededtobeevaluated. Formally,inthehaploidcase,itisassumedthatthe ithhaplotypefrequencyvector fromthe jthpopulationinthe kth group(varietyinourcase)islinearequationof theformasfollows:

Xijk = x +ak+bjk +cijk (Equation1) 30 Thevector xistheunknownexpectationof x ijk ,averagedoverthewholestudy. Theeffectsare aforgroup(variety), bforthepopulationwithinagroup(variety), assumedtobeadditive,random,independent,andtohavetheassociatedcovariance 2 2 2 2 components,σa , and σ b , σ c respectively. The total molecular variance (σ ) is the sum of the covariance component due to differences among haplotypes within a population 2 (σc ), the covariance components due to the differences among haplotypes in 2 differentpopulationswithinagroup(variety),(σb ),andthecovariancecomponents 2 due to the differences among the G groups (variety) (σa ). The same framework could be extended to additional hierarchical levels, such as to accomodate, for instance, the covariance component due to differences between haplotypes within diploidindividuals.

Intermsofinbreedingcoefficientsandcoalescenttimes,thisF st canbeexpressedas

(Equation2)

Wheref oistheprobabilityofidentifybydescentoftwodifferentgenesdrawnfrom thesamepopulation,f1 istheprobabilityofidentitybydescentoftwogenesdrawn fromtwodifferentpopulations, isthemeancoalescencetimeoftwogenesdrawn fromthesamepopulation.Thesignificanceofthefixationindicesistestedusinga nonparametric permutation approach described in Excoeffier et al. (1992), consistingofpermutinginhaplotypes,individualsorpopulations,amongindividuals, populations or groups of populations. After each permutation round, all statistics wererecomputedtogettheirnulldistribution.Dependingonthetestedstatisticand

31 thegivenhierarchicaldesign,differenttypesofpermutationsareformed.Underthis procedure,thenormalityassumptionusualinanalysisofvariancetestsisnolonger necessary,norisitnecessarytoassumeequalityofvarianceamongpopulationsor groupsofpopulations.Alargenumberofpermutations(1000ormore)wascarried outtoobtainsomeaccuracyonthefinalprobability. AllestimationswereperformedusingArlequinSoftware(version2000)(Schneider etal .,2000).TheAMOVAdesignandexpectedmeansquaresweregiveninTable 4.11,Table4.12andTable4.13. Table4.11.ExpectedAMOVAtablefortestingvarietyeffectinTurkishsweet gum Sourceofvariation Degreesoffreedom SumofSquares ExpectedMeanSquares 2 2 2 Amongvarieites 2 SSD(AV) n’’σ a +n’σ b +σ c (G1) Amongpopulations 15 2 2 withinvarieites (PG) SSD(AP/WV) nσ b +σ c 2 Withinpopulations 35 SSD(WP) σc (NP) 2 Total 52 SSD(T) σT (N1) SSD(T):TotalSumofSquaredDeviations SSD(AV):SumofSquaredDeviationsAmongVarietiesofPopulations SSD(WP):SumofSquaredDeviationsWithinPopulations SSD(AP/WV):SumofSquaredDeviationsAmongPopulations,WithinVarieties G:NumberofVarietiesintheStructure P:TotalNumberofPopulations N:TotalNumberofSequencesInvolvedintheAnalysis 32 Table4.12.ExpectedAMOVAtablefortestingtheeffectofgeographicregions ofTurkishsweetgum

Sourceofvariation Degreesof Sumofsquares ExpectedMeanSquares freedom 2 2 2 Amongregions 3 SSD(AP) n’’σ a +n’σ b +σc (G1) Amongpopulations 2 2 withinregions 14 SSD(AP/WG) nσ b +σ c (PG) 2 Withinpopulations 35 SSD(WP) σc (NP) 2 Total 52 SSD(T) σT (N1) SSD(T):TotalSumofSquaredDeviations SSD(AP):SumofSquaredDeviationsAmongGeographicLocationsof Populations SSD(WP):SumofSquaredDeviationsWithinPopulations SSD(AP/WG):SumofSquaredDeviationsAmongPopulations,WithinGeographic Region G:NumberofGeographicRegionsintheStructure P:TotalNumberofPopulations N:TotalNumberofSequencesInvolvedintheAnalysis

33 Table4.13.ExpectedAMOVAtablefortestingtheeffectsofTurkishsweetgum populations Sourceof Degreesoffreedom Sumofsquares ExpectedMeanSquares variation

2 2 Amongpopulations 17 SSD(AP) nσ a +σb (P1)

2 Withinpopulations 35 SSD(WP) σb (2NP)

2 Total 52 SSD(T) σT (2N1) SSD(T):TotalSumofSquaredDeviations SSD(AP):SumofSquaredDeviationsAmongPopulations SSD(WP):SumofSquaredDeviationsWithinPopulations P:TotalNumberofPopulations N:TotalNumberofSequencesInvolvedintheAnalysis

4.10.2ConstructionofphylogenetictreesforTurkishsweetgumpopulation Phylogenetictreesshowtheevolutionaryinterrelationshipsamongvariousspeciesor other entities that are believed to have a common ancestor. Phylogenetic relationshipsofgenesororganismsusuallyarepresentedinatreelikeformwitha root,whichiscalledarootedtree(Arootedphylogenetictreeisadirectedtreewitha uniquenode).Italsoispossibletodrawatreewithoutaroot,whichiscalledan unrooted tree (An unrooted trees illustrate the relatedness of the leaf nodes). The branchingpatternofatreeiscalledatopology.

34 Allphylogenetictreesinthisstudywereconstructedusingneighbourjoining(NJ) methodtogetherwithbootstraptestanalysis.InthecaseoftheNJmethod(Saitou and Nei, 1987), the S (smallest value of the sum of all branches) value is not computedforallormanytopologies,buttheexaminationofdifferenttopologiesis embeddedinthealgorithm,sothatonlyonefinaltreeisproduced. The bootstrap test was applied in this study. The bootstrap test, in which the reliabilityofagivenbranchpatternisascertainedbyexaminingthefrequencyofits occurrence in a large number of trees, each based on the resampled dataset. The bootstrapvalueforagiveninteriorbranchis95%orhigher,thenthetopologyatthat branch is considered "correct". If the value is greater than 50, the topology is consideredasinformative(NeiandKumar,2000).Threephylogenetictrees,those including the analysis in species level, Turkish L. orientalis populations and a generalphylogenetictreewereconstructedbyMEGA3.1(Figure3.2,3.3,3.4).

4.10.3ModelsforestimatinggeneticdistancesofTurkishsweetgum The evolutionary distancebetween apair of sequences usually is measuredby the numberofnucleotidesubstitutionsoccurringbetweenthem.Evolutionarydistances arefundamentalforthestudyofmolecularevolutionandareusefulforphylogenetic reconstructionsandtheestimationofdivergencetimes.Therearesomemethodsfor distanceestimationfor nucleotidesequences. Furtherdetailsofthesemethodsand generalguidelinesfortheuseofthesemethodsaregivenbyNeiandKumar(2000). Inadditiontothedistanceestimates,alsothestandarderrorsoftheestimateswere computed using the analytical formulas and the bootstrap method. In nucleotide method,sequenceswerecomparednucleotidebynucleotide.pdistancemodelwere choseninthisstudy.Thisdistanceistheproportion(p)ofnucleotidesitesatwhich twosequencesbeingcomparedaredifferent.Itisobtainedbydividingthenumberof nucleotidedifferencesbythetotalnumberofnucleotidescompared.Itdoesnotmake 35 anycorrectionformultiplesubstitutionsatthesamesite,substitutionratebiases(for example, differences in the transitional (Transition: A transition occurs when a purineissubstitutedbyapurine,orapyrimidinebyapyrimidine)andtransversional rates (Transversion: A change from a purine to a pyrimidine, or vice versa), or differencesinevolutionaryratesamongsites(NeiandKumar,2000). 4.10.4 Estimation of pairwise genetic distances (F st ) among populations and constractionofphylogenetictrees

Estimationofpairwisegeneticdistances amongpopulations,thepairwiseF st ’smay be used as genetic distances, with the application of a slight transformation to linearizethedistanceswiththepopulationdivergencetime (Reynolds et al.,1983;

Slatkin, 1995). Thepairwise F st values were calculated and given in the form of a matrix. The null distribution of pairwise F st values under the hypothesis of no difference among the populations is obtained by permuting haplotypes between populations. 4.10.5MinumumSpanningTreeamonghaplotypesofTurkishsweetgum Minimum Spanning Tree (MST) was carried out accordingtoKruskal(1956)and Prim,1957)betweenOperationalTaxonomicUnits(OTUs)withArlequinSoftware. ComputationoftheMSTfromthematrixofpairwisedistancescalculatedbetween all pairs of haplotypes using a modification of the algorithm described in Rohlf (1973). The Minimum Spanning Network embedding all MSTs were computed (ExcoeffierandSmouse,1994).

36 CHAPTERV RESULTS 5.1Moleculardiversityinthe matK region In the sequence analysis, the matK gene begins with the start codon ATG and finishes with the stop codon TGA were divided into two sectors for MEGA 3.1 Analysisbytheuseof matK F1R3and matK F5R1primers.Withthealignmentof thesesectors,thesequenceof entire generegionwasachieved.Thefirst5’region wasabout11231124basepairs(bp),thesecondsector3’regionwas754756bpin lengthandthewhole matK regionrangedfrom1530to1531bpbecauseoftheindels. Also,geographicgroupswereconstructed.Amongthe1530bp,35.1%GCcontent, 46variablesites(V),1450conservedsites,28parsimonyinformativesitesand18 singletonsiteswereobserved(Table5.1).Therewerealso1484identicalpairs(ii),1 transitionsalpairs(si),3transversionalpairs(sv).The matK F1R3was1125bplong withaGCcontentof33.6%,1058conservedsites,39variablesites,16singleton sites,23parsimonyinformativesites,1086identicalpairs,1transitionsalpairsand2 transversionalpairs.Ontheotherhand, matK F5R1regionwas726bplongwitha GCcontentof37.3%,717conservedsites,27variablesites,11singletonsites,16 parsimony informative sites, 740 identical pairs, 1 transitional pairs and 2 transvertionalpairs(Table5.1). 37 Table5.1.Estimatedmoleculardiversityparameters for matK F1R3, matK F5 R1andentirematK generegion matK F1R3 matK F5R1 entire matK TotalLength(bp) 1125 726 1530 GCcontent(%) 33.6 37.3 35.1 Conservedsites 1058 717 1450 Variablesites 39 27 46 Singletonsites 16 11 18 Parsimonyinformative 23 16 28 sites Identicalpairs 1086 740 1484 Transitionalpairs 1 1 1 Transversionalpairs 2 2 3 No.ofsequencesused 67 72 64 38 5.1.1MoleculardiversitywithinTurkishsweetgumpopulations AsindicatedinTable5.2,thetotallengthofallsampleswas1530,usablesiteofthe samplesrangedfrom1444to1496,polymorphicsites variedbetween ‘0’ and ‘8’. Transitionschangedbetween‘0’and‘4’,alsotransversitionalteredfrom‘0’to‘7’. Moreover,substitutionsdifferedfrom‘0’to‘8’,indelsvariedfrom‘0’to‘13’and nucleotidediversity(averageovertotalsite)rangedfrom0.0006to0.0060.Among 18 populations, population 4 (FethiyeGünlükbaı) was the most diversed one containing 8 polymorphic site. Also, population 2 (MarmarisÇetibeli) with 4 polymorpic site, population 10 (MuğlaKıyra) with 7 polymorphic site and population 11 (KöyceğizKöyceğiz) with 3 polymorphic site followed this population.Furthermore,population13(AntalyaSerik)andpopulation16(Aydın Umurlu)weretheleastdiversedandthemostconservedoneshavingnopolymorphic site.

