<<

/yy//

Zoológica Scripla, Vol. 27, No, 4, pp. 361-372, 1998 Elsevier Science Ltd Pergamon i;> 1998 The Noi'wegian Academy of Science and Letters All rights reserved. Printed in Great Britain PI I: 50300-3256(98)00017-8 " 0300-3256/98 S19.00 + 0.00

Phylogenetic relationships of the lower (Molluscs, , , , ) as determined by partial 18S rDNA sequences

M. G. HARASEWYCH*, S. LAURA ADAMKEWICZ, MATTHEW PLASSMEYER and PATRICK M. GILLEVET

Accepted 9 June 1998

Harasevvych, M. G., Adainkcwicz, S. L. Plassmeyer, M. & Gillevet, P. M. 1998. Phylogenetic relationships of the lower Caenogastropoda (. Gastropoda. Architaenioglossa. Cam- paniloidea, Cerithioidea) as delermined by partial I8S rDNA sequences.•Zool. Scr. 27: 361-372.

Phylogenetic analyses of partial sequences spanning approximately 450 nucleotides near the 5' end of the IBS rDNA strongly support the monophyly of and its constituent clades. Caenogastropoda and . Representatives of the architaenioglossan groups Cyclo- phoroidea, and invaiiably emerge within Caenogastropoda in all analy- ses. While the and Ampullariidae are monophyletic, the varying position of Viviparidae in all outcomes contradicts its hypothesized sister group relationship with Ampul- lariidae, and thus the monophyly of . Because of the position of Viviparidae, Architaenioglossa does not emerge as a clade in any of our analyses. consistently emerges between Cyclophoroidea and Cerithioidea, or in a clade with Cyclophoroidea and Ampullariidae, a position not predicted by previous morphological studies. Maximum parsimony analyses of sequence data show Caenogastropoda to comprise a series of sequentially diverging higher taxa. However, maximum likelihood analyses as well as maximum parsimony analyses using only trans- versions divide Caenogastropoda into two clades, one containing the architaenioglossan laxa, Campaniloidea and Cerithioidea, the other containing the higher caenogastropod taxa included in Eucaenogastropoda (Haszprunar, 1988) [= (Ponder & Lindberg 1997)]. Denser taxon sampling revealed insertions to be present in the 18S rDN/-\ gene of several caenogastropod taxa. Earlier reports {Harasewych ei al. 19976) of reduced sequence divergence levels in Caen- ogastropoda are shown (o be restricted to Hypsogastropoda. Based on a broader taxonomic sampling, divergence levels within Caenogastropoda are comparable to those found within Hetero- branchia. H 1998 The Norwegian Academy of Science and Letters

M. G. Harasewych. Deparlnieni of inrerlebraie Zoology. National Miisetitn of Natiifal ¡iistniy. Sinitlisotiiati Institiitioti, Washitigton. DC 20560. U.S.A. S. Laura Aclaittkewicz. Departtiient of Biology. George Mason Utiiver.^ity. Fairja.x. VA 22030, U.S.A. Matthew Plasstneyer & Patricia M. Gillevet. in.stitnte for Bioscieitce. Bioittfonnatics. aitil Bio- teclttiology. George Mason Unicersity. Matiassas. VA 201 ¡0. U.S.A.

Introduction Rosenberg el al. 1994, 1997; Harasewych el al. I991a,b). These recent studies converge on a broad outline of the The higher classification of the molltiscan class Gas- evolutionary history of Gastropoda, one significantly tropoda has remained static for much of the twentieth different from that formulated by Thiele and Wenz. Never- century, with most textbooks and reference works cur- theless, the placement and/or composition of a nuinber of rently in use incorporating an arrangement that was pro- key higher taxa remain unresolved or subject to conflicting posed by Thiele (1929-1931) and only slightly modified by interpretations. Among these are early radiations of land Wenz (1938-1944). Perhaps catalyzed by a reassessment and fresh-water taxa collectively termed the Arch- of prosobranch systematics begun by Golikov & Sta- itaenioglossa, and the superfamily Campaniloidea, rep- robogatov (1975), the past two decades have witnessed resented in the Recent fauna by a single, relict . a renewed interest in re-evaluating relationships among Both groups figure prominently in the early history of higher gastropod taxa using large suites of anatomical, the Caenogastropoda, the superorder that contains the ultrastructural and molecular characters, and, more majority of living, shelled, marine gastropods. recently, cladistic methodology (e.g.. Salvini-Plawen 1980, Architaenioglossa has long been recognized as a ten- 1991; Salvini-Plawen & Haszprunar 1987; Haszprunar tative assemblage of terrestrial and fresh-water groups that 1988; Ponder & Lindberg 1996, 1997; Salvini-Plawen & could not be included elsewhere yet "bear little resem- Steiner 1996; Healy 1988, 1996; Tillier el al. 1992, 1994; blance to one another" (Thiele 1929). The group originally consisted of four families, the terrestrial , ' Corresponding author. and the fresh-water Viviparidae, Ampullariidae, and Lavi-

361 Zoológica Scripta 27 362 M. G. Harasewych et al. geriidae (Thiele 1929; Wenz 1943), although, the Lavi- phylogenetic analyses of Salvini-Plawen & Steiner (1996) geriidae were subsequently transferred to the Cerithioidea (Fig. ID). However, the analyses of Ponder & Lindberg (Morrison 1954). Most traditional classihcations have (1996, 1997) (Fig. IE and IF, respectively) indicate that placed the ai'chitaenioglossan families at the base of Caen- Architaenioglossa emerge within Caenogastropoda, as sis- ogastropoda or its paraphyletic component, Meso- ter group to all remaining caenogastropod taxa. gastropoda {e.g., Thiele 1929; Wenz 1943; Taylor & Sohl The monophyly of Architaenioglossa has been ques- 1962; Boss 1982; Ponder & Waren 1988; Vaught 1989). tioned by many recent authors {e.g., Sitnikova & Sta- Architaenioglossa was elevated to ordinal rank (Golikov robogatov 1982; Haszprunar 1988; Salvini-Plawen & & Starobogatov 1975; Ponder & Waren 1988) to include Steiner 1996; Ponder & Lindberg 1997), who noted the the superfamilies Cyclophoi'oidea and AmpuUarioidea (as absence of well defined synapomorphies to unite the Cyl- Viviparioidea), the latter containing the families Ampul- cophoroidea and AmpuUarioidea. Haszprunar (1988: 415) lariidae (as Pilidae) and Viviparidae. Golikov & Sta- further observed that the monophyly of AmpuUarioidea is robogatov (1975) (Fig. I A) regarded Architaenioglossa to not well supported, since apart from sharing a specialized constitute a lineage not closely related to taxa included osphradium, the Ampullariidae and Viviparidae are in Caenogastropoda by most authors. Haszprunar (1988) "remarkably dissimilar" in their nervous, respiratory and (Fig. IC) placed Architaenioglossa outside the Caen- excretory systems. Healy (1996) reported that Cyclo- ogastropoda, as sister group to Apogastropoda [ = Caen- phoroidea, AmpuUarioidea and Cerithioidea share a series ogastropoda -I- Heterobranchia, as redefined by Ponder of specialized eusperm and parasperm features, and form & Lind berg, 1997]. This position was reaffirmed by the a distinct group within Caenogastropoda.

Monoplacophora ] Palemones Docoglossa Docoglossa SCUTIBRANCHIA 1 PLEUROTOMARIIONES SCUTIBRANCHIA TROCHiFORMII BUCCINIFORMII PULUONATA Tnphoridao CONIFORME I PytamidsUomorpha CERITHIOIDËI Art^itectonicoideaa ._] RISSOOIDEI NERITOMOHPHA\ CYCLOPHOROIDEI LITTORINOIDEI TROCHIONES MUfllCOIDEA I CERITHIOMORPHA Seguenziidae CASSIDOIDEI XENOPHOROIDEI TURBINIWORPHA\ VIVIPAROIDEI CYCLOPHOROIOEA])EA] Vah/atoidei AWPULLARIOIDEA | PALUDINIMOPPHA Neomphaloidei CYPRAEOIDEI ^ Valvaloidaa NERITOPSIFORMII Archileclonicitormii Z3 Pyramidelliones OPISTHOBRANCHIA Z] BULLIONES TONNOIOEA UTTORINIMORPHA ^ ID SIPHONARIIONES Seguenziidae

GOLIKOV & GOLIKOV & STAROBOGATOV, 1975 B A STAROBOGATOV. 1988

Docoglossa Monoplacophora Neo)0pelopsidae Cephalopoda Cocculinilormia Docoglossa NERITOPSINA Cocculinjformia Melanodrymildae NERITOPSINA VENT TAXA Naomphalidae :] VETIGASTROPODA VETIGASTROPODA Uelanodryfniid; Seguenziina Neomphalidas CYCLOPHOROIDEAl D' ARCHITAENIOGLOSSA ARCHITAENIOGLOSSA AMPULLARIOIDEA J CAENOGASTROPODA CAENOGASTROPODA CAMPANILOIDEA CAMPANILOIDEA Valvatoidaa Valvaioidea Archiieclonicoidea Afchitectonicoidea Rissoelloidea Rissoelloidea z m HETEROBRANCHIA 0 :D Glacidorboidea P^ramldeltoidea 1 O Pyramidelloidea PULMONATA EUTHVNEURA OPISTHOBRANCHIA

SALVINI-PLAWEN & HASZPRUNAR, 1988 STEINER, 1996

Polyplacophora Polyplacophora Monoplacophota Monoplacophora Cephalopoda Cephalopoda Docoglossa Docoglossa VETIGASTROPODA NERITOPSINA NERITOPSINA VENT TAXA Vent Taxa VETIGASTROPODA CYCLOPHOROIDEA" CYCLOPHORIDEA ~ AMPULLARIOIDEA AMPULLARIOIDEA CERITHIIDAE CERITHIIDAE Triphoridae CAMPANILOIDEA Triphoridae LITTORINIDAE rC LITTORINIDAE TONNOIOEA MURICOIDEA MURICOIDEA CONOIDEA _ HI CONOIDEA _ Valvaioidea Valvaioidea Architectonicoidea Archiledonicoidea OPISTHOBRANCHIA il OPISTHOBRANCHIA PULMONATA ^ PULMONATA _ PONDER & LINDBERG, 1996 PONDER & LINDBERG, 1997 Fig. !. Recent morphology-based hypotheses of gastropod evolution. Nomenclature and taxon rank have in some instances been modified to facilitate comparisons. Taxa listed in UPPER CASE are represented in the present study.•A. Golikov & Starobogatov (1975: hg. 6).•B. Golikov & Staroboeatov (1988: composite of figures 2, 3, 6. 9, 16. 17 and 27).•C. Haszprunar (1988: ñg. 5).•D. Salvini-Plawen & Steiner (1996; composite of figures 2'^6 and 2.7).•E. Ponder & Lmdberg (1996: fig. 11.3 D).•F. Ponder & Lindberg (1997: fig. 5).