39 Table5.2.EstimatedmoleculardiversityparametersforstudiedTurkishsweetgumpopulations Populations Moleculardiversityparameters Gene Total UsableSite Polym.Site Transitions Transversion Substitutions Indels Nucleotidediversity copies Site (averageovertotal site) 1AcıpayamAlcı 2 1530 1492 1 0 1 1 3 0.0026(±0.0029) 2MarmarisÇetibeli 3 1530 1492 4 1 3 4 1 0.0022(±0.0019) 3MarmarisDeğirmenyanı 4 1530 1493 1 1 0 1 8 0.0030(±0.0022) 4FethiyeGünlükbaı 3 1530 1494 8 1 7 8 3 0.0049(±0.0039) 5MuğlaKızılkaya 2 1530 1493 1 0 1 1 3 0.0026(±0.0029) 6MarmarisGünnücek 2 1530 1444 1 0 1 1 3 0.0027(±0.0030) 7MarmarisGünnücek 2 1530 1491 2 0 2 2 0 0.0013(±0.0016) 40 8AcıpayamBozdağ 3 1530 1492 2 0 2 2 2 0.0017(±0.0016) 9MarmarisHisarönü 4 1530 1496 1 1 0 1 9 0.0034( ±0.0025) 10 MuğlaKıyra 4 1530 1492 7 4 3 7 4 0.0037( ±0.0027) 11 KöyceğizKöyceğiz 4 1530 1494 3 0 3 3 4 0.0023( ±0.0017) 12 GölhisarPamucak 2 1530 1492 2 1 1 2 7 0.0060( ±0.0063) 13 AntalyaSerik 3 1530 1495 0 0 0 0 5 0.0022( ±0.0019) 14 BurdurSöğütdağ 2 1530 1492 2 0 2 2 2 0.0026(±0.0029) 15 KöyceğizKöyceğiz 4 1530 1496 1 0 1 1 13 0.0046(±0.0033) 16 AydınUmurlu 2 1530 1492 0 0 0 0 1 0.0006(±0.0009) 17 MuğlaYatağan 4 1530 1494 1 0 1 1 7 0.0026( ±0.0020) 18 MuğlaYılanlı 3 1530 1494 1 0 1 1 3 0.0017( ±0.0016)

5.2MolecularvariancesamongTurkishsweetgumpopulations

AMOVAanalysisfor18orientalsweetpopulationswasperformed.About14.38% total molecular variance was among populations while 85.62% total variance was withinpopulations(Table5.3). Table5.3.AMOVAresultswithrespectto18Turkishsweetgumpopulations Sourceof d.f Sumof Variance Percentageof variation squares components variation Amongpopulations 17 56.596 0.37481Va 14.38 Withinpopulations 35 78.083 2.23095Vb 85.62 Total 52 134.679 2.60576 5.2.1GeneticdistanceswithinTurkishsweetgumpopulations ThegeneticdistancesamonggenotypeswithinTurkishsweetgumpopulationswere computed.Theaveragedistancevaluesrangedfrom‘0’forpopulation13(Antalya Serik) and population 16 (AydınUmurlu) to ‘0.0038’ for population 4 (Fethiye Günlükbaı).Population 2 (0.0019), population 4 (0.0038), population 7 (0.0014), population10(0.0012),population11(0.0011)andpopulation12(0.0014)werewith thehighestaveragegeneticdistanceamonggenotypeswithinpopulationwhileother 12Turkish sweet gum populations were the lowest average genetic distance ones [varied‘0’(population13,16)and‘0.0009’population8(Table5.4)]. 41 Table5.4.AveragegeneticdistanceswithinpopulationsofTurkishsweetgum GeneticdistancewithinTurkish Populationnumberandname populationsofTurkishsweetgum (±±±standarderror)

POP1 AcıpayamAlcı 0.0007( ±0.0007) POP2 MarmarisÇetibeli 0.0019( ±0.0009) POP3 MarmarisDeğirmenyanı 0.0004( ±0.0003) POP4 FethiyeGünlükbaı 0.0038( ±0.0013) POP5 MuğlaKızılkaya 0.0007( ±0.0007) POP6 MarmarisGünnücek 0.0007( ±0.0007) POP7 MarmarisGünnücek 0.0014( ±0.0010) POP8 AcıpayamBozdağ 0.0009( ±0.0007) POP9 MarmarisHisarönü 0.0005( ±0.0005) POP10 MuğlaKıyra 0.0012( ±0.0007) POP11 KöyceğizKöyceğiz 0.0011( ±0.0006) POP12 GölhisarPamucak 0.0014( ±0.0010) POP13 AntalyaSerik 0.0000( ±0.0000) POP14 BurdurSöğütdağ 0.0014( ±0.0009) POP15 KöyceğizKöyceğiz 0.0004( ±0.0003) POP16 AydınUmurlu 0.0000( ±0.0000) POP17 MuğlaYatağan 0.0004( ±0.0003) POP18 MuğlaYılanlı 0.0005( ±0.0005) 5.3MolecularvariancesamongTurkishsweetgumvarieties AMOVA analysis among varieties (two known and one unknown varieties of Turkish sweet gum) was carried out. One of the groups was composed of 10 populationsfromvar. integriloba ;thesecondgroupwasformedwith5populations

42 fromunknownandthethirdgroupwas3populationsfromvar. orientalis .Therewas novariationamongvarietiesofTurkishsweetgum,buttheportionoftotalmolecular varianceduetopopulationswithinvarietieswas15.28%.However,thegreatportion of total molecular variance (86.10%) was due to individuals within populations (Table5.5). Table5.5.AMOVAresultswithrespecttovarietiesofTurkishsweetgum Sourceof d.f Sumofsquares Variance Percentage variation components of variation Among 2 5.776 0.0000Va 0.00 varieties Among 15 50.819 0.39587Vb 15.28 populations within varieties Within 35 78.083 2.23095Vc 86.10 populations Total 52 134.679 2.59118 43 5.3.1GeneticdistancesamongTurkishsweetgumpopulationsasvarieties GeneticdistanceswerecomputedamongvarietiesofTurkishsweetgumpopulations. Among two varieties and one unknown group, the var. integriloba was the most divergentvariety(0.0016)andvar. orientalis wastheleastdivergentone(0.0006). Also, average genetic distance between varieties ranged from 0.0007 to 0.0012. However,thesevaluesweretoolowtoconsidervarietydifferentiationanditcould beinterpretedastherewasnovariationamongvarietiesofTurkishsweetgum(Table 5.6). Table5.6.Averagegeneticdistancescomputedamongpopulationsofvarieties ofTurkishsweetgum

Averagegeneticdistance Averagedistancebetweenvarieties amongpopulationswith unknown integriloba orientalis varieties 0.0009 unknown (±0.0004)* 0.0016 0.0012 integriloba (±0.0004)* (±0.0004) * 0.0006 0.0007 0.0011 orientalis (±0.0003) * (±0.0003) * (±0.0003) * *Standarderrorsoftheestimates

44 5.4MolecularvariancesamonggeographiclocationsofTurkishsweetgum Turkish sweet gum populations were also evaluated according to the geographic locationsofthepopulationsusingAMOVA analysis. 18 populations were divided into four geographic regions by considering geographical approximities, natural barriersandwatershedsandtheirdistancesfromthesea.Theseregionsare: Region1:Denizli Population1(ACIPAYAMALCI) Population8(ACIPAYAMBOZDAĞ) Region2:Muğla1(FethiyeKöyceğizAydın) Population2(MARMARĐSÇETĐBELĐ) Population3(MARMARĐSDEĞĐRMENYANI) Population4(FETHĐYEGÜNLÜKBAI) Population5(MUĞLAKIZILYAKA) Population6(MARMARĐSGÜNNÜCEK) Population7(MARMARĐSGÜNNÜCEK) Population9(MARMARĐSHĐSARÖNÜ) Population10(MUĞLAKIYRA) Population11(KÖYCEĞĐZKÖYCEĞĐZ) Population15(KÖYCEĞĐZKÖYCEĞĐZSeedOrchard) Population16(AYDINUMURLU) Region3:AntalyaBurdur Population12(GÖLHĐSARPAMUCAK) Population13(ANTALYASERĐK) Population14(BURDURSÖĞÜTDAĞ) Region4:Muğla2 Population17(MUĞLAYATAĞAN) Population18(MUĞLAYILANLI)

45 The percentage of total variation due to geographicregionswasfoundtobezero. Thus, there was no difference between geographic regions of Turkish sweet gum populations.Thedifferencesamongpopulationswithingeographicregionsmadeup 16.39% of the total variation while the great portion of total molecular variance (86.74%)wasduetoindividualswithinpopulations(Table5.7). Table5.7.AMOVAresultswithrespecttogeographicregionsofTurkishsweet gum

Sourceof d.f Sumofsquares Variancecomponents Percentage variation ofvariation Among 3 8.063 0.0000Va 0.00 regions Among populations 14 48.533 0.42145Vb 16.39 within regions Within 35 78.083 2.23095Vc 86.74 populations Total 52 134.679 2.57192 5.4.1 Average genetic distances among geographic locations of Turkish sweet gumpopulations GeneticdistanceswerealsocomputedamonggeographiclocationsofTurkishsweet gum populations. Among four regions, Muğla1 (0.0015) was the most divergent region including FethiyeKöyceğizAydın populations, Denizli (0.0010), Antalya Burdur(0.0008)andMuğla2(0.0004)withYatağanYılanlıpopulationsfollowedit.

46 Averagegeneticdistanceamongpopulationswithgeographiclocationsrangedfrom 0.0006to0.0013.ThemostgeneticallydistantlocationswereMuğla1andDenizlil. WhiletheleastgeneticdistancewasobservedbetweenMuğla2andAntalyaBurdur (Table5.8). Table 5.8. Average genetic distances computed according to the geographic locationsofTurkishsweetgum Averagegeneticdistancebetweengeographic Averagegeneticdistancefor regions geographicregions Denizli Muğla1 Ant.Bur. Muğla2 * Denizli 0.0010(±0.0006) 0.0015(±0.0004) * 0.0013 Muğla1 (±0.0004) * 0.0008(±0.0004) * 0.0009 0.0011 Ant.Bur. (±0.0004) * (±0.0003) * 0.0004(±0.0003) * 0.0007 0.0010 0.0006 Muğla2 (±0.0004) * (±0.0003) * (±0.0003) * *Standarderrorsoftheestimates 5.5Geneticdifferencesofamong Liquidambar species aswellasamongTurkish populationsof L. orientalis basedonF st values Inthispart,18populationsand10individualsofoutgroupsweregroupedintoseven taxonomicgroups.18populationsweregroupedasvar. integriloba , var. orientalis and unknown; outgroups were grouped as L. orientalisoutgroup , L. acalycina outgroup , L. formosanaoutgroup and L. styracifluaoutgroup . Group integriloba included 10 populations, group orientalis contained 3 populations and unknown implied5populations. L.orientalisoutgroup included3individuals, L.acalycina 47 outgroup contained2individuals, L.formosanaoutgroup implied2samplesand L. styracifluaoutgroup comprised3samples.