Zoológica Scrip/a 27 Molecular phylogeny of Caenogaslropoda 363

In a detailed study of architaenioglossan systematics, Architaenioglossa, or whether it has a more limited dis- Sitnikova & Starobogatov (1982) transferred Cyclo- tribution. phoridae (as Cyclophoroidea) and Ampullariidae (as Pil- As in the previous papers in this series (Harasewych el idae) to , while retaining the al. 1997«, 6), the principle objectives of this study are to Neocyclotoidea and together with the newly investigate the major features of gastropod evolution using added Pomatioidea, Archimedieiloidea and Valvatoidea in molecular data, and to provide an independent database their order Vivipariformes, which, together with Cyp- to test morphology-based hypotheses of gastropod phy- raeiformes, comprises their superorder Vivipariformii. logeny. The present paper reports the results of an inves- Apart from Gohkov & Starobogatov (1988) (Fig. IB) this tigation into the evolutionary relationships of the arrangement had not gained widespread acceptance. Campaniloidea and representative species from the major Until the pubhcation of a detailed anatomical study of architaenioglossan groups using sequences derived from a Campanile symboliciim Iredale, 1917, the only living species portion of the 18S rDNA gene. of Campanilidae (Houbrick 1981), this family had been included within the superfamily Cerithioidea. The dis- tinctive anatomical organization of this species prompted Material and methods Salvini-Plawen & Haszprunar (1987) and Haszprunar ( 1988) to place Campanilidae between the rest of the Caen- With the exception of Cdinpaiiile synibolicuiii. all tiie taxa newly ogastropoda and the Allogastropoda + Euthyneura sequenced for this study were freshly collected, frozen while living, trans- ported to the laboratory on dry ice, and maintained at -80 C until [=Heterobranchia]. Haszprunar (1988) proposed the new DNA was extracted. Previously published sequences were obtained from suborder Campanilimorpha to reflect the phylogenetic GenBank, GSDB, or EMBL. Table I lists the laxa used in this study, position of Campanile. Houbrick (1989) revised his earlier together with their collection localities, the tissues extracted, voucher specimen information and sequence accession numbers. Protocols for work and placed this in the superfamily Campan- DNA extraction and PCR ampliñcation, including primers for amplifying iloidea, which he regarded to be an early radiation from and sequencing the 18S rDNA gene region, are identical to those reported the stem-group that gave rise to "modern" Cerithioidea in Harasewych ('/ al. (1997a). Amplification products were purified using Wizard PCR Purification Kits (Proinega) and sequenced on an Applied and Caenogastropoda. Healy (1996) noted that, based on Biosystems 373A fluorescent sequencer using Prism Sequencing Kits sperm morphology, the Campaniloidea, in which he according to the manufacturer's protocol. Consensus sequences for each included CampaniUdae and (previously taxon were generated from the assembly of two sequences from each of the four sequencing primers {i.e., 2 in the forward direction, 2 in the also considered to be a cerithioidean), comprise a separate reverse direction) using Sequencher 3.0 for the Macintosh (Gene Codes group within Caenogastropoda, one that shares more fea- Corp.) tures with Architaenioglossa and Cerithioidea than with A database consisting of confirmed consensus sequences from each taxon was assembled and viewed using a custom version of Genetic Data the remaining caenogastropods. In the phylogenetic analy- Environment (GDE Version 2.0) (Smith ei al. 1994) on a Sun Sparc 10 ses of Salvini-Plawen & Steiner (1996) (Fig. ID) the Cam- Computer. The multiple sequences were aligned with CLUSTAL V (Higgins el al. 1992) using default settings. iVIinor adjustmenls. primarily panilidae emerged as an unresolved polytomy with the in the regions of the inserts, were done by hand. Individual sequences Caenogastropoda and Heterobranchia, indicating that it were submitted to the public sequence database via GenBank. Aligned may be sister taxon either to Caenogastropoda, Het- sequences are available in nexus format from the corresponding author. Maximum parsimony analyses were computed using PAUP 4.0,0d63 erobranchia, or to Apogastropoda. (Swoflord 1997, ppc beta test version) on a Power iMacintosh 6100/66. Ponder & Lindberg (1996) (Fig. IE) placed Cam- All characters were treated as unordered and weighted equally. Gaps panilidae within Caenogastropoda, and hypothesized that were treated as iriissing data. Bootstrap (BP) and .lackknife (JK) analyses ( 1000 replicates) were performed using full hemastic searches with random it diverged after Triphoridae to become sister taxon to addition sequences (10 repetitions). Support indices (Bremer 1988) were the higher caenogastropods. In a revised version of their calculated using TreeRot (Sorenson 1996). The maximum likelihood phylogeny (Ponder & Lind berg, 1997) (Fig. 1 F), the Cam- analysis was run using PAUP 4,0.0d63 for UNIX on a Silicon Graphics Octane Computer. Pairwise comparisons of sequences were calculated panilidae is shown to diverge after the Cerithioidea, as using MEGA (Kumar ei al. 1993). while the effects of alterations in tree sister group to the '"higher caenogastropods" [Hypso- topology on tree length were determined using MacClade 3.05 (Maddison gastropoda Ponder & Lindberg. 1997 -^ Eucaenogastro- (feMad'ciison 1992)." poda Haszprunar, 1988], which this time include the Triphoridae. With a single exception, neither Campanile nor any arch- Results itaenioglossan taxon have previously appeared in a molec- ular phylogeny of the Gastropoda. Partial sequences of Partial 18S rDNA sequences from near the 5' end of the the 188 rDN A gene have provided independent support for gene were determined for Campanile symboliciim, four the monophyly of the Apogastropoda and its component species of Architaenioglossa and six species representing subclades Caenogastropoda and Heterobranchia (Har- four additional superfamilies of caenogastropods. These asewych el al. 1997fl, b). While this portion of the I8S were ahgned against previously published sequences from rDNA gene was unable to resolve the relationships among eight caenogastropods, including one architaenioglossan, families of , or even between neo- as well as two heterobranchs, two neritopsines and two gastropods and higher caenogastropods (Harasewych el vetigastropods, which serve as nested outgroups (see Table al. 19976), it unequivocally placed the single arch- I for sources). This portion of the gene corresponds to itaenioglossan (Cipangopaliidina) included in that study positions 60 to 515 of the 18S rRNA sequence oWnchidella within Caenogastropoda, uniting it with the only cerithiid celiica (Cuvier 1817) and spans hehces 6-17 of the riboso- {Ceviihium) as the basal clade in Caenogastropoda. At the mal RNA (Fig. 2A,a) (see Winnepenninckx el al. 1994: time, it was unclear whether the insertion in helix 10 of 101, fig. 1). The multiple sequence alignment spans 517 Cipangopaluclina might be a diagnostic synapomorphy of positions (Fig. 2, Appendix 1 ), although length of the gene

Zoológica Scripia 27 364 M. G. Harasewych et al.

Table [. Loculiiy rlala. //.V.íííC.í cxirmied, voucher speciiiieii iiifonnalioii. aiiri séquence accession ¡nnnhers for luxa used in lliis study

Sequence accession TAXON Collecuon locality Tissue Voucher material number 18 S rDNA

VETIGASTROPODA FISSURELLOIDEA Diodora cavenensis (Lamarck, 1822) Sebastian Inlet, FL. USA Buccal muscle USNM 888660 t GSDB L78884 TROCHOIDEA Aslraeu caelala (Gmelin. 1791) Ber]"y Is.. Bahamas Buccal muscle USNM 888603 t GSDB L78886 NERITOPSINA versicolor Gmelin, 1791 Bio Pine Key, FL. USA Buccal rauscte USNM 888658 t GSDB L78882 Neriiina reclirala (Say, 1822) Big Pine Key. FL, USA Buccal muscle USNM 888659 t GSDB L78883 CAENOGASTROPODA -ARCHrTAENlOGLOSSA- CYC1.0PH0R0ÍDEA Cyclopliorus liirusei Pilsbry, 1901 Amami-0-Shima, Japan Juccal muscle USNM 888710 GB AF055644 Neocvclolus senuniidns (C. B. Adams, 1S52 Windsor. Jamaica Juccal muscle USNM 888718 GB AF055645 •AMPULLARIOIDEA" Ampullariidae Poinacea t^ridgesi (Reeve. 1856) Lake Worth. FL, USA 3uccal muscle USNM 888715 GB AF055646 cornuaii'elis (Liiineus. \^"-H) I ort iMvers, FL, USA 3uccal muscle USNM 888713 GB AF055647 Viviparidae japónica (von iMartens. 1860) Yao. Osaka. Japan Bi-ooded juvenile USNM 888674 I GB U86304 - ?= ' CAMPANILOIDEA Campanile SYinljolicuni Iredale, 1917 Rottnest Is. WA. Australia Foot muscle AMSC.203211 GB AF055648 CERITHIOIDEA Cerilliiuni alratuin (Born, 1778) Sebastian Inlet, FL, USA Buccal muscle USNM SS8663 t GSDB L78895 Balillaria nnninia (Gmelin. 1791) Sebastian Inlet. FL. USA Buccal muscle USNVI 888719 GB AF055649 modulus (Linneus. 1758) Key Largo. FL, USA Buccal muscle USNM 888720 GB AF055650 HYPSOGASTROPODA EUCAENOGASTROPODA ^ SORBEOCONCHA Liilorina liliorea (Linneus, 1 758) Genbank e.x Winnepenninckx ei id.. EMBLX9I970 1996 Teciarius muricalus ( Linneus, I 758) Missouri Key. FL. USA Buccal muscle USNM 888708 GB AF055651 Annularia fiinlyriatula (Sowerby. 1825) Windsor. Jamaica Buccal muscle USNM 888714 GB AF055652 Truncalella guerinii Villa, 184 I Amami-O-Shinia. Japan Buccal muscle USNlM 888712 GB AF055653 XENOPHOROIDEA Xenoplwra e.suium Reeve, 1843 Minabe. Japan Buccal muscle USNM 888631 t GSDB L78896 CYPRAEOIDEA Cvpraea ligris Linneus, 1758 Minabe. Japan Buccal muscle USNM 888621 GB AF055664 TONNOIDEA Fusilriion oregonense (Redfield, 1848) Dutch Harbor, AK. USA Buccal muscle USNM 888634 t GSDB L78897 NEOGASTROPODA BUCCINOIDEA Biisvcon cacifH (Gmehn, 1791) Cape Henlopen, DE. USA Buccal muscle USNM 888705 Î GB U86306 "VOLUTOIDEA" Olita savana Ravenel, 1834 Ft. Pierce. FL. USA Buccal muscle USNM 888605 t GSDB L78898 CONOIDEA tiaslula cinérea (Bora, 1778) Ft. Pierce. FL. USA Buccal muscle USNM 888611 t GSDB L78899 HETEROBRANCHIA EUTFIYNEURA OPISTHOBRANCHIA Aplvsia dactvlomela Rang. 1828 Minabe. Japan Buccal muscle USNM 888624 t GSDB L78902 PULMONATA Siphonaria pcclinala (Linneus. I 758) Sebastian Inlet. FL. USA Buccal muscle USNM 888707 : GB U8632I