Pairwise F st values among 28 sequences representing Liquidambar species were estimatedandgiveninTable5.9AandB.Thevalues ranged between 0.000 and

0.744inTable5.9Aand0.563and0.823inTable5.9 B. If F st is equal tozero, compared populations do not have any difference. F st value L. orientalis var. integriloba and var. orientalis was0.018;among L. orientalis var. integrilobaand unknown was 0.016 and between L. orientalis var. orientalis and unknown was

0.040. Fst values of Turkish sweet gum populations and L. orientalisoutgroup variedbetween0.242and0.331.TurkishpopulationsofTurkishsweetgumand L. styracifluaoutgroup F st values were moderately high and ranged from 0.534 to

0.664.Asexpected,F st valuesamongTurkishpopulationsofTurkishsweetgumand L.acalycinaoutgroup (rangedfrom0.537to0.681)aswellasTurkishpopulations ofTurkishsweetgumand L.formosanaoutgroup (from0.584and0.738)werehigh, indicatingstrongdifferentiationamongthesespecies. L.formosanaoutgroup wasthe mostdistantfromTurkishpopulationsof L.orientalis ,while L.acalycinaoutgroup and L.styracifluaoutgroup wereclosertoTurkishpopulationsofTurkishsweetgum

(0.5340681)than L.formosana _outgroup.InTable5.9B,thelowestF st valueswas observed between Turkish populations of L. orientalis and L. styraciflua and the highestF st valueswasobservedbetween L.styraciflua and L.formosana .

48 Table5.9.

A) Pairwise comparison of F st valuesamongTurkishsweetgumvarietiesand Liquidambar species

TaxonomicUnits 1 2 3 4 5 6 7 LOI LOO LOU LO_ LA_ LF_ LS_ OUT OUT OUT OUT L. orientalis var.integriloba (LOI) L. orientalis var. orientalis 0.018 (LOO) L. orientalis var. unknown 0.0160.040 (LOU) L. orientalis-outgroup 0.242 0.314 0.331 (LO_OUT) L. acalycina-outgroup 0.537 0.608 0.681 0.591 (LA_OUT) L. formosana _outgroup 0.584 0.659 0.738 0.677 (LF_OUT) L. styraciflua-outgroup 0.534 0.601 0.664 0.213 0.744 0.823 (LS_OUT) B)PairwiseF st valuesamong Liquidambar species

Taxonomic 1 2 3 4 Units L. orientalis L. styraciflua 0.563 L. acalycina 0.570 0.744 L. formosana 0.613 0.823 49 5.6Phylogenetictrees Phylogenetic trees were formed in three levels: variety level, geographic region levelandregardlessofvarietyandgeographicregionlevel(only18populationsand some outgroups). For each level, one representative individual of each 18 populationswereutilizedasshowninFigure5.1,Figure5.2andFigure5.3.Other treeswhichcontaintwoindividualsofeachpopulationwereprovidedinAppendix E. Five groups were observed in variety level (Figure 5.1), but specific differentiation was not seen as indicated two varieties: var. integriloba , var. orientalis andalsounknown.AlthoughtheconstructedtreeforTurkishsweetgum varietiesdidnotrevealanyclearpattern,itappearsthatthosepopulationslabeledas ‘integriloba ’and‘orientalis ’varietiesweresomewhatinthesameclustersthough thistreeisjustaninformativeone.

50 integriloba 10

orientalis 18

integriloba 15

unknown 13

integriloba 5

orientalis 17

unknown 12

unknown 14

integriloba 3 89 L.orientalis-AF015651-USA

unknown 1

integriloba 2 65 orientalis 16

integriloba 4

unknown 8

64 integriloba 7

integriloba 9

64 integriloba 6

integriloba 11

99 L.styraciflua-AF133219-china

L.styraciflua-AF133218-USA

93 L.orientalis-AF133220-china

91 L.orientalis-AF304519- 75 L.styraciflua-AF015652-USA

L.acalycina-AF015649-USA

L.acalycina-AF133222-china 99

87 L.formosana-AF133221-china 69 L.formosana-AF015650-USA

0.001 Figure 5.1 The phylogenetic tree regarding varieties of Turkish sweet gum derivedfromneighbourjoiningmethodsusingpdistance

51 The second tree was constructed with respect to the geographic locations of the Turkish sweet gum populations. As indicated before, 18 populations of Turkish sweet gum were evaluated in four geographic regions. These geographic regions were Muğla1, Denizli, AntalyaBurdur and Muğla2. Populations of Muğla1 region were ended up in the cluster along the populations of Denizli region, the populationsofMuğla2regionwereclosertoAntalyaBurdurpopulations (Figure

5.2).

52 MUGLA-1-10

ANTALYA-BURDUR-14

MUGLA-1-15

ANTALYA-BURDUR-12

MUGLA-1-5

MUGLA-2-18

ANTALYA-BURDUR-13

MUGLA-2-17

DENIZLI-8 89 64 MUGLA-1-7

MUGLA-1-3

MUGLA-1-2

L.orientalis-AF015651-USA

MUGLA-1-16 65 DENIZLI-1

MUGLA-1-4

MUGLA-1-9

63 MUGLA-1-6

MUGLA-1-11

99 L.styraciflua-AF133219-china

L.styraciflua-AF133218-USA

92 L.orientalis-AF133220-china

90 L.orientalis-AF304519-korea 73 L.styraciflua-AF015652-USA

L.acalycina-AF015649-USA

L.acalycina-AF133222-china 100

87 L.formosana-AF133221-china 68 L.formosana-AF015650-USA

0.001 Figure 5.2 The phylogenetic tree regarding the geographic locations of populationsderivedfromtheneighbourjoiningmethodsusingpdistance 53 The last phylogenetic tree was formed with respect to 18 Turkish sweet gum populations regardless of variety levels and geographic locations. There were 4 clusters;oneoftheclusterincluded8populationsoriginatedmainlyfromMuğla KöyceğizYatağanYılanlıKızılyakaKayra, AntalyaSerik and BurdurSöğütdağ Gölhisar. Another major cluster group was with the populations from Muğla FethiyeMarmaris, Aydın and Denizli. The remaining 2 other clusters had only a fewpopulations.OneoftheseclusterconsistedofthepopulationsfromMarmaris andtheotherdidnothaveanygeographicpattern(Figure5.3). 54 POP-15-KOYCEGIZ-TOHUMBAHCESI

POP-18-MUGLA-YILANLI

POP-13-ANTALYA-SERIK

POP-14-BURDUR-SOGUTDAG

POP-05-MUGLA-KIZILYAKA

POP-17-MUGLA-YATAGAN

POP-12-GOLHISAR-PAMUCAK

POP-10-MUGLA-KIYRA

POP-03-MARMARIS-DEGIRMENYANI 90 POP-08-ACIPAYAM-BOZDAG

64 POP-07-MARMARIS-GUNNUCEK

L.orientalis-AF015651-USA

POP-02-MARMARIS-CETIBELI

POP-16-AYDIN-UMURLU 64 POP-01-ACIPAYAM-ALCI

POP-04-FETHIYE-GUNLUKBASI

POP-11-KOYCEGIZ-KOYCEGIZ

POP-09-MARMARIS-HISARONU

64 POP-06-MARMARIS-GUNNUCEK

99 L.styraciflua-AF133219-china

L.styraciflua-AF133218-USA

92 L.orientalis-AF133220-china

91 L.orientalis-AF304519-korea 77 L.styraciflua-AF015652-USA

L.acalycina-AF015649-USA

L.acalycina-AF133222-china 100

88 L.formosana-AF133221-china 70 L.formosana-AF015650-USA

0.001 Figure5.3Thephylogenetictreeregarding18Turkishsweetgumpopulations derivedfromtheneighbourjoiningmethodsusingpdistance

55 5.7Theminimumspaningtreeof L. orientalis varieties The minimum spaning tree constructed for 28 sequences (18 sequences from Turkish Turkish sweet gum populations of this study and 10 sequences from Liquidambar species) were shown in Figure 5.4. The results indicated 3 evolutionarygroups: Group 1 ( L. orientalis group) involved L. orientalis _AF015651 (19) from America and 18 Turkish L. orientalis populations (118). The most differentiated populationswerepopulation3(MarmarisDeğirmenyanı),11(KöyceğizKöyceğiz), 17(MuğlaYatağan)and18(MuğlaYılanlı); Group 2 ( L. acalycina and L.formosana Hance group) consisted of L. acalycina _AF133222_China (22), L. acalycina _AF015649_USA (23), L. formosana _AF133221_China(24)and L.formosana _AF015650_USA(25); Group3( L.styraciflua group,butsome L.orientalis sampleswereclustered withthisspecies)composedof L.orientalis (20)fromKorea, L.orientalis (21)from China, L.styraciflua _China (26),_USA(27),_USA(28).Themostdifferentgroup was L.styraciflua _China (26)and_USA(27). 56 A)

B)

Figure5.4A)Mapshowingthelocationofpopulations.Numbersinpopulation namescorrespondtopopulationcodesinFigure5.4B. B) Minimum spaning tree of 28 operational taxonomical units (OTUs) of L. orientalis varieties and 10 outgroups. Number on the branches indicatethebasedifferencesbetweenOTUs Sample 118 →L. orientalis populations, Sample 19 →L. orientalis _AF015651, Sample 20 →L. orientalis _AF304519, Sample 21 →L. orientalis _AF133220, Sample 22 →L. acalycina _AF133222, Sample 23 →L. acalycina _AF015649, Sample 24 →L. formosana _AF133221, Sample 25 →L. formosana _AF015650, Sample 26 →L. styraciflua _AF133219, Sample 27 → L. styraciflua _AF133218,Sample28 →L.styraciflua _AF015652 57 CHAPTERVI DISCUSSION 6.1Moleculardiversityinthe matK regionofTurkishsweetgumpopulations In this study, because of indels (insertion and deletion of bases), cpDNA matK regionofTurkishsweetgumpopulationswasobtainedtobe1530bpinlength.This is within the range of figures reported by previous studies. For example, matK regionwasapproximately1.5kb,inastudycarriedoutbyHiluandLiang(1997)on Liquidambar species. They reported that matK region was 1512bp. Young and Pamphilis (2000) also reported the length of matK gene of photosynthetic and nonphotosyntheticOrobanchaceaeandtheirrelativesasabout1530bp.Becausethe matKisshownhighervariationthananyotherstudiedchloroplastgenes,itcouldbe possible that matK region is different in length (because of indels). Furthermore, matK genewasalsoevaluatedintwoparts.Firstregion( matK F1R3)whichisthe 5’regionofthegenewhichwasfoundtobe1125bpandsecondregion( matK F5 R1)whichisthe3’regionofthegene,wasfoundtobe726bp. Theentire matK geneincluded35.1%GCcontent,46variablesites,1450conserved sites,28parsimonyinformativesitesand18singletonsites.Inastudycarriedoutby Kusumi etal.(2000),theyreportedthat matK genehad33%GCcontentofthe23 members of families including Taxodiaceae, Cupressaceae, Taxaceae and Cephalotaxaceae. matK F1R3 part of the gene contained 33.6% GC, matK F5R1 partconsistedof37.3%GCcontent.Furthermore,whilefirstregionhad39variable sites,1058conservedsites,23parsimonyinformativesitesand16singletonsites, secondregionhad27variablesites,717conservedsites,16parsimonyinformative sitesand11singletonsites.Asaresult,3’regionwasfoundmorevariblethan5’ region.However,astudycarriedoutbyHiluandLiang(1997),indicatedthatthe5’ 58 regionofthematK geneismoreusefulatlowertaxonomiclevelsthan3’region. Also, several studies have performed using the matK gene sequence at different taxonomiclevels:atfamilylevel(JohnsonandSoltis,1994,1995;Johnson etal., 1996;SteeleandVilgalys,1994;JarrelandClegg,1995;Gadek etal.,1996,Liang andHilu,1996;Plunkett etal.,1996;HiluandLiang,1997;Wang etal.,1999;Hilu andAlice,1999;Gadek etal.,2000;Shi etal.,2000;Wang etal.,2000;Kusumi et al.,2000;Song etal.,2001;OhsakoandOhnishi,2001;Mort etal.,2001;Cameron et al., 2001; Ge et al., 2002; Tanaka et al., 2003; Sanders et al.,2003;Neeland Cummings, 2004; Hidalgo et al., 2004; Bell, 2004), at genera and species level (Tanaka et al., 1997; Fukuda et al., 2001; Wilson, 2004; Järvinen et al., 2004; Meimberg etal.,2006)andalsoatvarietylevelasinthecaseofthisstudy.Instead ofhighertaxonomiclevels, matK regionmaybeusefulatlowertaxonmiclevelsas suchinvarietylevelinthisstudy. Whenconsideringthemoleculardiversitywithin18Turkishsweetgumpopulations, population 4 (FethiyeGünlükbaı) was the most diversed group containing 8 polymorphicsite,while population13(AntalyaSerik)andpopulation16(Aydın Umurlu)weretheleastdiversegroups.Today,someTurkishsweetgumpopulations havebeensetasideasconservationprogramsbyForestTreesandSeedsBreeding ResearchDirectorate.Oneseedorchard(2.2hectares)inMuğlaFethiyeGöcek,two seedstandsinMuğlaFethiyeGöcekandMuğlaMarmarisÇetibeli(200.8hectares) andtwogeneconservationforests(277hectares)foundinIspartaBucakPamucak andMuğlaUlaKızılyakacouldbegivenasexampleofsuchprograms.According totheresultsofmoleculardiversityparametersestimatedwiththisstudy,population 4 (FethiyeGünlükbaı) located in Muğla province could be recommended as a additionalgeneticconservationsiteslikeMuğlaFethiyeGöcekregion. 59 6.2GeneticdifferencesamongTurkishsweetgumpopulations at population, varietyandgeographiclocationlevelsofthepopulations ConsideringmolecularvariancesamongTurkishsweetgumpopulations,14.38%of totalvariationduetopopulationcouldbeconsideredaslow.Sincetheportionof totalquietevariationduetoindividualswithinpopulationsofTurkishsweetgum with respect to matK gene was high (86%). However, for the sequences of the nuclearDNAinternaltranscripedspacer(ITS),itwasalsoshownthatmostofthe variation was found within populations when compared to populations of Hamamelidaceae family(Shi etal .,1998). Although intervariety differentiation was not detected, the results of genetic differenceanalysisrevealedthatthemostdivergentvarietywasfoundtobethevar. integriloba (0.0016). Although the matK geneisoneofthemostvariableplastid genes (Olmstead and Palmer, 1994; Soltis and Soltis 1998), Turkish sweet gum varietieswerenotdifferentiatedwiththepolymorphismrevealedbythisregion.