AMS = MoUusk Collection. Austi'alian Museum. Sydney; EMBL = European Molecular Biology Laboratory Data Library; GB = GenBank; GSDB = Genome Sequence Data Bank; USNM ^ Mollusk collection. National Museum of Natural Histoiy. Smithsonian Institution, t = data Horn Fiarasewych el id.. 1997o; j. = data from Flarasewych ei a/.. 19976. Higher taxa in quotes (" ") are paraphyletic.

ranges between 426 base pairs (bp) () and 489 lariid and Campanile inserts. The remaining taxa in this bp (Tnincatel/a) among the 25 taxa in this study. Most of study contain 0-5 bp in this region, which provisionally the length variation occurs in two regions of insertions, align with portions of the Tntncalel/a and Cipangopaludina one within the terminal Joop of hehx 10 (aligned positions sequences, but not with the ampullariid nor the Campanile 136-165, Fig. 2A,b il), the other at the terminal stem and inserts. The second, slightly larger region contains inserts loop of helix E-IO-1 (aligned positions 208-242, Fig, 2A, that vary in length from 3 bp {Cerilliiuni, Fu.sitriion, neo- b i2). Truncaíelki contains a 30 bp insert that spans the gastropods) to 23 bp (Truncalella) and are more diiflcult first insert region, Poinacea and Marisa contain identical to align. 9 bp inserts in this region, while Campanile contains a 9 Eight unique, single-nucleotide insertions (aligned pos- bp insert that differs in only one position from those of the itions 7, 25, 190, 339, 358, 388, 443, 508) were excluded two ampullariids. The 13 bp insert present in Cipa/i- from all phylogenetic analyses. Of the remaining 509 alig- gopaiuclina oveñaps with only a small portion of theainpul- ned positions, 361 were constant, and 62 were parsimony

Zoológica Scripla 27 Molecular phylogeny of Caenogaslropoda 365

6 7 8 10 E-10-1 11 12 13 14 a i1 i2 ** * * * * * * b

O 6

H 5 CÛ C/3 4

ce LU CQ

O >• O 50 100 150 200 250 300 350 400 450 500

B O W 3

O • 2 ce ^ UJ > C/3 1 < f O 50 100 150 200 250 300 350 400 450 500

POSITION IN ALIGNMENT Fig. 2. Variation in sites along the portion of the 18S rDNA gene among the 25 taxa in this study (Table 1).•A. Distribution of variable sites (transitions + transversions).•a. Positions of helices (based on Winnepenninckx et al. 1992: fig. 1).•b. Positions of bases excluded from phyjogenetic analyses (*) because they were unique, single-nucleotide insertions, il = first insert region, 12 = second msert region.•B. Distribution of variable sites (transversions only).

uninforinalive. Maximum parsimony analyses (branch- ately below, or as sister taxon to) as well as in the resolution and-bound searches using ACCTRAN as well as of Fusilriion from Neogastropoda. Figure 3B shows the DELTRAN character optimizations, with iTiultiple states strict consensus of these six trees, together with boot- treated as uncertainties, and addition sequence = furthest) strap/jackknife support for nodes supported at levels each produced two equally parsimonious trees of length above 50% and support indices. 254 (Cl = 0.752, RI = 0.772, RC = 0.580) that differed An additional pair (ACCTRAN and DELTRAN opti- only in whether or not Fusitriton was resolved from the mizations) of maximum parsimony analyses were con- neogastropods {Busyco?i + + Haslula). Figure 3A ducted on the data set from which the two inserts were illustrates the tree in which Fusitriion was resolved. Results deleted, this time utilizing only transversions as characters of bootstrap/jackknife analyses (1000 replicates) appear (Fig. 3C). The branch and bound search using 44 par- above/below those nodes supported at levels above 50%. simony informative characters yielded 63 equally par- Hillis & Bull (1993) have shown that, under optimal con- simonious trees (L = 98, CI = 0,643, Rl = 0,767, RC = ditions, bootstrap proportions ;^70% correspond to a 0,493). This reduced data set supports the same relation- probability of ^95% that the corresponding clade is real. ships among the Vetigastropoda, Neritopsina, Caen- Support indices (Bremer 1988) are shown in bold italic. ogastropoda and Heterobranchia as the previous analyses, Specifying the Neritopsina to be the outgroup did not alter but differs in dividing Caenogastropoda into two clades, the results other than to move the root from position A to one grouping Campanile with the architaenioglossan and position B in figure 3A. An identical series of analyses was cerithioidean taxa, the other clade containing the higher performed after the two insert regions (Fig, 2A,b, 11+12) Caenogastropoda and corresponding to the Euca- were excluded, resulting in a data set of 444 characters, of enogastropoda of Haszprunar (1988) and the Hyp- which 328 were constant and 38 parsimony uninformative. sogastropoda of Ponder & Lindberg (1997). Figure 3C The 78 informative characters produced six equally par- shows the strict consensus of these 63 trees together with simonious trees of length 212 (CI = 0.726, RI = 0.781, RC bootstrap/jackknife and Bremer support indices for the = 0,567). These trees varied in the position of Campanile nodes. relative to Cyclophoroidea (immediately above, immedi- A maximum likelihood analysis of the data set from

Zoológica Saipla 27 366 M. G. Harasewycli et al.

Diodora 18 100 I• Diodora Astraea iöö I• Astraea 13 100 1• Nerita A- »1 Nerita 100 I• Neritina iôô I• Neritina "B g 99 I Aplysia 10 100 I• Aplysia Siphonaria iôô I• Siphonaria »61• 1 89 ••I• PomaceaPomacé 82"-821- MarisaA 83 I• Marisa 9 99 6 98 p Cycloptiorus 98 C "sTi- Neocyclotus 97 NeocyclotusNenrvnintii.'i 62 I Campanile 58 • Campanile ¿r Modulus' 2 7* I Modulusivnjuuiuo n98r 7(1 ,|97[[971•• Cerithiumueritntum 15 44921 921 BatillariaÍ 921• I• Cipangopaludina Cipangopaludina • Truncatella • Annularia Annularia 1 I• Littorina N = 2 L = 254 H- N = 6 L = 212 '• Tectarius Cl = 0.726 Cl =0.752 J"63/5i Xenophora Í 651• Xenophora RI = 0.781 RI =0.772 ' I• Cypraea RC = 0.580 • Fusitriton RC = 0.567 • I• Fusitriton - Busycon 1 • Busycon Oliva • Cliva A Hastula B • Hastula

B 100 I• Diodora Astraea 1 Nerita ' Neritina I Aplysia 1 Siphonaria Cipangopaludina Pomacea Marisa Cyclophorus Neocyclotus Campanile Modulus Cerithium Batillaria Annularia Littorina Tectarius N = 63 L = 98 Truncatella 01 = 0.643 Xenophora Rl = 0.767 Cypraea RC = 0.493 Fusitriton Busycon Cliva Hastula Fig. 3. Maximum parsimony analyses ofphylogenetic relationships among the A.pogastropoda [sensu Ponder & Lindberg 1997 = Caenogastropoda + Heterobranchia] based on 517 aligned positions (426^89 bp) of I8S rDNA sequence,•A, One of two inaximum parsimony trees produced when only the eight imiqiie. single-nucleotide insertions were excluded from data. Tree rooted at A when Diodora + As/raea selected as oiitgroup, rooted at B when Neiiia + Neritina selected as outgroup.•B. Strict consensus of six most parsiinonious trees produced when the eight unique single- nucleotide insertions as well as the two insert regions (fig. 2Ab, il +Í2) were excluded from data.•C. Strict consensus of 63 most parsimonious trees produced when eight unique single-nucleotide insertions as well as the two insert regions were excluded, and only transversions used as characters. Bootstrap proportions given in % above, and jackknife proportions given in % below nodes supported at levels above 50%. Bremer support indices are shown in bold italics. which the two insert regions were deleted was performed ogastropoda into the same two clades as the transversion using a heuristic search. Nucleotide frequencies, pro- parsimony analysis, one containing Campanile, Cer- portion of invariable sites, and transition/transversion ithioidea and the paraphyletic Architaenioglossa, the other ratios were all estimated via maximum likelihood. Rates the Hypsogastropoda. for variable sites were assumed to follow a gamma dis- tribution with the shape parameter estimated using maximum likelihood. The number of rate categories = 4, Discussion with the average rate for each category represented by the mean. The Hasegawa-Kishino-Yano (1985) model with While the majority of morphological studies {e.g., rate heterogeneity was used. Starting trees were obtained Haszprunar 1988; Salvini-.PIawen & Steiner 1996; Ponder via neighbor-joining. The strict consensus of the three & Lindberg 1997) indicate that Vetigastropoda are more resulting trees, shown in fig. 4, divides the Caen- closely related to Apogastropoda than are Neritopsina,

Zoológica Scripia 27 Molecular phylogeny of Caenogaslropoda Itbl others {e.g.. Ponder & Lindberg 1996) indicate a closer 3C), which are rarer and therefore less likely to be homo- relationship between Neritopsina and Apogastropoda. plasous, produced a different tree topology, in which caen- Molecular studies (e.g., Rosenberg e/a/. 1994; Jrlarasewych ogastropods were divided into two clades, one containing ei al. 1997a) also favor Vetigastropoda as a more proximal the architaenioglossan taxa. Campanile and Cerithioidea, outgroup to Apogastropoda. However, Harasewych el al. the other corresponding to the 'higher' Caenogastropoda (1997(7: 14) reported that the position of Neritopsina was [Hypsogastropoda/Eucaenogastropoda]. Maximum like- strongly inñuenced by the choice of outgroup. In their lihood analyses using both transitions and transversions study, Neritopsina emerged basal to Vetigastropoda when (Fig. 4) also recovered these two clades. While the 'higher' polyplacophorans served as outgroup. However, when caenogastropods have long been recognized as a clade, Nauiihis was specified as outgroup, Neritopsina emerged most previous authors have considered the 'lower' caen- between Vetigastropoda and Apogastropoda. Rep- ogastropods to comprise a grade rather than a clade. How- resentatives of both Vetigastropoda and Neritopsina have ever, Healy (1996) suggested that, based on sperm therefore been included in the present study. Designation morphology, architaenioglossans and cerithioideans for- of one or the other as outgroup did not alter tree topology, med a group distinct from the 'higher' caenogastropods, only the position of the root (Fig. 3A, root A for Veti- and that Campaniloidea comprised a third group, one with gastropoda as outgroup, root B for Neritopsina as close affinities to architaenioglossans and cerithioideans. outgroup). When proposing the taxon Sorbeoconcha, Ponder & As in prior studies based on partial (Harasewych el Lindberg (1997: 225) intended it to contam all non-arch- al. ¡997a,b) and entire (Winnepenninckx el al. 1998) 18S itaenioglossan caenogastropods, explicitly including Cer- rDNA sequences, all of the maximum parsimony (Fig. 3) ithioidea and Campaniloidea. However, because the and maximum likelihood analyses (Fig. 4) strongly support authors defined this taxon phylogenetically, to include "all the monophyly of Apogastropoda and its constituent those taxa sharing a more recent common ancestor with clades, Caenogastropoda and Heterobranchia. Each of the Coinis (and Tripliora and ) than with Cyclophonis analyses is also unequivocal in placing all of the arch- and ,'' the extent of Sorbeoconcha is dependent itaenioglossan taxa within Caenogastropoda, as indicated on the phylogenetic hypothesis to which it is applied. When by Ponder & Lindberg (1996, 1997). Maximum parsimony used in conjunction with the trees in Figs 3A and 33, analyses (Figs 3A,B) indicate that Caenogastropoda con- Sorbeoconcha encompasses the taxa originally intended stitutes a clade in which traditionally recognized higher by the authors. When applied to the trees in Figs 3C and 4, taxa diverge sequentially from the stem in an order and however, Sorbeoconcha becomes identical in composition pattern that is, with Few exceptions, concordant both with with, and a synonym of, Hypsogastropoda. recent, morphology-based phylogenies {e.g.. Ponder & Both Ampullariidae and Cyclophoroidea emerge as Lindberg 1997), and traditional classifications {e.g.. Pon- clades with high bootstrapand jackknifesupport, although der & Waren 1988). The short branch lengths between Bremer support is much greater for Cyclophoroidea than nodes as well as the low bootstrap, jackknife, and Bremer for Ampullariidae. The close relationship between the support for these nodes suggest rapid differentiation of ampullariids Fornácea and Marina was predicted by mor- these higher taxa and/or significant subsequent homo- phological studies of Berthold (1991) as well as by the plasy, yielding few synapomorphies with which to recon- reanalysis of his data by Bieler (1993). The clade consisting struct evolutionary relationships. A maximum parsimony of the two cyclophoroideans {Cyclophonis and Neo- analysis of the sequence data using only transversions (Fig. cyclolus) is highly robust, contradicting the phylogenetic