While comparing the pairwise F st values amongTurkishsweet gumvarieties,the most differentiation was observed between var. orientalis and unknown variety group(0.040).IntherevisionstudyofPemen(1972)for‘FloraofTurkey’,two varieties(var. orientalis andvar. integriloba )withrespecttopresenceorabsenceof secondarylobesonleavesweredescribed,butDavisandHedge(1975)emphasized thatthissubjectshouldberestudied.Furthermore,Efe(1987)didnotobservethis discriminationduringanyofherfieldstudies.TheresultssupportEfe(1987)that thereisnotruedifferentiationamongprescribedvarieties. Accordingtotheresultsconductedbasedonthe4geographiclocationdifferences among Turkish sweet gumpopulations, there was no significant variation among geographiclocationwherepopulationsoriginated.However,itwasfoundthatthe populations of Turkish sweet gum from Muğla1 was the most divergent ones (0.0015). 60 6.3 Genetic differences among Liquidambar species including Turkish sweet gumpopulations Inthisstudy,4membersof Liquidambar genuswerecomparedincludingTurkish sweetgumpopulationswithrespectto matK gene.Turkishsweetgumpopulations haveacloserelationshipwith L.styraciflua whilecomparingtheChinesespeciesof Liquidambar (L.formosana Hance and L. acalycina ). While comparing Turkish populationsofTurkishsweetgum withthesequencesofsamplesfrom Liquidambar speciesstudiedbefore,Turkishpopulationshavelittlebitdifferentgeneticstructure than L. orientalis sampled from China, but L. orientalis sampled from America showed more similarity than that of China. The Chinese sample may have exchangeswiththeChinesesweetgumspecies. Several studies were applied among Liquidambar members to identify the relationships of the species. Liquidambar genus is a woody taxa that includes morphologicallysimilarindividualsondifferentcontinentsintheworld(Hoeyand Parks, 1994). Because, this genus represents with mainly four species on three continents (Western Asia, L. orientalis , Eastern Asia, L.formosana Hance and L. acalycina , America, L. styraciflua ) researchers have been interested in its genetic divergence. In a isozyme divergence study done by Hoey and Parks (1991), L. orientalis and L.styraciflua appearedthemostcloselyrelatedintercontinentalpair ofspecies.InanotherstudybyHoeyandParks(1994), they dealt with the three speciesof Liquidambar namely L.formosanaHance , L.acalycina and L.styraciflua . L.formosanaHanceand L.acalycina exhibitedlowlevelsofintraspecificpopulation divergence.Accordingtothegeneticdivergencestudydealingwithsequencedataof thecpDNA matK geneamongfourspeciesof Liquidambar ,twogenerated. One includes L.formosana Hance and L. acalycina , while the other was consistof L.orientalis and L.styraciflua (Li etal ,1997,LiandDonughue,1999). 61 6.4Theconstructedphylogenetictreesaspopulation, variety and geographic locationrespects When the constructed phylogenetic tree was examined, it was clear that Turkish sweetgumpopulationsformedthreebrancheswithbootstrapvaluesof63,65and 90meaningthatthosetopologiesarejustphylogeneticallyinformative.Inthemain branch, having a bootstrap value of 8990, L. orientalis from USA was grouped together with 18 populations of Turkish sweet gum (Figure 5.1, 5.2, 5.3). This proposesthattherewerenoorverylittlevariationbetween TurkishandAmerican sweetgumsampleswhen matK regionisconsidered.4clusters,butmainly2were observed among Turkish sweet gum populations. The first main cluster which composed of 8 Turkish sweet gum populations mainly forms populations from Muğla, Burdur and Antalya; the second one includes 4 populations from Muğla, Denizli and Aydın province. However, 2 populations were aparted from these 4 clusters; population 3 (MarmarisDeğirmenyanı) and population 11 (Köyceğiz Köyceğiz). Also, 2 other clusters including Liquidambar genus members were obtained. One cluster composed of 3 L. styraciflua sequences and 2 L. orientalis whichwerefromChinaandKorea.Theseresultsarealsoconsistetwiththeresults of genetic distances. These samples were considered as hybrids, because Turkish L.oreintalis populations, their DNA isolation materials collected from natural distributionofthespecies,didnotobservecloserelationshipswiththemasTurkish sweetgumfromUSA. 6.5MST The minimum spanning tree constructed by Arlequin 2.000 showed consistent resultswiththephylogenetictreeconstructedbyMEGA3.1.Inbothofthetrees,3 main clusters were appeared. One cluster consisted of 18 Turkish sweet gum populationsand L.orientalis fromUSA;othergroupformedwith L.orientalis form China, Korea and L. styraciflua from USA, and the last group includes Chinese membersof Liquidambar species( L.acalycina and L.formosanaHance ).

62 Becauseoftheoccurrenceofcloselyrelatedspeciesinmanyplantgeneraineastern AsiaandNorthAmericawhicharetwowidelydistributedareas(Wen,2001),the closerelationshipbetween L.orientalis and L.styracifluacouldbeexplainedwith thehelpofalandbridgeintheearlyOligocenebetweenNorthAmericaand. Inadditiontothedivergentpopulationsstatedinthephylogenetictrees,Population 3and11,Population17andpopulation18whicharethemembersofvar. orientalis andthemembersofMuğla2regioncouldbegivenprioritiesinfutureconservation programsofboth insitu and exsitu . 63 CHAPTERVII CONCLUSION Themainpurposeofthisstudywastoobtaingeneticdatathatwillhelptosolve taxonomic status of Turkish sweet gum (endemic) at variety, species and genus levelsbymeansofstudyingmatK generegion. Turkish sweet gum matK genewasfoundtobe1530bpinlength.The5’and3’ regionsaswellasentire matK genewerecomparedand3’regionwasfoundmore variablethan5’region.Also,beforethisstudy, matK genehavenotbeenusedat varietylevel,itwasusedespeciallyatspeciesandhighertaxonomiclevels,butthis studyshowthatthisregionmaynotbegivenaccuratedistinctionforvarietylevel. In respect of the results of molecular diversity analysis; the most divergent population was found to be population 4 (FethiyeGünlükbaı) of Turkish sweet gum.Thepopulation2(MarmarisÇetibeli)andpopulation10(MuğlaKıyra)were the other populations with high diversity values. Among the varieties, the most divergent variety was var. integriloba followed by the unknown group and var. orientalis. Furthermore, the most divergent populations were from the variety integriloba .Thesepopulationscouldbemembersoftruetaxonomicentitythatis var. integriloba . The most separated populations, that show differences in matK sequences when comparedtootherpopulations,arepopulation2(MarmarisÇetibeli),population3 (MarmarisDeğirmenyanı), population 4 (FethiyeGünlükbaı), population 7 (MarmarisGünnücek),population10(MuğlaKıyra)population11(Köyceğiz 64 Köyceğiz), population 12 (GölhisarPamucak), population 14 (BurdurSöğütdağ), population 17 (MuğlaYatağan) and population 18 (MuğlaYılanlı). All of these populations should be considered as potential candidates for insitu gene conservation programs. However, population 4 (Fethiye Günlükbaı) should be urgentlyincludedin insitu and exsitu conservationprograms. When the geographic distributions are considered, the most divergent region was found to be region 2 (Muğla1) which includes genetically the most distant populationsasexpected. Whentheresultsofphylogeneticandminimumspanningtreeswereconsisted,L. orientalis from USA together with the Turkishpopulations of the species and L. styraciflua from the USA were genetically the closest neighbors. However, the Chinese representative of Liquidambar genus did not show close relationship betweenTurkishpopulationsofTurkishsweetgumwithrespectto matK geneand theywerethemostdistantspeciesto L.orientalis .