CDiodora VETIGASTROPODA Astraea C Nerita NERITOPSINA Neritina C- Aplysia HETEROBRANCHIA Siplionaria • Cipangopaludina' 1• PnmacpaPomacea I• Marisa ARCHITAENIOGLOSSA • I• Cycloptiorus I I• Neocyclotus . Campanile ~ CAMPANILOIDEA" Modulus APOGASTROPODA - Cerithium CERITHIOIDEA • Batillaria CAENOGASTROPODA Truncatella ~ Annularia I CLittorina LITTORINOIDEA SORBEOCONCHA Tectarius CXenophora Cypraea HYPSOGASTROPODA Fusitriton Busycon Oliva NEOGASTROPODA I HastuiaHastuia I I I I Fig. 4. Strict consensus of nine mlaximiim likelihood trees produced using the Hasegavva-Kishino-Yano (1985) model -I- PINVAR -I- GAMMA. See results for derivation of this tree

Zoológica Scrip I a 27 368 M. G. Harasenycli et al. scheme of Sitnikova & Starobogatov (1982), who placed divergence between these lineages (Tracey el al. tliese two taxa in different superorders. Cipangopaliidina, 1993). the only viviparid in our study, does not emerge as a Within Hypsogastropoda, the two littorinids Liilorina close relative oPeither group, its position contradicting the and Teclarius emerged as a weakly supported clade in all monophyly of Ampullarioidea [Ampullariidae + Viv- analyses. Anniilaria, the only other littorinoidean in our iparidae] and of Architaenioglossa. However, the insert in study, consistently emerged below the littorinids rather the terminal loop of helix 10 (Appendix I, positions 136- than as sister taxon to them. 165) in Cipangopaliidina partially overlaps with an insert Manipulating the tree to produce the monophyletic Lit- shared by Pomacea, Marisa and Campanile. Data on torinoidea of traditional classifications increased tree additional viviparid taxa are presently being sought to length by only a single step. Similarly, it required only one better resolve the relationships of this family. Manipu- fewer step to unite Xenophora and Cypraea into a clade lation of the topology of the tree in Fig. 3A to unite than for these taxa to emerge as a grade. As in a previous Cyclophoroidea and Ampullariidae in a clade increased study (Harasewych el al. \991b) this portion of the I8S tree length by 6 steps. Joining Cipangopaliidina and Ampul- rDN A gene was incapable of resolving neogastropod taxa, lariidae to produce the traditional Ampullarioidea while Fusllrllon, a tonnoidean, was weakly and incon- increased tree length by 9 steps, while producing a mon- sistently resolved from Neogastropoda, ophyletic Architaenioglossa requii-ed 11 additional steps. Truncalella, which has the largest inserts among the taxa Cyclophoroideans, ampullariids, and viviparids are all pre- in this study and consequently the longest branch length sent m deposits (Tracey el al. 1993), although within Hypsogastropoda, emerged as the sister taxon to there have been questionable reports of viviparids and the remaining "higher" caenogastropods in all analyses cyclophoroideans m strata dating from the that included transitions as characters. When only trans- (Solem & Yochelson 1979; Bändel 1993). versions were used, Truncalella collapsed into a polytomy The three cerithioidean taxa currently represented in our containing all hypsogastropods except Annularla. It is of database were united into a well supported clade in all interest that all species of Truncalella studied by Rosenberg analyses, with Ceiiihliim and Balillaiia appearing more el al. (1992: Fig. I) also had inserts in the D6 loop of the closely related to each other than either is to Modulus. This 28S rRNA. arrangement is concordant with Houbrick's (1988: fig. 3) A broader taxonomic sampling of Caenogastropoda has UPGMA phenogram of Cerithioidean relationships. Man- revealed inserts to be present in several caenogastropod ipulating the tree to make Balillaiia more closely related lineages. With the exception of Campanile, all caen- to Modulus (both Paleogene) than to Ceiilhiiim (Lower ogastropod taxa discovered to contain inserts thus far are ), as predicted by Houbrick's (1988: fig. 2) cla- from fresh-water or terrestrial . Harasewych el dogram, increased tree length by 4 steps. al. (I997fl, h) observed that the I8S gene provided better According to sequence data, Campanilidae emerges phylogenetic resolution of higher taxa that contained either in a clade with architaenioglossans (most often as inserts than of taxa that did not, even when the inserts were sister taxon to Cyclophoroidea), or intermediate between excluded from analyses. A corollary of this observation is architaenioglossans and cerithioideans, positions not pre- that sequence divergences among taxa containing inserts dicted by previous researchei's. Additionally, Campanile tend to be greater than among taxa lacking inserts. As an shares a nine base insert in the terminal loop of helix 10 example, the closely related Ampullariid genera, which with Pomacea and Marisa that differs in sequence from share a small insert, are more divergent in their 18S that of these ampullariids at only a single position. Moving sequences than are the two cyclophoroidean families, Campanile to a position between Cerithioidea and the Hyp- which lack inserts. The presence of inserts in both the sogastropoda. as predicted by Ponder & Lindberg (1996, limited 18S and 28S sequences of Truncalella prompt us 1997) requires only two additional steps, while placing it to speculate that the occurrence of inserts in oneribosomal at the base of Heterobranchia, as in the phylogeny pro- subunit might be predictive of their presence in other posed by Haszprunar (1988) increases tree length by 17 ribosomal subunits. steps. Neither this 450 bp portion of the 18S rDNA gene (Har- The Hypsogastropoda emerge as a clade in all analyses, asewych el al. 19976), nor the entire 18S rDNA gene (Win- although with weak bootsti'ap, ¡ackknife and Bi'emer sup- nepenninckx el al. 1998) diverge at a rate sufficient to port. Levels of sequence divergence (total differences and resolve the phylogeny of the Neogastropoda, which radi- transversions only) among hypsogastropod taxa are low, ated rapidly during the Upper Cretaceous. Both partial being comparable to those found within Cerithioidea or and entire I8S rDNA sequences, however, begin to resolve Ampullariidae (Table 11). Harasewych el al. (1997/x 331, relationships within Hypsogastropoda, which differ- Table 11) mistakenly reported that divergence levels among entiated during the Lower Cretaceous, and of the more Caenogastropoda were approximately half those found in basal branches within Caenogastropoda, which date to the Heterobranchia due to the high proportion of hyp- early Mesozoic or late Paleozoic. In a study of evolutionary sogastropods in their data set. This observation holds for rates of the 18S rDNA gene in metazoan phyla, Philippe Hypsogastropoda, which has origins in the latest Jurassic el al. (1994) calculated that rapid adaptive radiations span- and represents a series of radiations during the Cretaceous ning less than 40 million years generally cannot be resolved and Cenozoic (Tracey el al. 1993; Kay 1996; Taylor el al. using data from the entire 18S gene. More recently, Har- 1980). However, divergence rates among Caen- asewych el al. (1997(7,/?, this study) have found the 18S ogastropoda as a whole, are, in fact, comparable to those gene to be capable of a broad range of resolutions within found within Heterobranchia (Table II), reflecting the the class Gastropoda. In clades that lack inserts in the 18S

Zoológica ScripKi 27 Molecularphylogeny of Caenogasliopoda 369

TABLE II, Number of base clijfi'reiues in ibe porlion of 18.S gene used lo vonslniei />ai\sinioiiy irees siiniinarized in figure iB (443 aligned positions, inserís and unique single base inseriions excluded). Gaps ami unceriain base calls remoled from pairwise comparisons. Tolal number of nucleoiide differences aborc the diagonal. Iransrersions oidy below ¡be diagonal

OTl s Dio Ast Nta Ntn Cyc NeoP oin Mar Cip Cam Mod Cer Bat Aun Lit Tec Tru Xen Cyp Fus Bus Olv Has Apl Sip