65 REFERENCES Acatay,A.1963.Sığlaağacı( Liquidambarorientalis Mill.)’nınTürkiye’deyayılıı, yenitesbitedilenvaryetesivesığlaağaçlarınamusallatolanböcekler. Đ.Ü.Orman FakültesiDergisi ,SeriA,Cilt8,Sayı2,Đstanbul. Akman, Y. 1995. Türkiye orman vejetasyonu. A.Ü. Fen Fakültesi Botanik Ana BilimDalı.Ankara. Alan M. and Z. Kaya, 2003. EUFORGEN Technical Guidelines for genetic conservationanduseforTurkishsweetgum( Liquidambarorientalis ).International PlantGeneticResourcesInstitute,Rome,Italy.6pages. Bell, C. D. 2004. Preliminary phylogeny of Valerianaceae (Dipsacales) inferred from nuclear and chloroplast DNA sequence data. Molecular Phylogenetics and Evolution31:340–350. Bogle, A. L. 1986. The floral morphology and vascular anatomy of the Hamamelidaceae: subfamily Liquidambaroideae. Annals of the Missouri Botanic Garden .73:325347. Bonen, L. and J. Vogel 2001. The ins and outs of group II introns. Trends in Genetics.6: 322–331. Cameron, K.M., Chase, M.W., Anderson, W.R. and H.G. Hills 2001. Molecular systematics of Malpighiaceae: evidence from plastid rbcL and matK sequences. AmericanJournalofBotany88:1847–1862. Cesarone,C.,Bolognesi,C.andSanti,L.1979.ImprovedmicrofluorometricDNA determinationinbiologicalmaterialusing33258Hoechst. AnalyticalBiochemistry . 100:188197. 66 Chase,M.W.,Soltis,D.E.,Olmstead,R.G.,Morgan,D.,Les,D.H.,Mishler,B.D., Duvall,M.R.,Price,R.A.,Hills,H.G.,Qiu,Y. L.,Kron,K.A.,Rettig,J.H., Conti,E.,Palmer,J.D.,Manhart,J.R.,Sytsma,K.J.,Michaels,H.J.,Kress,W.J., Karol, K. G., Clark, W. D., Hedren, M., Gart, B. S.,Jansen, R. K., Kim, K. J., Wimpee,C.P.,Smith,J.F.,Furnier,G.R.,Strauss,S.H.,Xiang,Q.Y.,Plunkett, G.M.,Soltis,P.S.,Swensen,S.M.,Williams,S.E.,Gradek,P.A.,Quinn,C.J., Cockerham,C.C.1969.Varianceofgenefrequencies. Evolution ,23:7283. Chase,M.W.,D.E.Soltis,R.G.Olmstead,D.Morgan,H.D.Les,B.D.Mishler, M.R.Duvall,R.A.Price,H.G.Hills,Y.L.Qiu,K.A.Kron,J.H.Rettig,E.Conti, J.D.Palmer,J.R.Manhart,K.J.Sytsma,H.J.Michaels,W.J.Kress,K.G.Karol, W.D.Clark,M.Hedrén,B.S.Gaut,R.K.Jansen,K.J.Kim,C.F.Wimpee,J.F. Smith,G.R.Furnier,S.H.Strauss,Q.Y.Xiang,G.M.Plunkett,P.S.Soltis,S.M. Swensen,S.E.Williams,P.A.Gadek,C.J.Quinn,L.E.Eguiarte,E.Golenberg,G. H.LearnJr.,S.W.Graham,S.C.H.Barrett,S.Dayanandan, and V. A. Albert. 1993.Phylogeneticsof seedplants: ananalysis of nucleotide sequences from the plastidgenerbcL. AnnalsoftheMissouriBotanicalGarden 80:526580. Cockerham,C.C.1973.Analysisofgenefrequencies. Genetics ,74:679700. Davis,P.H.andHedge,I.C.1975:TheFloraofTurkey.Past,presentandfuture. Condollea 30:331351. Dirik,H.1986. AnadoluSığlası( Liquidambarorientalis Mill.)’nıngençletirilmesi üzerineçalımalar.Đ.Ü.OrmanFakültesiYüksekLisansTezi,Đstanbul. Doyle J. J. and J. L. Doyle 1987. A rapid DNA isolation procedure for small quantitiesoffreshleaftissue. Phytochem.Bull .19:1115. Efe,A.1987.Liquidambarorientalis Mill.(Sığlaağacı)’ınmorfolojikvepalinolojik özellikleri üzerine aratırmalar. Đ.Ü. Orman Fakültesi Dergisi Seri A. Cilt: 37, Sayı:2,273286,Đstanbul. Excoeffier, L., Smouse, P.E. and Quattro. 1992. Analysis of molecular variance inferred from Metric distances among DNA haplotypes: application to human mitochondrialDNArestrictiondata. Genetics 131:479491. 67 Excoeffier, L., Smouse, P.E. 1994. Using allele frequencies and geographic subdivision to reconstruct gene genealogies within a species. Molecular Variance Parsimony. Genetics ,136:343359. Fakir, H. ve Ö. Doğanoğlu 2003. Isparta Sığla (Liquidambar orientalis Mill.) ormanıtabiatıkorumaalanıbitkitaksonları. SüleymanDemirelÜniversitesiOrman FakültesiDergisi .Seri:A,Sayı:1,ISSN:13027085,Sayfa:6786 ForestTreesandSeedsBreedingResearchDirectorate,http://www.ortohum.gov.tr, lastvisitedAugust2007. Fukuda,T.,J.Yokoyama,andH.Ohashi2001.Phylogenyandofthe genus Lycium (Solanaceae):inferencesfromchloroplastDNAsequences. Molecular PhylogeneticsEvolution 19:246–258. Gadek,P.A.,WilsonP.G.andC.J.Qinn1996.Phylogenetic reconstruction in Myrtaceaeusing mat K,withparticularreferencetothepositionof Psiloxylon and Heteropyxis . AustralianSystematicBotany . Gadek, P.A., D.L. Alpers, M.M. Heslewood and C.J. Quinn 2000. Relationships withinCupressaceaesensulato:acombinedmorphologicalandmolecularapproach. AmericanJournalofBotany 87(7):10441057. Ge,S.,Li,A.,Lu,B.R.,Zhang,S.Z.andD.Y.Hong2002.Aphylogenyoftherice tribeoryzeae(poaceae)basedon matKsequencedata. AmericanJournalofBotany 89(12):1967–1972. Hausner, G., Olson, R., Simon, D., Johnson, I., Sanders, E. R., Karol, K. G., McCourt,R.M.andS.Zimmerly2006.Originandevolution of the choloroplast trnK ( matK ) intron: A model for evolution of group II intron RNA structures. MolecularBiologyandEvolution 23(2):380391. Hidalgo, O., Garnatje, T., Susanna, A. and J. Mathez, 2004. Phylogeny of Valerianaceaebasedon matK and ITS markers, withreferenceto matK individual polymorphisms.AnnalsofBotany93,283–293. 68 Hilu,K.W.,andH.Liang1997.The matKgene:sequencevariationandapplication inplantsystematics. AmericanJournalofBotany 84:830839 Hilu,K.W.,andL.A.Alice.1999.Evolutionaryimplications of matK indels in Poaceae. AmericanJournalofBotany 86:17351741. Hilu,K.W.,BorchT.,Müller,K.,Soltis,D.E.,Soltis,P.S.,Savolainen,V.,Chase, M.W.,Powell,M.P.,Alice,L.A.,Evans,R.,Sauquet,H.,Neinhuis,C.,Slotta,T. A. B., Rohwer, J. G., Campbell, C. S. and L. W., Chatrou 2003. Angiosperm Phylogeny based on matK sequence information. American Journal of Botany 90(12):17581776. Hoey,M.T.,Parks,C.R.,1991.IsozymedivergencebetweeneasternAsian,North American, and Turkish species of Liquidambar (Hamamelidaceae). American JournalofBotany 78,938–947. Hoey,M.T.,Parks,C.R.,1994.Geneticdivergencein LiquidambarstyracifluaL. , L. formosana ,and L.acalycina (Hamamelidaceae). SystematicBotany19,308–316. Hu,S.1949.Sığlaağacının Liquidambar orientalis Mill. ormancılık bakımından önemivesığlayağınınkimyasalaratırılması.OrmanGenelMüdürlüğüYayınıÖzel Sayı:83.761. IchertBond,S.,PiggK.,andJ.Wen2005.Comparativeinfructescencemorphology in Liquidambar (Altingiaceae)anditsevolutionarysignificance. AmericanJournal ofBotany .92(8):1234–1255. Đktüeren, . ve Đ. Acar 1987. Sığla ağacının ( Liquidambar orientalis Mill.) doğal yayılıı, sığla yağı üretimi ve pazarlaması. Ormancılık Aratırma Enstitüsü YayınlarıDergiSerisi ,Cilt:33,Sayı:2,No:66. Jarrel, D. C. and M. T. Clegg 1995. Systematic implications of the chloroplast encoded mat K gene on the tribe Vandeae (Orchidaceae). American Journal of Botany82:137. 69 Järvinen,P.,Palme,A.,Morales,L.O.,Lännenpää,M.,Keinänen,M.,Sopanen,T. and M. Lascoux 2004. Phylogenetic relationshıps of Betula species (Betulaceae) basedonnuclear adh andchloroplast matKsequences. AmericanJournalofBotany 91(11):1834–1845.2004. Johnson L. A., and D. E. Soltis. 1994. mat K DNA sequences and phylogenetic reconstructioninSaxifragaceaes.str. SystematicBotany 19:143156. JohnsonL.A.,andD.E.Soltis1995.PhylogeneticinferenceinSaxifragaceaesensu stricto and Gilia (Polemoniaceae) using mat K sequences. Annals of the Missouri BotanicGarden82:149175. JohnsonL.A.,J.L.Schultz,D.E.SoltisandP.S. Soltis 1996. Monophyly and generic relationships of Polemoniaceae based on mat K sequences. American JournalofBotany83:12071224. Kelchner,S.A.2002.GroupIIintronsasphylogenetic tools: Structure, function, andevolutionaryconstraints. AmericanJournalofBotany 89(10):1651–1669. Kruskal,J.R.1956.Ontheshortestspanningsubtreeofagraphandthetravelling salesmanproblem. ProceedingsoftheAmericanMathematicalSociety 7:4850. Kumar, S., Tamura, K. and M. Nei 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5:150163. Kusumi, J., Y. Tsumura, H. Yoshimaru, and H. Tachida. 2000. Phylogenetic relationshipsinTaxodiaceaeandCupressaceaesensustrictobasedonmatKgene, chlL gene, trnLtrnF IGS region, and trnL intron sequences. American Journalof Botany 87:1480–1488. Lambowitz,A.M.andS.Zimmerly2004.MobilegroupIIintrons. AnnualReview ofGenetics 38:135. LiJ.H.,BogleA.L.andA.S.Klein1997.Interspecificrelationshipsandgenetic divergenceofthedisjunctgenus Liquidambar (Hamamelidaceae). Rhodora 99:229 241. 70 Li, J. and M. J. Donoghue 1999. More molecular evidence for interspecific relationshipsofLiquidambar(Hamamelidaceae). Rhodora 101:3741 . Liang,H.andK.W.Hilu1996.Applicationofthe mat Kgenesequencestograss systematics. CanadianJournalofBotany74:125134. Liang, H. 1997. The Phylogenetic Reconstruction of the Grass Family (Poaceae) Using mat K Gene Sequences. The PhD thesis of the Faculty of the Virginia PolytechnicInstituteandStateUniversity.Blacksburg,Virginia. Meimberg, H., Thalhammer, S., Brachmann, A. 2006. Comparative analysis of a translocated copy of the trnK intron in carnivorous family Nepenthanceae. MolecularPhylogeneticsandEvolution ,39:478–490. Mort,M.E.,D.E.Soltis,P.S.Soltis,J.FranciscoOrtega,andA.SantosGuerra. 2001.PhylogeneticrelationshipsandevolutionofinferredfrommatK sequencedata. AmericanJournalofBotany 88:7691. Neel, M.C. and Cummings, M.P. 2004. Sectionlevel relationships of North American Agalinis (Orobanchaceae) based on DNA sequence analysis of three chloroplast gene regions. BMC Evolutionary Biology 4: http://www.biomedcentral.com/14712148/4/15 Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford UniversityPress,NewYork. NeuhausH.andG.Link1987.ThechloroplasttRNAlys(UUU)genefrommustard (Sinapis alba) contains a class II intronpotentially coding for a maturaserelated polypeptide. CurrentGenetics 11:251257. Ohsako,T.,andOhnishi,O.2001.Nucleotidesequencevariationofthechloroplast trnK /matK region in two wild Fagopyrum (Polygonaceae) species, F. leptopodum and F.statice . GenesandGeneticSystems 76:39–46.