Dio 22 57 56 60 59 60 59 61 61 60 60 59 56 56 57 60 58 60 59 59 59 58 61 59 Ast 7 50 52 55 53 53 51 53 54 53 53 53 51 52 54 52 50 53 53 54 54 53 53 55 Nta 25 11 - 7 43 41 46 42 44 44 43 43 42 39 41 39 41 40 40 40 41 40 40 41 41 Ntn 23 20 3 42 40 45 41 43 43 43 43 42 38 40 38 40 39 39 40 41 40 40 42 42 Cyc 26 27 17 17 - 3 23 17 20 12 18 18 17 19 16 18 20 19 20 20 20 19 19 37 37 Neo 24 25 16 16 3 - 23 17 19 12 16 16 15 18 16 17 19 18 19 19 19 IS 18 36 36 Pom 28 26 21 11 12 13 - 8 24 17 ^"i 23 22 21 18 19 20 99 20 9 1 23 21 20 38 37 Mar 26 24 19 19 8 9 6 - 20 13 19 19 18 21 18 19 20 21 20 21 23 21 20 34 33 C,p 26 21 18 18 15 14 15 13 - 12 14 16 15 11 15 13 10 12 12 14 17 15 13 38 38 Cam 27 25 18 18 7 S 7 5 10 - 13 13 14 16 14 15 13 16 16 14 17 15 14 37 37 Mod 25 24 18 19 14 13 14 12 7 9 - 9 8 13 13 14 11 13 13 13 13 11 11 32 36 Cer 25 24 18 19 12 9 14 12 9 9 4 1 14 15 14 15 16 15 14 17 17 16 37 39 Bat 25 24 18 19 12 9 14 12 9 9 4 0 - 13 14 13 14 15 14 15 16 16 15 36 38 Ann 17 19 16 16 17 14 13 15 6 1 ^ 9 9 9 - 8 6 5 6 5 4 7 5 5 33 35 Lit 25 25 18 18 11 12 9 11 10 8 9 9 9 6 - 6 7 8 7 7 9 S 6 33 34 Tec 90 23 16 16 13 12 11 13 8 10 7 9 9 4 9 - 7 7 5 5 8 6 6 34 34 Tru 23 21 16 16 15 14 11 13 6 10 7 9 9 2 4 9 7 6 6 9 7 5 33 34 Xen 24 21 17 17 15 14 13 14 6 11 8 10 10 5 6 4 3 9 5 7 5 5 34 36 Cyp 24 21 16 16 15 14 II 13 6 10 7 9 9 4 4 9 2 9 4 6 4 4 34 36 Fus '?'> 21 16 17 16 15 12 14 7 11 8 10 10 -) 4 9 1 4 3 - 5 3 3 33 35 Bus 23 22 15 16 15 14 11 13 S 10 7 9 9 3 3 1 9 4 9 1 - 4 4 34 36 Olv 23 9") 15 16 15 14 11 13 8 10 7 9 9 3 3 1 9 4 9 1 0 - 2 33 35 Has 23 22 15 16 15 14 11 13 8 10 7 9 9 3 3 1 9 4 9 1 0 0 - 34 36 Apl 28 23 19 19 22 99 23 21 17 21 19 20 20 15 18 17 17 17 17 16 17 17 17 - 12 S.p 29 27 21 21 22 22 23 19 20 99 20 21 21 18 18 18 16 18 18 17 18 18 18 3

Ann= Aniiularia. Ap\= Aplysia. Asl= Asiraea, Bal= Balillaria, }ius= Busycon, Cd.m= Campanile. Cev= Ceriihiinii, Ctp= Cipangopniudina, Cyc= Cyclophoi-us. Cyp= Cypraea. 0\o= Diodoru. Fus- J'usiiriion. Has = Has tula. Lit Liiiorina. M'd\-= Marisa. Mo(.l= Modulus, Neo = Neocyclolus. Nta = Nerita. Ntn = Nerilina. Olv = Olira. Pom = Pomacea, Sip = Sipbonaria. Tec = Teciarius. Tru = Triincalella. Xen = Xenopliora.

gene, the resolving ability of this gene appears to be References roughly comparable to that predicted by Philippe el a!. (1994). However, For clades containing inserts, the 18S Bandet, K. (1993). Caenogastropoda during Mesozoic times. In A. VV. Janssen & R. Janssen (Eds), Molluscan Paleonlology, Proceedings of a gene is capable of much finer levels of resolution, in some Symposium held at the 11th International Malacological Congress. cases to species level, even when the inserts themselves are Scriplu Geológica. Special Issue 2. 251-266. excluded from analysis. Preliminary results suggest that Berthold. T. (1991). Vergleichende Anatomic, Phylogenie und His- torisches Biogeographie der Ampulariidae (iMollusca, Gastropoda). the level of resolution increases with the size of the inserts. Abbandlungen des Shmnivissenscbafilicben Vereins in Hamburg WF) Thus, use of more proximal outgroups, the addition of 29. 1-256. taxa, as well as the use of complete 18S sequences will Bieler, R. (1993). Ampullai'iid Phylogeny • Book Review and Cladistic Re-analysis. Tbc Veliger 36(3)'.29\-299. likely improve resolution and provide increased bootstrap, Boss, K. J. (1982). Molkisca. In S. P. Parker (Ed), Synopsis and Classi- jackknife and Bremer support for at least the more basal ficulion of Liring Organisms. I (pp. 945-1166). New York: McGraw- branches within Caenogastropoda. Data froin one or more Hill Book Company. Bremer, K. ( 1988). The limits of amino acid sequence data in angiosperm genes that evolve more rapidly than 18S rDNA (possibly phylogenetic reconstruction. Eioluiion 42. 795-803. cytochrome c oxidase 1 and/or 16S rDNA), either sep- Golikov. A. & Starobogatov, Y. I. (1975). Systeinatics of prosobranch arately or in combination with the 18S rDNA, seems more gastropods. Malacologia 15 (I). 185-232. Golikov. A. & Starobogatov, Y. \. (19S8). Problems of Phylogeny and likely to be informative about post-Jurassic divergences Systematics of Prosobranchiate Gastropod Mollusks. pp. 1-77. In Y. within Caenogastropoda. 1. Starobogatov (Ed). Svsienunics and Fauna of Gasnopocla. Biralria. and Cepludopoda. Proceedings oj ibe Zoological Inslilule IS7: 1-203. [in Russian] Harasewych, M. G.. Adamkewicz. S. L.. Blake. J. A.. Saudek, D., Spriggs, T. (& Bull, C. J. (I997rt). Phylogeny and relationships of pleurotomariid gastropods (Mollusea: Gastropoda): an assessment based on partial Acknowledeements I8S rDNA and cytochrome c oxidase 1 sequences. Molecular Marine Biology and Bioiecbnology. 6(1). 1-20. Harasewych, M. G,. Adamkewicz, S. L.. Blake, J. A.. Saudek. D., Spriggs, Thanks are due to Drs Edward J. Petuch, John B. Wise and Ms. Sherry T. & Bull, C. J. (1997/)). Neogastropod Phylogeny: A Molecular Per- Reed for help with field work in Florida, and to Mr. Yoshihiro Goto, spective. Jotwnid oJ Molluscan Studies 63(4). 327-351. Paul Callomon, Hiroshi Fukuda, Dr Rei Ueshima and Mrs. Thora White- Haszprunai-, G. (1988). On the origin and evolution of major gastropod head for assistance with field work in Japan. We are grateful to Dr José groups, with special reference to the Streptoneura. .Journal of Molluscan H. Leal and Mr. Ernesto Lasso de la Vega for supplying living Marisa. Studies 54(4.^. 361^1. and to Dr Glenn Goodfriend for providing Neocyclolus and Annularia. Healy. J. M. (1988). Sperm morphology and its systematic importance Dr Winston F. Fonder generously sent extracted DNA of Campanile in the Gastropoda. In W. F. Ponder, (Ed), Prosobruneb Pbylogeny, symbolicum. We are indebted to Dr David L. Swofiord for providing beta Proceedings of a Symposium held at the 9th International Malaco- lest versions of PAUP4.0, and to Dr Andrew A. McArthur for assistance logical Congress. Malacological Rcriciv. Supplement 4. 251-266. with the ma.ximuin likelihood analyses. We thank Drs John Healy. And- Healy, J. M. (1993). Transfer of the gastropod family Pleisiotrochidae to rew McArthur. and David Swofford for their comments on various ver- the Campaniloidea based on sperm ultrastruetural evidence. Journal sions of this manuscript. This is Smithsonian Marine Station at Link of Molluscan Studies 59(2). 135- 146. Port Contribution Number 444. Healy, J. M. (1996). Molluscan sperm ultrastructure: correlation with

Zoológica Scripta 27 370 M. G. Harasewxcli et al.