71 Olmstead,R.G.,andJ.D.Palmer,1994.CholoroplastDNAsystematics:areview ofmethodsanddataanalysis. AmericanJournalofBotany 81:12051224. Önal,S.veS.Özer1985.Ülkemizdekisığlayağıüretimivedeğerlendirilmesindeki sorunlar.OrmanÜrünleriEndüstriKongresi(ORENKO).Trabzon. Örtel, E. 1988. Sığla ormanlarımızın durumu. Ormancılık Aratırma Enstitüsü DergisiCilt 17,sayı194:1619. Patterson,J.,Chamberlain,B.andD.Thayer20042006.FinchTVVersion1.4.0 Pemen,H.1972.TheGenus Liquidambar L.inDavis,FloraofTurkey.Vol:4,264 265,Edinburgh. Plunkett, G. M., Soltis, D. E. and P. S. Soltis 1996. Evolutionary pattern in Apiaceae:inferencesbasedon mat Ksequencedata. SystematicBotany21:477495. Prim, R.C. 1957. Shortest connection networks and some generalizations. Bell SystemTechnicalJournal .36:13891401. Reynolds,J.,Weir,B.S,andCockerham,C.C.1983.Estimationforthecoancestry coefficient:basisforashorttermgeneticdistance. Genetics 105:767779. Rohlf,F.J.1973.Algorithm76.Hierarchialclusteringusingtheminimumspaning tree. ThecomputerJournal .16:9395. Saitou, N. and Nei., M. 1987. The neighborjoining method: A new method for reconstructingphylogenetictrees. MolecularBiologyandEvolution 4:406425. Sanders,E.R.,K.G.KarolandR.M.McCourt2003.Occurrenceof matK ina trnK groupIIintronincharophytegreenalgaeandphylogenyoftheCharaceae. American JournalofBotany 90:628633. 72 Schneider, S., Roessli, D., and Excoeffier, L. 2000. ARLEQUIN ver 2.000. A software for population genetics data analysis. Department of Anthropology and Ecology.UniversityofGeneva,Switzerland. Shi, S., Chang H. T., Chen, Y., Qu L., Wen, J., 1998. Phylogeny of the Hamamelidaceae based on the ITS sequences of nuclear ribosomal DNA. BiochemicalSystematicsandEcology 26,55–69. Shi, S., Jin, H., Zhong, Y., He, X., Huang, Y. and F. Tan 2000. Phylogenetic relationships of the Magnoliaceae inferred from cpDNA matK sequences. TheoreticalandAppliedGenetics 101:925930. Shi,S.,Huang,Y.,Zhong,Y.,Du,Y.,Zhang,Q.,Chang, H. and D.E. Boufford 2001.PhylogenyoftheAltingiaceaebasedoncpDNAmatK PYIGSandnrDNA ITSsequences. PlantSystematicsandEvolution 230:1324. Slatkin, M. 1995. A measure of population subdivision based on microsatellite allelefrequencies. Genetics :139:457462. Soltis,D.E.,andSoltis,P.S.1998.Choosinganapproachandanappropriategene for phylogenetic analysis. In: Soltis DE, Soltis PM, Doyle JJ (eds) Molecular systematics of plants. II. DNA sequencing. Kluwer Academic Publishers, Boston, pp1–42. SongB.H.,WangX.Q.,LiF.Z.,HongD.Y.2001.Furtherevidencefor oftheCeltidaceaefromthechloroplastgene matK . PlantSystematicsandEvolution . 228:107–115. Steele,K.P.,andVilgalys,R.1994.PhylogeneticanalysesofPolemoniaceaeusing nucleotidesequencesofthePlastidgene mat K. SystematicBotany .19:126142. SugiuraM.,1992.Thechloroplastgenome. PlantMolecularBiology 19:149–168 73 Tanaka, N., Setoguchi H. and J. Murata 1997. Phylogeny of the family Hydrocharitaceaeinferredfrom rbcL and matK genesequencedata. JournalofPlant Research 110:329337. Tanaka, N., Kuo, J., Omori, Y., Nakaoka, M. and K. Aioi 2003. Phylogenetic relationshipsinthegeneraZosteraandHeterozostera(Zosteraceae)basedon matK sequencedata. JournalofPlantResearch.116,273–279. Wang, X.R., Tsumura, Y., Yoshimaru, H., Nagasaka, K. and A.E. Szmidt 1999. PhylogeneticrelationshipsofEurasianpines( Pinus ,Pinaceae)basedonchloroplast rbcL, MATK,RPL20RPS18 spacer,andTRNVintronsequences. AmericanJournal ofBotany86:17421753. Wang,X.Q.,Tank,D.C.andT.Sang2000.Phylogeny and Divergence Times in Pinaceae:EvidencefromThreeGenomes. MolecularBiology and Evolution17:773 781 . Wen,J.,2001.EvolutionofeasternAsianeasternNorth American biogeographic disjunctions:afewadditionalissues. InternationalJournalofPlantSciences .162, S117–S122. Weir, B.S. and Cockerham, C.C. 1984. Estimating Fstatistics for the analysis of populationstructure. Evolution ,38:13581370. Wilson, C.A. 2004. Phylogeny of Iris based on chloroplast matK gene and trnK intron sequence data. Molecular Phylogenetics and Evolution , (Vol. 33) (No. 2) 402412. WolfeK.H.,MordenC.W.AndJ.D.Palmer1992.Functionandevolutionofa minimalplastidgenomefromanonphotosyntheticparasitic plant. Proceedings of the.National.Academyof.SciencesoftheUSA 89:1064810652. Young, N. D. and C. W. De Pamphilis 2000. Purifying selection detected in the plastid gene matK and flanking ribozyme regions within a group II intron on nonphotosyntheticplants. MolecularBiologyandEvolution 17:1933–1941.

74 APPENDIXA:BUFFERS,CHEMICALSandEQUIPMENTS BuffersandsolutionsforDNAextractionandquantification DNAExtraction 2XCTAB: 10gCTAB(CetylTrimethylAmmoniumBromide),(SIGMA) 50mL(pH:8.0)TrisHCl,(SIGMA) 40mL(pH:8.0)0.5MEDTA,(FLUKA)

41g5MNaCliscompletedwith500mLwithdH 2O ChloroformOctanol ,(FLUKA) : (24:1) βMercaptoethanol ,(SIGMA) : 17.5mlβMercaptoethanoliscompleted

with250mLdH 2O Isopropanol ,(FLUKA) : Pureisopropanol,icecold Ethanol: 70%indH2O TEbuffer: 10mMTrisHCl(pH:7) 10mMEthylenediaminetetraaceticaciddisodiumsalt(EDTA) DNAQuantification AssaySolution(LowRange: 10500ng/mLfinalconcentration ) 0.1g/mLH33258in1XTNE(0.2MNaCl,10mMTrisCl,1mMpH7.4) H33258stocksolution10L 10XTNEbuffer10mL Distilledfilteredwater90mL DNAStandardforLowRange 1:10dilution(100g/mL)of1mg/mLDNAstandardstocksolution.Mix: 1mg/mLDNAstandardstock100L 75 10XTNEbuffer100L Distilledwater800L Hoechstdyestocksolution (10mL,1mg/mLHoechstH33258) Add10mLdistilledwaterto10mgH33258.Donotfilter.Storeat4°Cfor upto6monthsinanbottle. 10XTNEbuffer(1000mL,bufferstocksolution) 12.11gTris100mM

3.72gEDTANa 2.2H 2O10mM 116.89gNaCl2M Dissolvein800mLdistilledwater.AdjustpHto7.4withconcentratedHCl. Adddistilledwaterto1000mL.Filterbeforeuse(0.45m).Storeat4°Cfor upto3months. BuffersandsolutionsforPolymeraseChainReaction(PCR)

10XPCRBuffer(MgCl 2free) (BIORON)

MgCl 2StockSolution (BIORON):25mMMgCl 2 dNTPs (LAROVA) :5mM TaqDNApolymerase (BIORON) :5U/L

SterileWater: dH 2O Primerpairs: 100M Electrophoresisbuffersandgelsystems AgaroseGelElectrophoresis

RunningBuffers: 1XTAEpreparedindH 2O Agarose ,(SIGMA) :1or1.7percent(w/v)Agarosegel 76 EthyidiumBromide ,(SIGMA) :5mg/mL LoadingBuffer: 9.5mLFormamide,(SIGMA) 500LEDTA(0.5M) 15mgBromophenolblue,(SIGMA) 15mgXylenecyanol,(SIGMA) Equipments Autoclave: Kermanlar–ISTANBUL Centrifuge: Sigma113 Deepfreezer: Sanyo–MedicalFreezer HorizontalElectrophoresisSystem: MaxicellEC360MElect.Unit Thermocyclers: EppendorfMastercycler,Technegenius MagneticStirrer: LaborBrand/HotplateL81 Ovens:Dedeoğlu pHmeter:HannaInst. PowerSupplies: EC13590EC Refrigerator: AEG UVTransilluminator: VilborLourmant Vortex:NüveNM110 WaterBath: Memmert Micropipettes:GILSON 77 APPENDIXB:SEQUENCESOFTHEPRIMERS TableB.1.Sequencesoftheprimers Primer Sequence(5’3’) Length(bp) mKF1 CCCTTCGATACTGGCTGAAA 20 mKR1 TCAAGAAGGGCTCCAGAAGA 20 mKF2 TATCGACCGATTTGTGCGTA 20 mKR2 AGCTGGGACGATCAAAGAAA 20 mKR3 AGAAGAAGCTGGGACGATCA 20 mKR4 AGGGCTCCAGAAGATGTTGA 20 mKR5 GCTGGGACGACTAAAGAAAG 20 matKF1 ACTGTATCGCACTATGTATCA 21 matKF2 GTTCACTAATTGTGAAACGT 20 matKR3 GATCCGCTGTGATAATGAGA 20 matKF4 ACCCCACCCCATCCATCT 18 matKF5 TGGAGYCCTTCTTGAGCG 18 matKF6 TCAGTGGTACGGAATCAAATGC 22 matKR1 GAACTAGTCGGATGGAGTAG 20 matKR2 TTCATGATTGGCCAGATCA 19 matKR22 ACGGGGCCATAAGAAAGTCG 20 78 APPENDIXC:DATASETS TableC.1.Individualnumbersof18populationswith2individuals POPULATIONS matK F1R3 matK F5R1 Entire matK 1 AcıpayamAlcı 3,10 3,8 3,10 2 MarmarisÇetibeli 8,9 8,9 8,9 3 MarmarisDeğirmenyanı 1,6 1,6 1,6 4 FethiyeGünlükbaı 1,2 1,2 1,2 5 MuğlaKızılyaka 7,8 1,8 7,8 6 MarmarisGünnücek 1,7 1,7 1,7 7 MarmarisGünnücek 1,5 1,5 1,5 8 AcıpayamBozdağ 1,3 1,2 1,3 9 MarmarisHisarönü 1,5 1,5 1,5 10 MuğlaKıyra 1,5 1,6 1,5 11 KöyceğizKöyceğiz 1,3 1,3 1,3 12 GölhisarPamucak 1,4 1,4 1,4 13 AntalyaSerik 1,4 1,4 1,4 14 BurdurSöğütdağ 8,11 8,11 8,11 15 KöyceğizKöyceğiz 4,7 7,9 4,7 16 AydınUmurlu 22,33 22,33 22,33 17 MuğlaYatağan 3,7 3,6 3,7 18 MuğlaYılanlı 2,3 1,5 1,3 79 TableC.2.Individualnumbersof18populationswith3individuals POPULATIONS matK F1R3 matK F5R1 Entire matK 1 AcıpayamAlcı 3,8,9 2 MarmarisÇetibeli 8,9,12 8,9,12 8,9,12 3 MarmarisDeğirmenyanı 1,6,8 1,4,6 1,6,8 4 FethiyeGünlükbaı 1,2,4 1,2,4 1,2,4 5 MuğlaKızılyaka 1,3,8 6 MarmarisGünnücek 7 MarmarisGünnücek 1,5,6 1,2,5 8 AcıpayamBozdağ 1,3,4 1,2,3 1,3,4 9 MarmarisHisarönü 1,4,5 1,4,5 1,4,5 10 MuğlaKıyra 1,5,6 1,5,6 1,5,6 11 KöyceğizKöyceğiz 1,3,4 1,3,4 1,3,4 12 GölhisarPamucak 13 AntalyaSerik 1,4,12 1,4,12 1,4,12 14 BurdurSöğütdağ 15 KöyceğizKöyceğiz 4,6,7 4,7,9 4,7,9 16 AydınUmurlu 17 MuğlaYatağan 3,7,12 3,6,7 3,7,12 18 MuğlaYılanlı 2,3,5 1,5,7 1,3,5 TableC.3Individualnumbersof18populationswith4individuals POPULATIONS matK F1R3 matK F5R1 Entire matK 1 AcıpayamAlcı 3,8,9,10 2 MarmarisÇetibeli 3 MarmarisDeğirmenyanı 1,4,6,8 1,4,6,8 1,4,6,8 4 FethiyeGünlükbaı 1,2,4,5 5 MuğlaKızılyaka 1,3,4,8 6 MarmarisGünnücek 7 MarmarisGünnücek 1,5,6,7 1,2,5,15 8 AcıpayamBozdağ 1,2,3,4 9 MarmarisHisarönü 1,4,5,9 1,4,5,9 1,4,5,9 10 MuğlaKıyra 1,5,6,13 1,5,6,13 1,5,6,13 11 KöyceğizKöyceğiz 1,2,3,4 1,2,3,4 1,2,3,4 12 GölhisarPamucak 13 AntalyaSerik 14 BurdurSöğütdağ 15 KöyceğizKöyceğiz 4,6,7,9 4,6,7,9 4,6,7,9 16 AydınUmurlu 17 MuğlaYatağan 3,6,7,12 3,6,7,12 3,6,7,12 18 MuğlaYılanlı 2,3,5,1 1,5,7,3 80 APPENDIXD:APARTOFTHEMEGADATAFILE Mega sequencedataforTurkishsweetgumpopulations #POP03MARDEG06DE06integriloba ATGGAGGAATCTCAAGGATATTTAGAACTAGATAAATCTGGGCAACATG ACTTCCTATATCCACTTATCTTTCAGGAGTATATTTATGTACTTGCTCATG ATCATGGTTTAAATAGATCGATTTTGTTGGAAAATTTGGGTTCTGACAAT AAATTCAGTTCATTAATTGTGAAACGTTTAATTACTCGAATGTATCAACA GAACCGTTTGATTATTTCCGCTAATGATTCTAACCAAAATCCATTTTTGG GGCACAACAAGGATTTGTATTCTCAAATGATATCAGAGGGATTTGCAGT CATTGTGGAAATTCCATTTCCCCTACGATTAGTATCTTCCCTAGAGAGGA AAGAAATAGTAAAATCGCATAATTTACGATCAATTCATTCAGTATTTCCT TTTTTAGAGGACAAGTTTTTACATTTAAATTATGTGTCAGATATACTAAT ACCCCACCCCATCCATCTGGAAATATTGGTTCAAACCCTTCGATACTGGG TGAAAGATGCTTCTTCTTTGCATTTATTACGATTCTTTCTCTACGAGTATC GTAATTGGAATAGTCTTATTAATCCAAAGAAATCCATTTTCGTTTTTTCA AAAAGGAATCAAAGATTATTCTTGTTTCTATATA????????????????????GA ATCCGTCTTCGTTTTTCTTCGTAACCAATCTTCTCATTTACGATCAACATC TTCTGGAGCCCTTCTTGAGCGAATATATTTCTATGGAAAAATAAAACATC TTGTAGAAGTCTTTGCTAATGATTTTCAGGCCATCCTGTGGTTGTTCAAG GATCCTTTCGTGCATTATGTTAGGTATCAAGGAAAATCAATTCTCGCTTC AAAAGGAACACCTCTTCTGATGAATAAATGGAAATATTACCTTGTCAAC TTCTGGCAATGTCATTTTTACGTGTGGTCTCAACCAGTAAGGATCTATAT AAACCAATTATCCAATCATTCCCTTTACTTTCTGGGCTATCTTTCGAGTGT GGGATTAAATCCTTTAGTGGTACGGAATCAAATGCTAGAAAATTCGTTT ATAATAGATAATGCTATTAAAAAGTTCGATATCATAGTTCCAATTATTCC TCTGATTGGATCATTGGCTAAAGCGAAATTTTGTAACGTATTAGGGCATC CTATTAGTAAGCCGGCCCGGGCCGATTCATCAGATTCTGATATTATCGAC CGATTTGTGCGTATATGCAGAAATCTTTCTCATTATCACAGCGGATCCTC GAAAAAAAAGAGTTTGTATCGAATAAAGTATATACTTCGACTTTCTTGTG CTAGAACTTTGGCTCGTAAACACAAAAGTCCTGTACGTGCTTTTTTGAAA AGATTAGGTTCGGAATTATTGGAAGAATTCCTTACGGAGGAAGAACAAG TTCTTTCTTTGATCGTCCCAGCTTCTTCTACTTCGCGGAGGTTATATAGAG GGCGTATTTGGTATTTGGATATTATTTGTATCAACGATCTGGCCAATCAT GAATGA

81 ArlequinsequencedataofsomeofTurkishsweetgumpopulations [Profile] Title=" matK gene" NbSamples=28 GenotypicData=0 DataType=DNA LocusSeparator=NONE MissingData='?' [Data] [[Samples]] SampleName="POP01ACIALCUnknown" SampleSize=1 SampleData={ AK031 ATGGAGGAATCTCAAGGATATTTAGAACTAGATAAATCTGGGCAACATG ACTTCCTATATCCACTTATCTTTCAGGAGTATATTTATGTACTTGCTCATG ATCATGGTTTAAATAGATCGATTTTGTTGGAAAATTTGGGTTCTGACAAT AAATTCAGTTCATTAATTGTGAAACGTTTAATTACTCGAATGTATCAACA GAACCGTTTGATTATTTCCGCTAATGATTCTAACCAAAATCCATTTTTGG GGCACAACAAGGATTTGTATTCTCAAATGATATCAGAGGGATTTGCAGT CATTGTGGAAATTCCATTTCCCCTACGATTAGTATCTTCCCTAGAGAGGA AAGAAATAGTAAAATCGCATAATTTACGATCAATTCATTCAGTATTTCCT TTTTTAGAGGACAAGTTTTTACATTTAAATTATGTGTCAGATATACTAAT ACCCCACCCCATCCATCTGGAAATATTGGTTCAAACCCTTCGATACTGGG TGAAAGATGCTTCTTCTTTGCATTTATTACGATTCTTTCTCTACGAGTATC GTAATTGGAATAGTCTTATTAATCCAAAGAAATCCATTTTCGTTTTTTCA AAAAGGAATCAAAGATTATTCTTGTTTCTATATA????????????????????GA ATCCGTCTTCGTTTTTCTTCGTAACCAATCTTCTCATTTACGATCAACATC TTCTGGAGCCCTTCTTGAGCGAATATATTTCTATGGAAAAATAAAACATC