laxonomic units within the Gastropoda. Cephalopoda, and Bivalvia. Salvini-Plawen, L. v. (1991). Origin, Phylogeny, and Classification of the In J. D. Taylor, (Ed), Origin and Eioluiiontiiy Riidiníion of ihe Phylum Mollusca, Iberus 9. 1-33. Molliisca. (pp. 99-11.'^). O.xTord: Oxford University Press. Salvini-Plawen, L, v. & Haszprunar, G. (1987). The Vetigastropoda and Higgins, D, G., Bleasby, A. ,1. & Fuchs, R. (1992). CLUSTAL V: tiie systematics of streploneurous gastropods (Mollusca). Journal of Improved software for multiple sequence alignment. Computer Appli- Zoology. London 21 f 747-770. ccuioiis ill the Biosciences S. 189-191. Salvini-Piawen, L, v, & Steiner, G. (1996). Synapomovphies and ple- Hillis, D. M. & Buil,,I. J. (199.')). An experimental test of bootstrapping as siomorphies in higher classification of Mollusca. In J. D. Taylor, (Ed), a method for assc'ising confidence in phylogenetic analysis. SysieiiKiiic Origin and Erolutionary Radiation o/flie Mollusca. (pp, 29-51 ), Oxford: Oxford University Press. Biolog\42(2!. 182 192. Sitnikova, T. Y. & Slarobogatov, Y. I. (1982). Content and Systematic Houbrick, R.S. (1981). Anatomy, biology, and systematics of Campanile Status of the group Architaenioglossa (Gastropoda, Pectinibranchia), svniboliciiiii with reference to adaptive radiation of the Ceritheacea Zoologicheskii Zhurnal 61. 831-842. [in Russian] (Gastropoda: ), Maleologia 2J; 2 ,?j. 263-289. Smith, s\ Overbeek, W. R., Woese, C. R., Gilbert, W., & GiUevet, P, M. Houbrick, R. S. (1988). Centhioidcan Phylogeny. In W. F. Ponder, (Ed), ( 1994). The genetic data environment: an expandable GUI for multiple Prosohrancli Pliylogenv. Proceedings of a Symposium held at the 9''' sequence analysis. Computer Applications in the Biosciences 10, 671- International ¡Vlalacological Congicss. Malacologicnl Review. Sup- 675. plemeni 4. SS-128. Solem, A. & Yochelson, E, L, (1979). North American Paleozoic land Houbrick, R. S. (1989). Campanile l'evisited: Implications for Cer- , with a summary of other Paleozoic nonmarine snails. f.S. ithioidean Ph\logeny. American Malucological Bullelin 7(1). 1-6. Geological survey Projessional Paper 1072. 1-39. Kay, E. A. (1996). Evolutionary radiations in the . In J. D. Sorenson, M. D. (1996). TreeRot. University of Michigan, Ann Arbor. Taylor, (Ed), Origin and Evohilionuiy Radialion pj ihe Mollusar (pp. Swofl'ord, D. L. (1997). PAU P. phylogenetic analysis using parsimony. 21 1-220). Oxford, Oxford University Press. Versions 4.0.0d56 and 4.0.d57 (beta test versions). Laboratory of Kumar. S., Tamara, K. & Nci, M. (199.3). MEGA: Molecular Erol- MIolecular Systematics, Smithsonian Institution, Washington, DC, uiionarv Genclics Analysis, version 1.0. The Pennsylvania State Uni- Taylor, D. W. & Sohl, N. F. (1962). An Outline of Gastropod Classi- versity, University Park. fication. Malacologia 1(1). 7-32. Maddison, W. P. & Maddison, D. R. (1992). MacClade, Analysis of Taylor, J, D., Morns, N. J. & Taylor, C. N. (1980). Food specialization Phylogeny and Charaeler Eiohilion. Version 3.05 Sinauei' Associates. and the evolution of predatory prosobranch gastropods. Palaeontology Inc.. Sunderland, Massachusetts, 2JC2J, 375^09. Morrison, J. P, E. (1954). The relationships of Old and New World Thiele, J. (1929-1931). Handbook of Systematic Malacology. Part I Melanians. Proceedings of the United States National Museum (Loricata; Gastropoda: Prosobranchia), 1929, Part 2. (Gastropoda: 10.v:. 3325). 35^-394. Opisthobranchia and Pulmonata; Additions: Index), 1931, English Philippe, H,, Chenuil. A. & /-Vdoutte, A. (1994). Can the translation, R. Bieler & P. M. Mikkelsen (Eds). 1992. Smithsonian explosion be inferred thiough molecular phylogeny'' Derelopment. 1994 Institution Libraries and The National Science Foundation, Wash- Supplement. 15-25 ington, DC. Part 1, xiii + 1-625, Part 2, xiv + 626-1 189. Ponder. W. F. &. Lindberg. D. R. ( 1996). Gastropod Phylogeny • ChaE Tillier, S., Masselot. M., Hevré, P. & Tillier, A. (1992). Phylogénie molé- lenges for the 90s. In J. D. Taylor, (Ed), Origtti and Erolutionary culaire des Gastropoda (Mollusca) fondée sur le séquençage partiel de Radiatioti of tlie .Molliisca. (pp. 135-154). Oxford: Oxford University TARN ribosomiqne 28S. Comptes Rendus Académie de Science ( Paris) Series 3, 134. 79-85. Press. Tillier, S., Masselot, M., Giierdoux, J., & Tillier, A. (1994). Monophyly Ponder. W. F. & Lindberg, D. R. (1997). Towards a phylogeny of gas- of major gastropod laxa tested from partial 28S rRNA sequences, with tropod molluscs: an analysis using morphological characters. Zoologi- emphasis on Euthyneura and Hot-Vent Limpets Peltospiroidea. In M. cal .Journal of the Linnean Society 119. 83 265. G. Harasewych &. S. Tillier (Eds), Molecular Techniques and Mollii.scan Ponder, W. F. & Waren. A. (1988). Classification of the Caenogaslropoda Phylogeny. Proceedings of a Symposium held at the 11''' International and Heterostropha • A list of family-group names and higher taxa. iMalacological Congress, The Nautilus Supplement 2. 122-140, In W. F. Ponder, (Ed). Prosohrancli Phylogeny. Proceedings of a Sym- Tracey, S., fodd, J. A., & Erwin, D. H. (1993). Mollusca: Gastropoda. posium held al the 9'* International Maiacological Congress. Mul- In M. J. Benton (Ed), The Tossil Record 2. (pp. 131-167). London: acological Rerien-. Stipplenient 4. 288-326. Chapman and Hall. Rosenberg, G.. Kuncio, G. S., Da\is, G. M., & Harasewych, M. G. VaughL K. C. (1989). A Classification of the Living Mollusca. American (1994). Preliminary ribosomal RNA phylogeny of gastropod and iVIalacologists, Inc., Melbourne. 195 pp. unionoidean bivalve mollusks. In M. G. Harasewych & S. Tillier (Eds). Wenz. W, (1938-1944). Haiidbiicli der Paläozoologie. In O. H. Sch- Molecular Tecliiiiipies and Molluscuii Phylogeny. Proceedings of a Sym- indewoif (Ed), Band 1, Teil 1-7, pp. 1-1639, l-XII, l-IO, Berlin: posium held at the 11''' International Maiacological Congress. The Borntraeger. h'autiliis Suppletnent 2. 111-121. Winnepenninckx, B., Backeljau, T. & de Wächter, R. (1994). Small Rosenberg, G., Tillier, S. Tillier, A., Kuncio, G. S., Hanlon, R. T., ribosomal subunit RNA and the phylogeny of Mollusca. In M. G. Masselot, M, & Williams, C. ,1.(1997). Ribosomal RNA phylogeny of Harasewych & S. Tillier (Eds), Molecular Techniques and Molhiscan selected major clades in the Mollusca. Journal of Molhiscan Studies Phylogeny. Proceedings of a Symposium held at the I I''' International 63(4). 301-309. Maiacological Congress. The Nautilus Supplement 2. 98-1 10. Salvini-Piawen, L. v. (1980). A Reconsideiation of Systematics in the Winnepenninckx, B., Steiner, G., Backeljau, T, & de Wachler, R, (1998), Mollusca (Phylogeny and Higher Classification). Malacologia 19(21. Details of gastropod phylogeny inferred from 18S rRMA sequences. 249-278. Molecular Phylogenetics and Evolution 9( I). 55-63.

Appendix 1

Aligned partial sequences of the gastropod 18S rDNA gene corresponding to positions 60-515 of the 18S rRNA of Onclticlella céltica as reported by Winnepenninckx el al. (1994:101). All sequences confirmed by at least two sequencing reactions in each direction. Arnbiguous base assignments are noted using lUPAC symbols. Quotes (") represent gaps inserted during alignment. o o - • • 30 100 • 1 20 •¡0 4Ù 53 60 70 ao CATTACAICA GTT.ATGG-Í'TC CTTGQACG.AT .ACCAT"CCTA CTTGGATAAC TGTGGTAATT [97J D: odorij 'LAí\(_- : .^. ^. !'.^ ,-.i .CTCGCCC AG-TG' •hpJiQT GCGAATGGCT CTTGGATAAC TGTCGTAATT 1971 As traea TMGVA' 'CAÁ ACTCTAGCAC AGTG' •AAACT GCGAATGGCT CATTAGATCA GTTiTGGTTC CTTAGATGAT AC.^AT••CCTA CTCGG."iTAAC TGTGGCAATT Nerita TMGTT' 'CAJl .¡»CTTTCACAT AGTG' 'AAACC ÜCGAATGGCT CATTAGATCA GTTATGGTTC CTTAGATCGT ACAACTC""A 1»6| CTCGGATAAC TGTGGCAATT 1971 MeL-itina TÄAGTA' 'CAÍ. aCCTTCACAT GGTG' 'AAACC GCGAATGGCT CATTAGATCA GTTATGGTTC CTTAGATCGT ACAACTCC'A CTTGGATAAC TGTGGTAATT 198) Cyclüphürua TAACrlT' 'CCA ACCCTCGTAC GGTG' 'AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCTTTACCTA CTTGGATAAC TGTGGTAATT (98] NeocyclotüS TAAGTT' 'CCA fiCCCTCGTAC GGTG' 'AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCTTTTCCTA CCAAATC'TA CTTOGATAAC TGTGGCAATT [971 Fornácea TAAGTT' 'CAC ."iCCCTCGTAC 3GTG' 'AAACT TCATATGGCT CñTTAAATCA GTCGAGGTTC CTTAÜiATGAT CTTGGATAAC TGTGGCAATT Marisa TAAGTT' 'CÄC ACCCTCGTÄC GGTG' 'AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCATTfC'TA 19-71 TGTGGTAATT [97 1 Cipangopaludina TAAGTT' 'CAC ACCCTCGTAC DOTS' 'AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCATTTC"TA CTTGGATAAC CTTGGATAAC •mTGGTAATT 197] cajTipanile T.^AGTT' 'CAC ACCCTTGTAC GGTG' •AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCATTTC"TA CTTCGATAAC TGTGGTAATT 1971 HoïitilQa TAAGTT' CAC ACCCTCGTAC GGTG' 'AAACC GCCAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCA'nTC"TA CTTGGATAAC TGTGGTAATT 1981 Cerichium TAAGTTACAC ACCCTTGTAC GGTG' 'AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCATTTC'TA CTTGGATAAC [971 Baclllai-ia TAAGTT' 'CAC ACCCTCGT.i,C GGTG' 'AAACC GCGAATGGCT C.iTT.VUTCA GTCGAGGTTC CTTAGATGAT CCATTTC'TA TGTGGTAATT TGTGGTAATT 157J Annularia TAAGTT' 'CSC ACCCTCGTAC GGTt5' 'AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCAAÍ,TC"TA CTTGGATAAC

Zoológica Scripta 27 Míoleculai' phylogeny of Caeuogaslropocla 371

10 ÏO 30 40 se 60 70 BO 3D 1Ö0 LilitoL-ina TfiAGTT"CÄC ACCCTCCTAC GGTG"AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC C^TAGATGAT CCCAATC^^TA CTTGGATAAC TGTGGTAATT [Üí] Tectarius TAAGTT"CAC ACCCTCGTftC OGTG-AAACC GCGAATGGCT CATTA-AATCA GTCGAGGTTC CTTAGATGAT CCCAATC^^TA CTTGGATAAC TGTGGTAATT [971 Truncabella TAAGTT"CAC ACCCTCGTAC GGTG-AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCAAATC^^TA CTTGGATAAC TGTGGTAATT 1971 Xenophora TAAGTT C TCCCTCGTAC GGTG"AAACC GCGAATGGCT C'TTAAATC" GTCGAGGTTC CTTAGATGAT CCAA"TT"TA CTTGGATAAC TGTGGTAATT 1921 Cypraes TAAGTT"CAC ACCCTCGTAC GGTG'AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCAAATT-TA CTTGGATAAC TGTGGTAATT 197] Fusinricon TAAGTT"CAC ÄCCCTTGTAC GGTG"AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCAAAT^^^^TA CTTGGATAAC TGTGGTAATT 196] Busycon TAAGTT"CAC ACCCTCGTAC GGTG-AAACC GCGAÎ,TGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCAAACT'^TA CTTGGATAAC TGTGGTAATT [971 Olivo TAAGTT-CÄC ACCCTCGTAC GGTG"AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCAAATT^TA CTTGGATAAC TGTGGTAATT [971 Ha 3 tu la TA.AGTT"CAC ACCCTCSTAC GGTÜ"AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGAT CCAAATT-TA CTTGGATAAC TGTGGTAATT I97J Aplysia TAAGrr"CA" ACTGTCTCAC GGTGTAAACC GCGAATGG'"T CATTAAATCA GTCGAGGTTC CTTAGATGAC ACGAT-CCTA CTTGGATAAC TGTGGCAATT [961 Siphanaiia IAAGTT"CAC ACTGTCTCAC GGTC'AAACC GCGAATGGCT CATTAAATCA GTCGAGGTTC CTTAGATGRC ACGAT"CCTA CTTGGATAAC TGTGGCAATT 1971