82 TTGTAGAAGTCTTTGCTAATGATTTTCAGGCCATCCTGTGGTTGTTCAAG GATCCTTTCGTGCATTATGTTAGGTATCAAGGAAAATCAATTCTCGCTTC AAAAGGAACACCTCTTCTGATGAATAAATGGAAATATTACCTTGTCAAC TTCTGGCAATGTCATTTTTACGTGTGGTCTCAACCAGTAAGGATCTATAT AAACCAATTATCCAATCATTCCCTTTACTTTCTGGGCTATCTTTCGAGTGT GGGATTAAATCCTTCAGTGGTACGGAATCAAATGCTAGAAAATTCGTTT ATAATAGATAATGCTATTAAAAAGTTCGATATCATAGTTCCAATTATTCC TCTGATTGGATCATTGGCTAAAGCGAAATTTTGTAACGTATTAGGGCATC CTATTAGTAAGCCGGCCCGGGCCGATTCATCAGATTCTGATATTATCGAC CGATTTGTGCGTATATGCAGAAATCTTTCTCATTATCACAGCGGATCCTC GAAAAAAAAGAGTTTGTATCGAATAAAGTATATACTTCGACTTTCTTGTG CTAGAACTTTGGCTCGTAAACACAAAAGTCCTGTACGTGCTTTTTTGAAA AGATTAGGTTCGGAATTATTGGAAGAATTCCTTACGGAGGAAGAACAAG TTCTTTCTTTGATCGTCCCAGCTTCTTCTACTTCGCGGAGGTTATATAGAG GGCGTATTTGGTATTTGGATATTATTTGTATCAACGATCTGGCCAATCAT GAATGA } SampleName="POP02MARCETIntegriloba" SampleSize=1 SampleData={ CE091 ATGGAGGAATCTCAAGGATATTTAGAACTAGATAAATCTGGGCAACATG ACTTCCTATATCCACTTATCTTTCAGGAGTATATTTATGTACTTGCTCATG ATCATGGTTTAAATAGATCGATTTTGTTGGAAAATTTGGGTTCTGACAAT AAATTCAGTTCATTAATTGTGAAACGTTTAATTACTCGAATGTATCAACA GAACCGTTTGATTATTTCCGCTAATGATTCTAACCAAAATCCATTTTTGG GGCACAACAAGGATTTGTATTCTCAAATGATATCAGAGGGATTTGCAGT CATTGTGGAAATTCCATTTCCCCTACGATTAGTATCTTCCCTAGAGAGGA AAGAAATAGTAAAATCGCATAATTTACGATCAATTCATTCAGTATTTCCT TTTTTAGAGGACAAGTTTTTACATTTAAATTATGTGTCAGATATACTAAT ACCCCACCCCATCCATCTGGAAATATTGGTTCAAACCCTTCGATACTGGG TGAAAGATGCTTCTTCTTTGCATTTATTACGATTCTTTCTCTACGAGTATC GTAATTGGAATAGTCTTATTAATCCAAAGAAATCCATTTTCGTTTTTTCA AAAAGGAATCAAAGATTATTCTTGTTTCTATATA????????????????????GA ATCCGTCTTCGTTTTTCTTCGTAACCAATCTTCTCATTTACGATCAACATC TTCTGGAGCCCTTCTTGAGCGAATATATTTCTATGGAAAAATAAAACATC TTGTAGAAGTCTTTGCTAATGATTTTCAGGCCATCCTGTGGTTGTTCAAG GATCCTTTCGTGCATTATGTTAGGTATCAAGGAAAATCAATTCTCGCTTC AAAAGGAACACCTCTTCTGATGAATAAATGGAAATATTACCTTGTCAAC TTCTGGCAATGTCATTTTTACGTGTGGTCTCAACCAGTAAGGATCTATAT AAACCAATTATCCAATCATTCCCTTTACTTTCTGGGCTATCTTTCGAGTGT GGGATTAAATCCTTCAGTGGTACGGAATCAAATGCTAGAAAATTCGTTT ATAATAGATAATGCTATTAAAAAGTTCGATATCATAGTTCCAATTATTCC TCTGATTGGATCATTGGCTAAAGCGAAATTTTGTAACGTATTAGGGCATC 83 CTATTAGTAAGCCGGCCCGGGCCGATTCATCAGATTCTGATATTATCGAC CGATTTGTGCGTATATGCAGAAATCTTTCTCATTATCACAGCGGATCCTC GAAAAAAAAGAGTTTGTATCGAATAAAGTATATACTTCGACTTTCTTGTG CTAGAACTTTGGCTCGTAAACACAAAAGTCCTGTACGTGCTTTTTTGAAA AGATTAGGTTCGGAATTATTGTGAGAATTCCTTACGGAGGAAGAACAAG TTCTTTCTTTGATCGTCCCAGCTTCTTCTACTTCGCGGAGGTTATATAGAG GGCGTATTTTGTATTTGGATATTATTTGTATCAACGATCTGGCCAATCAT GAATGA } SampleName="POP03MARDEGIntegriloba" SampleSize=1 SampleData={ DE061 ATGGAGGAATCTCAAGGATATTTAGAACTAGATAAATCTGGGCAACATG ACTTCCTATATCCACTTATCTTTCAGGAGTATATTTATGTACTTGCTCATG ATCATGGTTTAAATAGATCGATTTTGTTGGAAAATTTGGGTTCTGACAAT AAATTCAGTTCATTAATTGTGAAACGTTTAATTACTCGAATGTATCAACA GAACCGTTTGATTATTTCCGCTAATGATTCTAACCAAAATCCATTTTTGG GGCACAACAAGGATTTGTATTCTCAAATGATATCAGAGGGATTTGCAGT CATTGTGGAAATTCCATTTCCCCTACGATTAGTATCTTCCCTAGAGAGGA AAGAAATAGTAAAATCGCATAATTTACGATCAATTCATTCAGTATTTCCT TTTTTAGAGGACAAGTTTTTACATTTAAATTATGTGTCAGATATACTAAT ACCCCACCCCATCCATCTGGAAATATTGGTTCAAACCCTTCGATACTGGG TGAAAGATGCTTCTTCTTTGCATTTATTACGATTCTTTCTCTACGAGTATC GTAATTGGAATAGTCTTATTAATCCAAAGAAATCCATTTTCGTTTTTTCA AAAAGGAATCAAAGATTATTCTTGTTTCTATATA????????????????????GA ATCCGTCTTCGTTTTTCTTCGTAACCAATCTTCTCATTTACGATCAACATC TTCTGGAGCCCTTCTTGAGCGAATATATTTCTATGGAAAAATAAAACATC TTGTAGAAGTCTTTGCTAATGATTTTCAGGCCATCCTGTGGTTGTTCAAG GATCCTTTCGTGCATTATGTTAGGTATCAAGGAAAATCAATTCTCGCTTC AAAAGGAACACCTCTTCTGATGAATAAATGGAAATATTACCTTGTCAAC TTCTGGCAATGTCATTTTTACGTGTGGTCTCAACCAGTAAGGATCTATAT AAACCAATTATCCAATCATTCCCTTTACTTTCTGGGCTATCTTTCGAGTGT GGGATTAAATCCTTTAGTGGTACGGAATCAAATGCTAGAAAATTCGTTT ATAATAGATAATGCTATTAAAAAGTTCGATATCATAGTTCCAATTATTCC TCTGATTGGATCATTGGCTAAAGCGAAATTTTGTAACGTATTAGGGCATC CTATTAGTAAGCCGGCCCGGGCCGATTCATCAGATTCTGATATTATCGAC CGATTTGTGCGTATATGCAGAAATCTTTCTCATTATCACAGCGGATCCTC GAAAAAAAAGAGTTTGTATCGAATAAAGTATATACTTCGACTTTCTTGTG CTAGAACTTTGGCTCGTAAACACAAAAGTCCTGTACGTGCTTTTTTGAAA AGATTAGGTTCGGAATTATTGGAAGAATTCCTTACGGAGGAAGAACAAG TTCTTTCTTTGATCGTCCCAGCTTCTTCTACTTCGCGGAGGTTATATAGAG GGCGTATTTGGTATTTGGATATTATTTGTATCAACGATCTGGCCAATCAT GAATGA } 84 andtheotherpopulationsareincludedassampledabove #Definitionofthegroupstructure: ((Structure)) StructureName="18populationsand4outgroups" NbGroups=1 #18populations Group={ "POP01ACIALCUnknown" "POP02MARCETIntegriloba" "POP03MARDEGIntegriloba" "POP04FETGULIntegriloba" "POP05MUGKIZIntegriloba" "POP06MARGUNIntegriloba" "POP07MARGUNIntegriloba" "POP08ACIBOZUnknown" "POP09MARHISIntegriloba" "POP10MUGKIYIntegriloba" "POP11KOYKOYIntegriloba" "POP12GOLPAMUnknown" "POP13ANTSERUnknown" "POP14BURSOGUnknown" "POP15KOYKOYIntegriloba" "POP16AYDUMUOrientalis" "POP17MUGYATOrientalis" "POP18MUGYILOrientalis" "L.orientalis_AF015651" "L.orientalis_AF304519" "L.orientalis_AF133220" "L.acalycina_AF133222" "L.acalycina_AF015649" "L.formosana_AF133221" "L.formosana_AF015650" "L.styraciflua_AF133219" "L.styraciflua_AF133218" "L.styraciflua_AF015652" } 85 APPENDIXE:PHYLOGENETICTREES

52 14-BUR-SOG-08-SO08-U

39 10-MUG-KIY-13-KI13-I

10-MUG-KIY-05-KI05-I 41 46 05-MUG-KIZ-08-FI08-I

04-FET-GUL-02-FE02-I

82 04-FET-GUL-04-FE04-I

03-MAR-DEG-01-DE01-I

66 03-MAR-DEG-04-DE04-I

15-KOY-TBH-06-TB06-I

12-GOL-PAM-01-PA01-U

17-MUG-YAT-03-YA03-O

01-ACI-ALC-03-AK03-U

06-MAR-GUN-01-GC01-I

18-MUG-YIL-05-YL05-O

13-ANT-SER-01-SE01-U

17-MUG-YAT-12-YA12-O

13-ANT-SER-04-SE04-U

07-MAR-GUN-05-GN05-I 61 08-ACI-BOZ-04-GU04-U

63 08-ACI-BOZ-03-GU03-U

41 06-MAR-GUN-07-GC07-I

09-MAR-HIS-04-HO04-I 55 09-MAR-HIS-01-HO01-I 65 12-GOL-PAM-04-PA04-U

05-MUG-KIZ-07-FI07-I

14-BUR-SOG-11-SO11-U

15-KOY-TBH-09-TB09-I

18-MUG-YIL-03-YL03-O

63 11-KOY-KOY-03-KO03-I

11-KOY-KOY-04-KO04-I

00-LIQ-OR-AF015651-L

02-MAR-CET-12-CE12-I

01-ACI-ALC-10-AK10-U

62 02-MAR-CET-09-CE09-I

16-AYD-UMU-22-UM22-O

16-AYD-UMU-33-UM33-O

07-MAR-GUN-01-GN01-I

98 00-LIQ-ST-AF133219-L

00-LIQ-ST-AF133218-L

98 00-LIQ-OR-AF133220-L

70 00-LIQ-OR-AF304519-L

73 00-LIQ-ST-AF015652-L

00-LIQ-AC-AF015649-L

00-SLI-CA-AF133226-L 99 00-LIQ-AC-AF133222-L 78

54 00-LIQ-FO-AF133221-L

83 00-LIQ-FO-AF015650-L

0.5 FigureE.1Phylogenetictreeswithtwoindividualsfromeach18populations 86

71 04-FET-GUL-02-FE02-I

42 04-FET-GUL-04-FE04-I Geographic Gp 2

48 15-KOY-TBH-04-TB04-I

10-MUG-KIY-13-KI13-I Geographic Gp 2

49 27 14-BUR-SOG-08-SO08-U Geographic Gp 3

37 05-MUG-KIZ-08-FI08-I

10-MUG-KIY-05-KI05-I

6 11-KOY-KOY-01-KO01-I Geographic Gp 2

52 11-KOY-KOY-04-KO04-I

49 11-KOY-KOY-03-KO03-I

17-MUG-YAT-06-YA06-O Geographic Gp 4

17-MUG-YAT-12-YA12-O Geographic Gp 4

03-MAR-DEG-04-DE04-I

03-MAR-DEG-01-DE01-I Geographic Gp 2 61 03-MAR-DEG-06-DE06-I

13-ANT-SER-01-SE01-U Geographic Gp 3

03-MAR-DEG-08-DE08-I Geographic Gp 2

08-ACI-BOZ-01-GU01-U Geographic Gp 1

07-MAR-GUN-01-GN01-I Geographic Gp 2 66 10-MUG-KIY-01-KI01-I

15-KOY-TBH-06-TB06-I Geographic Gp 2

10-MUG-KIY-06-KI06-I Geographic Gp 2

07-MAR-GUN-05-GN05-I Geographic Gp 2

64 08-ACI-BOZ-04-GU04-U Geographic Gp 1

08-ACI-BOZ-03-GU03-U Geographic Gp 1

18-MUG-YIL-01-YL01-O Geographic Gp 4

09-MAR-HIS-04-HO04-I Geographic Gp 2 41 64 12-GOL-PAM-04-PA04-U Geographic Gp 3

09-MAR-HIS-01-HO01-I Geographic Gp 2 64 51 02-MAR-CET-08-CE08-I

06-MAR-GUN-07-GC07-I Geographic Gp 2 41 09-MAR-HIS-05-HO05-I

09-MAR-HIS-09-HO09-I

14-BUR-SOG-11-SO11-U Geographic Gp 3

13-ANT-SER-12-SE12-U Geographic Gp 3

18-MUG-YIL-05-YL05-O Geographic Gp 4

13-ANT-SER-04-SE04-U Geographic Gp 3

15-KOY-TBH-09-TB09-I Geographic Gp 2

17-MUG-YAT-03-YA03-O Geographic Gp 4 18-MUG-YIL-03-YL03-O

17-MUG-YAT-07-YA07-O Geographic Gp 4

00-LIQ-OR-AF015651-L outgroups

16-AYD-UMU-33-UM33-O Geographic Gp 2

02-MAR-CET-12-CE12-I Geographic Gp 2

01-ACI-ALC-10-AK10-U Geographic Gp 1 64 04-FET-GUL-01-FE01-I Geographic Gp 2

02-MAR-CET-09-CE09-I Geographic Gp 2 16-AYD-UMU-22-UM22-O

06-MAR-GUN-01-GC01-I Geographic Gp 2 15-KOY-TBH-07-TB07-I

05-MUG-KIZ-07-FI07-I Geographic Gp 2

01-ACI-ALC-03-AK03-U Geographic Gp 1

11-KOY-KOY-02-KO02-I Geographic Gp 2

12-GOL-PAM-01-PA01-U Geographic Gp 3

99 00-LIQ-ST-AF133219-L

00-LIQ-ST-AF133218-L

98 00-LIQ-OR-AF133220-L outgroups

73 00-LIQ-OR-AF304519-L

73 00-LIQ-ST-AF015652-L

00-LIQ-AC-AF015649-L

00-SLI-CA-AF133226-L 99 00-LIQ-AC-AF133222-L outgroups 78

54 00-LIQ-FO-AF133221-L

83 00-LIQ-FO-AF015650-L

1 Figure E.2 Phylogenetic trees with all sequences obtained from each 18 populations 87