IIQ 120 130 tío 150 160 170 IflO l'SO 200 Diodûra CTAGAGCTAA TACATGCRCT TCG"GCTCCG ACCCT ' -"• TT" CCC-- AAGGG GAAGAÖCGCA TTTATCAGCC TCGAAGCC.AG 1711 ASdraea CTAGAGCTAA TACATGCACT ATA"GCTCCG ACCCT • TT'' CGC GAGGC GAAGAGCGCG TTTATCAGT'^ TCGAAGCCAG 170) Merita CTAGAGCTAA TACGTGCAAG AAA"GCTCTG AC"CT CGCGG GAAGAGCGCT TTTATTAGT" TCAAAACCAA 163 1 NeriCina CTAGAGCTAA TACGTGCAAG AAA"GCTCCG AC-CT ••••CGCGG GAAGAGCGCT TTTATTAGT" TCAAAACCAA 1641 Cyclophorus CTAGAGCTAA TACATGCGGA CAA"GCTCCG ACCCG TT- ••G TTGGG .ViÄGAGCGCT TTTATTAGT" TCAAAACCAG 1691 Neocycíotus CTAGAGCTAA TACATGCGGA CAA"OCTCCG «CCCT CT"- C GTGGG AAAGAGCGCT TTTATTAGT^^ TCAAAACCAG 1691 Poroacea CTAGAGCTAA T4CATGCAAA CCA"GCTCCG ACCCG " GTGTCA CAG^'-CCGGG AAAGAGCGCT TTTATTAGir^^ TCAAAACCAG 1741 Marisa CTAGAGCTAA TACATGCAAC CAA'-GCTCCG ACCCG GTGTCA CAG^^ •'CCGGG AAAGAGCGCT TTTATTAGT'^ TCAAAACCAG I7(i| Cipangopaludína CTAGAGCTAA TACATCCCCA ACA"GCTCCG ACCCCGG"GC TT- CGCGGr^T"^' CGGGG AAAGAGCGCT TTTAITAGT^^ TCAAAACCAG 17B| campanile CTAGA"CTAA TACATGCGGA CCA-GCTCCG ACCCG GTGTCA AAG^^-CCGGG .AAAGAGCGCT TTTATTAGT"^ TCAAAACCAG 1731 NJodulus CTAGAGCTAA TACATGCTGA CCA"GCTCCG ACCCT T"" CGGGG .AAAGAGCGCT TTTATTAGT^' TCAAAACCAG 166i cerithium CTAGAGCTAA TACATGCCAA CCA"GCTCCG ACCCT ^ ACGGG AAAGA-CGCT TTTATTAGT' TCAAAACCAG 166] Batillatia CTAGAGCTAA TACATGCCAA CCA"GCTCCG ACCCT C ACGGG AAAGAGCGCT TTTATTAGT^^ TCAJiAACCAG 1661 Anjiularia CTAGAGCTAA TilCATGCCCA ACA"GCTCCG ACCCC TTT T ' AGÜGG AAAGAGCGCT TTTATTAGT •• TCAAAACCAG 16S1 Htcorina CTAGAGCTAA TACATGCCAA CCA-GCTCCG ACCCG TTA CTGGG AAAGAGCGCT TTTATCAGT^^ TCAAAACCAG 167 1 Tectarius CTAG^IGCTAA TACATGCCA.». CCA-GCTCCG ACCTC T"" CCGGG AAAGAGCGCT TTTATTAGT •• TCAAAACCAG 1661 Tmntatella CTAGÜiGCTAA TACATGCCCA CCA"GCTCCG ACCCCGGCGC CGTTTCCTTT CGGGGGGGCA GTGGCCGGCG .lAAGAGCGCT TTT.ATTAGT" TCAAAACCAG 195) Xenophora CTAGAGCTAA TAC-TGCC ' 'A CCA"GCTCCG ACCCC T"- CGCKir, AAAGAGCGCT T"TÄT'AGT^' ••CACAACCAG 15S1 Cypraea CTAGAGCTAA TACATGCCAA GCA-QCTCCG ACCCC -•• T-" CGGGG AAAGAGCGCT TTT.ATTAGT •• TCAAAACCAG 1661 Fu3itriton CTAGAGCTAA TACATGCCTA CCA"GCTCCG ACCCC "• T-" CCGGG AAAGAGCGCT TTTATTAGT" TCAAAACCAG 165J Busycon CTAGAGCTAA TACATGCCGA CCA"GCTCCG RCCCT T"- CGGGG AAAGGGCGCT TTTATTAGT •• TCAAAACCAG 1661 Oliva CTAGAGCTAA TACATGCTGA CCA-GCTCCG ACCCC T"" CGGGG AAAGAGCGCT TTTATTAGT'• TCAAAACCAG 166] Hastula CTAGAGCTAA TACATGCCGA CCA-GCTCCG ACCCC T-" CGGGG AAAGAGCGCT TTTA'ÎTAGT" TCAAAACCAG 1661 Aplysia CTAGAGCTAA TACATGCTTC GCAAGCTCCG ACCCT CGTGG AAAGAGCGCT TTTATTSGT^^ TCAAAACCAA Î651 Siphonaria CTAGAGCTAA TACATGCTTT TGAAGCTCCG ACCCT CGTGG AAAGAGCGCT TTTATTAGT •• TCAAAACCAA 1661

210 220 230 2M 250 260 370 280 290 300 Diodora CCGGG"T -C-GC "AAGG -"CCCGTCCA CCTTTGGTGA CTCTGGATAA CTGT^^TOCGG ATCGCACGGC CGC"-GAGCC 23S1 Ästraea CCGGG'T "C"GC "AAGG -"CCCGTCT- "CTTTGGTGA CTCTGQATAA CTCT^^AGCGG ATCGCATGGC CTT"^^GAGCC 336] Me I-i ta TCGGG"T "C-GC "AAGG" -"CCCGTCC" "GTTTGGTGA CTCTGGATAA CTTTGT-CTG ATCGCAGGGC CTC^'••GAGCC 2291 Meritina TCCGGGT "C"GC "AAGA --CCCGTCC- "GTTTGGTGA CTCTGGATAA CTTTGTGCTG ATCGCACGGC CTC" ••GAGCC 232] Cyclophorus TCGGGGT TT"" "CGGC ""TCCGTCC" ••"TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTC^^ "GAGCC 235] Meocyclotus TCGGGG CTT"" "c•c ""TCCGTCC- " "TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTC""GAGCC 235] PoTflioea TCGGGGT CT "CGGC '-CCCGTCCC T-TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTC^^ ••GAGCC 242] Marisa TCGGGGT CT -CGCC "-CCCGTCCC T-TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CtC^^ ••GAGCC 242] Cipan^opaludina TCGGGGT TT"" "CGGC ' "-CTCGTGC- "••TTTGGTGA CTCTGGATAA CTTTGAGCCG ATCGCATGGC CTC^'"GAGCC 24^1 Campanile TCGGGGT""T TCG""GTT"C "CGGC""CCG C --CTCCTCCC "•'TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTC^^ "GAGCC 2501 Modulus TCaG"GT TT"" "CGG ••-CCCGTCC- ••"TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTT" ••GAGCC 230] Carithluní TCGGGGT "C"GC '•-CCCGTCC" ""TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTT" ••GAGCC 2291 BatilLaria TCGGGGT T"" "C"GC --CCCGTCC- -••TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTT""GAGCC 2301 Ännularia TCGGC I GT""C "C"CC"T"CG "TGQGTT --CCCGTCC" ••••TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTC- ••GAGCC îti] Littorina TCGGG CCC""GTT.ilA ACGG""T CCGTCCC TTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTC ••••GAGCC 237] Tectarlua TCGGG GT""A AC"CC ••-CCCGTCC" ••••TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTC" ••GAGCC 231) Truncatelia TCGAGG '"GC G CCGGC'TCGC GTTCGTTCCC T-CTCCTCCC T"TTTOGTGA CTCTGGATAA CTTTGTGCCG AICGCATOGC CT^'GTGAGCC 2801 ííenophota "CGGGGT C "C"GC --CCCG-CC'- ••••TTT93TGA CTCTGGATAA cn-J-üAGCCG ATCGCATGGC CTC^^-GAÛCC 21B1 Cypraea TCGGGGT T""C "CGC ""CCCGTCC" ••••TTTGGTGA CTCTGGATAA CTTTGAGCCG ATCGCATGGC CTC" ••GAGCC 231] Fusicriton TCGGGTT CT G ••"CCCGTCC" ••-TTTGGTGA CTCTGGATAA CTTTGTGCCG .îiTCGCATGCC CTC" ••GAGCC 22B] Busyccn TCGGGTT CT G ""CCCGTCC" "••TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTC" ••GAGCC 2Í9J Oliva TCGGGTT CT G ' " ""CCCGTCC" •"•TTTGGTGA CTCTGGATAA CTTTGTGCCG ATCGCATGGC CTC^^'^CAGCC 2291 Haatula TCGGGTT CT C ••••CCCGTCC" •• -TTTGGTGA CTCTGGATAP. CTTTGTGCCG ATCGCATGGC CTC" ••GAGCC 22S] Aplyaia TCGTCGTCT" "C"GCCGTT" "TTCGGGGGG GCGGCGTCCC ACTTTGGTGA CTCTGGATAA CTTTGTGCTG ATCGCATGGC CTTTTGTGCC 2501 Siphonaria TCGCCG'r'TG CCCTT"" -C"GC "AAGGGGGGT GCGGCGTCCC ••CACTGGTGA CTCTGGATAA CTTTGTGCTG ATCGCATGGC C^^C-TGCGCC 2491

310 3aÛ 330 3ao 350 360 370 380 390 400 Diodora GGCGACGCGT ( XATCAAATG TCTGCCCTAT CACACTGT"C GATGGTAAGT ••GCTATG-CT TACCATGGT^' CATAACGGGT AACGSGG^^AA TCAGGGTTCG 334] AEtraea GGCGACGCAT C ITATCAAGTG TCTGCCCTAT CAGACTGT"C GATGGTAAGT ••GCTATG"CT TACCATGGT^' GATAACGGGT AACGGGG^^AA TCAGCGTTCG 331] Naiica GGCGA"GTAT ( -TTTCAA"TG TCTGCCC-AT CAATTT-A-- GATGGT"CGT "GATATG-CC TACCATGGT^^ TATAACGGGT AGCGGGG-AA TCAQGOTTCG 31B] Neriti-na GGCGACGTAT t-TTTCAAATG TCTGCCCTAT CAACTTTA"- GATGGTACGT "CATATG^^CC TACCATGGT^^ TATAACGGGT AGCGGCG"AA TCAGGGTTCG 326] CyclophoruH GGCGACGCAT (-TTTCAAATG TCTGCCCTAT CAAAT-GA-C GATGGTACGT •'GATAGG^'CC TACCATGTT^' TACTACGGOT AGCGOQG"AA TCAGGGTTCG 329) Neocyclotus GGCGACGCAT ( ITTTCAAATG TCTGCCCTAT CAAAT-GA-C GATGGTACGT TGATAGG^'CC TACCATGTT" TACTACGGGT AGCGGGG"AA TCAGGGTTCG 3 30] Ponía ce a GGCGACGCAT C ^TTTCAAATG TCTGCCCTAT CAAfhT-CT"C GATGGTACGT "GATAGG^'CC TACCATGTT^' GACTACGGGT AACGGGG^^AA TCAGGGTTCG 336] Marisa (ÍGCGACGCAT (•TTTCAAATG TCT-CCCTAT CAAAT-GT-C GATGGTACGT ••GATAGG "ce TACCATGTT •• GÄCTACGGGT AACGGGG-SA TCAGGGTTVTG 315] CipangopaIndina GGCGACGCAT C•TTTCAAATG TCTGCCCTAT CAAAT-GA-C GACGGTACGT ••GATCTG-CC TACCGTGTT'' GACT.ACGGGT AGCGGGG^^AA TCAGOGTTCG 33aj campanile GGCGACGCAT C ;TTTCäAATG TCTGCCCTAT CAAATTGAAC GAGGGTACGT TGATAGGGCC TACCATGTTT GACTACGGGT AGCGGGG^^AA TCAGGGTTCG 3Í9I Modulus GGCGACGCAT [ :TTTCAAATC TCTGCCCTAT CAAAT"GA"C GATGGTCGGT ••GATCTG^'CC TACCATGTT- GGCTACGGGT AGCGGÛG^^AA TCAGGGTTCG 3241 Cerithium GGCGACGCAT t :TTTCAAATG TCTGCCCTAT CAAAT"GA"C SATGGTCGGT "GATCTC^'CC TACCATGTT •• TACTACGGGT AGCGGGG-AA TCAGGGTTCG 323) Batillaria GGCGACGCAT £"TTTCAAATG TCTGCCCTAT CAAAT-GA-C GATGGr•GT ••GATCTG^^CC TACCATGTT •• TACTACGGGT AGCGGGG^^AA TCAGGGTTCG 324] Annularia GGCGACGCAT C-TTTCAAATG TCTGCCCTAT CAAAT'"GA"C GATGGTACGT ••GATCTG^'CC TÄCCATGTTT AGCAACGGGT AGCGGGG-AA TCAGGGTTCG 33S) Littorina GGCGACGCAT C ITTTCAAATG TCTGCCCTAT CAAAT-GA-C GATGGTACGT ••GATCTG^^CC TACCATGTT •• GGCAACGGGT AGCGGGG^^AA TCAGGSTTCG 331] Tettarius GGCGACGCAT ( :TTTCAAATG TCTGCCCTAT CAAAT"GA-C GATGGTACGT "GATCTG^^CC TACCATGTT" AACAACGGGT AGCGCGG^'AA TCAGGGTTCG 325] Truncatella GGCGACGCAT Í n'TTCAAATG TCTGCCCTAT CAAAT-GA-C GATGGTACGT •'GATCTG^^CC TACCATGTT •• GGCAACGGGT AGCGGGG^^AA TCAGGGTTCG 374] Xenaphora GGCGACGCAT ( "'rrTCAA"TG TCTGCCCTAT CAAAT-GA-C GATGGTACGT ••GATCTG^^CC TACCATGTT^^ AGCAACGGGT AGCGGGG^^AA TCAGGETTCG 3U] Cypraea GGCGACGCAT ( 'TTTCAAATG TCTGCCCTAT CAAAT"GA"C GATGGTACGT ••GATCTG^^CC TACCATGTT •• AGCAACGGGT AGCGGGG-AA TCAGGGTTCG 32Í1 Fuíiitriton GGCGACGCAT C :TTTCAAATG TCTGCCCTAT CAAAT-GA-C GATGGTACGT '•GATCTG^^CC TACCATGTT •• AGCAACGGGT AGCGGOG^^AA TCAGGGTTCG 322] flusycon GGCGACGCAT t :TTTCAñATC TCTGCCCTAT CAAAT-GA-C GATGGTACGT "GATCTG^^CC TACCATGrr^^ AGCAACGGGT AGCGGGG'AA TCAGGGTTCG 333] Oliva GGCGACGCAT (•TTTCAAATG TCTGCCCTAT CAAAT"GA-C GATGGTACGT '•GATCTG'CC TACCAÏliTT- AGCAACGGGT AGCGGGG'AA TCAGGGTTCG 323] Hastula GGCGACGCAT t ;TTTCAAATG TCTGCCCTAT CAAAT-GA-C GATGGTACGT ••GATCTG^^CC TACCATGTT'^ GGCAACGGGT AGCGGGG-AA TCAGGGTTCG 3Î3] ftpiyaia GGCGACGCAT C ITTTCAAATG TCTGCCCTAT CAAAT-GT-C GATGGTACGT ••GATATG'^C^^ TACCATGTT •• TGTAACGGGT .AACGGOGTAA TCAGGGTTCG 3441 Siphonaria GGCGACGCAT (-TTTCAAATG TCTGCCCTAT CAAAT-GT-C GATGGTACGT "GACATG^^CC TACCATGTT •• TATAACGGGT AACGGGG^^AA TCAGGGTTCG 3431

AW 420 130 ai- 450 460 470 4ao 490 500 Diodora ATTCCGGAGA CKGAGCATGA GAAACGGCTA CCACATCC.Aii GG"A.îiGGCAG CAGGCGCGCA AATTACCCAA TCTCGATACG AGGAGGTAGT GACGAAAAAT 4331 Asti-aea ATTCCGGAGA C SGGAGCATGA GAAACGGCTA CCACATCCAA CG^^AAGGCAG CAGGCGCGCA AATTACCCAA TCTCGACACG AGGAGGTAGT GACGAAAAAT 4301 Necita ATTCCGGAGA C Í5GAGCATG.A GAAACGGCTA C-ACATCCAA G^^"AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGAACG GGGAGGTAGT C'^CGAAAAAT 414] Naritina ATTCCGGAGA C ÎGGAGCAtGA GAAACGGCTA CCACATCCAA CG"AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGTACG GOGAGGTAGT GACGAAAAAT 4251 cyclophorus ATTCCGGAGA ( KGAGCATGA GAAACGGCTA CCACATCCAA GG^^AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGC.ACG GGGAGGTAGT GACGAAAAAT 4Í8I Keocyclotus ATTCCGGAGA t JGGAGCATGA GAAACGGCTA CCACATCCAA GG"AAGCCAG CAGGCGCGCA ACTTACCCAC TCCTGGCAOG GGGAGGTAGT GACGAAAAAT 4291 Pomacea ATTCCGGAGA ( 3GGAGCRTGA GAAACGGCTA CCACATCCAA GG" AAQGCAG CAGGCGCGCA ACTTACCCAC TCCCÄGCTCG GGGAGGTAGT GACGAJIAAAT 4J51 Marisa ATTCCGGAGA ( KGAGCATGA GAAACGGCTA CCACATCCAA GG'AAGGCAG CAGGCGCGCA ACTTACCCAC TCCCAGCTCG GGGAGGTAGT GACGAAAAAT 434) Cipangopaludjna ATTCCGGAGA (KGAGCATGA GAAACGGCTA CCACATCCAA ^••AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTCGCACG GGGAGGTAGT GACGAAAAAT 43-îl campanile ATTCCGGAGA ( ;GGAGCATGA GAAACGGCTA CCACATCCAA GG^^AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAAAAT 44S] Modulus ATTCCGGAGA C 3QGAGCATGA GAAACGGCTA eCACATCCSA GG^^AAGGCAQ CAGGCGCGCA ACTTACCCAC TCCTGGCACO GGGAGGTAGT G.ACGAÍA.AÍT 42ÍÍ

Zoológica Script a 27

-^- IT 372 M. G. Harasew'vcli et al.

410 -120 430 440 450 46Ü 470 4B0 450 500 Ceri thium ATTCCOÜAGA GGGAGCATSA GAAACGGCTA CCACATCCAA GG"AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTCGCACG GGGAGGTAGT GACGAAAAAT [4221 BaciUarU ATTCCGGAÜA GGGAGCATGA GAAACGGCTA CCACATCCAA GC'AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAAAAT [4231 An nu i a rid ATTCCGGAGA GGGAGCATGA GAAACOGCTA CCACATCCAf. GG''AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAAAAT [4311 Llttorina ATTCCOGAGA GGGAGCATGA GAAACGGCTA CCACATCCAA GG"AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAAAAT [43 01 TectLärius ATTCCGGAGA GGGAGCATGA GAAACGGCTA CCACATCCAA GG"AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAAAAT I424I Tojncacella ATTCCGGÄGÄ GGGAGCATGA GAAACGGCTA CCACATCCAA aG"AAQGCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAAAAT 1473Í xenoptiûra ÄTTCCGGAOA GGGAGCATGA GAAACGGCTA CCACATCCAA GG-'AAGGCAG CAGGCGCGCA ACTTACCCAC ItCTGGCACG GGGAGGTAGT GACGAAAAAT 14101 C/praea ATTCCGGAGA GGGAGCATGA GAAACGGCTA CCACATCCAA GG"AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAjlAAT [4Î4J Fusicriton ATTCCGGASÄ GGGAGCATGA GAAACGGCTA CCACATCCAA GG-AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAAAAT 1421J BLisycon ATTCCGGAGA GGGAGCATGA GAAACGGCTA CCACATCCAA GG"AAGÜCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAAAAT [4231 oîiva ATTCCGGAGA GGGAGCATGA GAAACCJGCTA CCACATCCAA GG"AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAAAAT [4E31 Haatula ATTCCQGAGA GGGAGCATGA GAAACGGCTA CCACATCCAA GG"AAGGCAG CAGGCGCGCA ACTTACCCAC TCCTGGCACG GGGAGGTAGT GACGAAAAAT 14221 Aplysia ÄTTCCCGAGA GGGAGCATGA GAAACGGTTA CCACATCCAA GGTAAGGCAG CAGGTGCGCA ACTTACCCAC TCCCCGCACG GGGAGGTAGT GA"GAAAAAT (44ït Siphonaria ATTCCCGAGA GGGAGCATGA GAAACGGCTA CCACATCCAA GG'AAGGCAG CAGGCQCGCA ACTTACCCAC TCCCOGCACG GGGAGGTAGT GACGAAAAAT [4431

510 Diodoca Ai.CAATfi"CG GGACrTCT saJ91 AS traea AACAATA"CG GGACTCT (446) Nerita AACAATA"CG GGACTCT [430) Neritina AACAÄTA"CG GGACTCT [4411 cyclophoruH MCAATA"CG CAACTCT [4441 Keocyclotus AACAÄTA"CG GAACTCT Í4451 Pomaceâ AACAATA"CG GAACT"T ¡450) Marisa AACAATA"CG GAACTCT [4501 cipangopaludiiia AACAATA"CG GAACTCT U531 Caftipaiii Ve AACAATfi"CG GAACTCT [4641 Modulus AACAATA"CG GAACTCG [4391 Cgrithium AACAATA'CG AAACTCT [4381 Batillaria íLACAATA'CG AAACTCT (4391 Annularia AACAATA-CG GAACTCT 1<1531 Littorina W1CAATA"CG GAACTCT [4461 TectariuE AACflATA"CG GAACTCT [44ai Trancatella AACAATA"C(; GAACTCT ¡4891 ;c$nophora AACAATA"CG GAACTCT !426| Cypraea ftACAATA''CÛ GAACTCT [J401 FusiLriLûn AACAATA'-CG GAACTCT 14371 Busycon MCAATA'CG GAACTCT (4385 Oliva AACAATA'-CG GAACTCT 143SÎ Hascula AACAATA"CG GAACTCT (4381 Aplyaia AÍCAATAACG GGACTCT (4S0I üiphonaria AACAATA''CG GGACTCT tlSSi

Zoológico Scrip/a 27