Set Theory and Logic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2.1 the Algebra of Sets
Chapter 2 I Abstract Algebra 83 part of abstract algebra, sets are fundamental to all areas of mathematics and we need to establish a precise language for sets. We also explore operations on sets and relations between sets, developing an “algebra of sets” that strongly resembles aspects of the algebra of sentential logic. In addition, as we discussed in chapter 1, a fundamental goal in mathematics is crafting articulate, thorough, convincing, and insightful arguments for the truth of mathematical statements. We continue the development of theorem-proving and proof-writing skills in the context of basic set theory. After exploring the algebra of sets, we study two number systems denoted Zn and U(n) that are closely related to the integers. Our approach is based on a widely used strategy of mathematicians: we work with specific examples and look for general patterns. This study leads to the definition of modified addition and multiplication operations on certain finite subsets of the integers. We isolate key axioms, or properties, that are satisfied by these and many other number systems and then examine number systems that share the “group” properties of the integers. Finally, we consider an application of this mathematics to check digit schemes, which have become increasingly important for the success of business and telecommunications in our technologically based society. Through the study of these topics, we engage in a thorough introduction to abstract algebra from the perspective of the mathematician— working with specific examples to identify key abstract properties common to diverse and interesting mathematical systems. 2.1 The Algebra of Sets Intuitively, a set is a “collection” of objects known as “elements.” But in the early 1900’s, a radical transformation occurred in mathematicians’ understanding of sets when the British philosopher Bertrand Russell identified a fundamental paradox inherent in this intuitive notion of a set (this paradox is discussed in exercises 66–70 at the end of this section). -
Set Theory, by Thomas Jech, Academic Press, New York, 1978, Xii + 621 Pp., '$53.00
BOOK REVIEWS 775 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 © 1980 American Mathematical Society 0002-9904/80/0000-0 319/$01.75 Set theory, by Thomas Jech, Academic Press, New York, 1978, xii + 621 pp., '$53.00. "General set theory is pretty trivial stuff really" (Halmos; see [H, p. vi]). At least, with the hindsight afforded by Cantor, Zermelo, and others, it is pretty trivial to do the following. First, write down a list of axioms about sets and membership, enunciating some "obviously true" set-theoretic principles; the most popular Hst today is called ZFC (the Zermelo-Fraenkel axioms with the axiom of Choice). Next, explain how, from ZFC, one may derive all of conventional mathematics, including the general theory of transfinite cardi nals and ordinals. This "trivial" part of set theory is well covered in standard texts, such as [E] or [H]. Jech's book is an introduction to the "nontrivial" part. Now, nontrivial set theory may be roughly divided into two general areas. The first area, classical set theory, is a direct outgrowth of Cantor's work. Cantor set down the basic properties of cardinal numbers. In particular, he showed that if K is a cardinal number, then 2", or exp(/c), is a cardinal strictly larger than K (if A is a set of size K, 2* is the cardinality of the family of all subsets of A). Now starting with a cardinal K, we may form larger cardinals exp(ic), exp2(ic) = exp(exp(fc)), exp3(ic) = exp(exp2(ic)), and in fact this may be continued through the transfinite to form expa(»c) for every ordinal number a. -
1 Elementary Set Theory
1 Elementary Set Theory Notation: fg enclose a set. f1; 2; 3g = f3; 2; 2; 1; 3g because a set is not defined by order or multiplicity. f0; 2; 4;:::g = fxjx is an even natural numberg because two ways of writing a set are equivalent. ; is the empty set. x 2 A denotes x is an element of A. N = f0; 1; 2;:::g are the natural numbers. Z = f:::; −2; −1; 0; 1; 2;:::g are the integers. m Q = f n jm; n 2 Z and n 6= 0g are the rational numbers. R are the real numbers. Axiom 1.1. Axiom of Extensionality Let A; B be sets. If (8x)x 2 A iff x 2 B then A = B. Definition 1.1 (Subset). Let A; B be sets. Then A is a subset of B, written A ⊆ B iff (8x) if x 2 A then x 2 B. Theorem 1.1. If A ⊆ B and B ⊆ A then A = B. Proof. Let x be arbitrary. Because A ⊆ B if x 2 A then x 2 B Because B ⊆ A if x 2 B then x 2 A Hence, x 2 A iff x 2 B, thus A = B. Definition 1.2 (Union). Let A; B be sets. The Union A [ B of A and B is defined by x 2 A [ B if x 2 A or x 2 B. Theorem 1.2. A [ (B [ C) = (A [ B) [ C Proof. Let x be arbitrary. x 2 A [ (B [ C) iff x 2 A or x 2 B [ C iff x 2 A or (x 2 B or x 2 C) iff x 2 A or x 2 B or x 2 C iff (x 2 A or x 2 B) or x 2 C iff x 2 A [ B or x 2 C iff x 2 (A [ B) [ C Definition 1.3 (Intersection). -
Math Preliminaries
Preliminaries We establish here a few notational conventions used throughout the text. Arithmetic with ∞ We shall sometimes use the symbols “∞” and “−∞” in simple arithmetic expressions involving real numbers. The interpretation given to such ex- pressions is the usual, natural one; for example, for all real numbers x, we have −∞ < x < ∞, x + ∞ = ∞, x − ∞ = −∞, ∞ + ∞ = ∞, and (−∞) + (−∞) = −∞. Some such expressions have no sensible interpreta- tion (e.g., ∞ − ∞). Logarithms and exponentials We denote by log x the natural logarithm of x. The logarithm of x to the base b is denoted logb x. We denote by ex the usual exponential function, where e ≈ 2.71828 is the base of the natural logarithm. We may also write exp[x] instead of ex. Sets and relations We use the symbol ∅ to denote the empty set. For two sets A, B, we use the notation A ⊆ B to mean that A is a subset of B (with A possibly equal to B), and the notation A ( B to mean that A is a proper subset of B (i.e., A ⊆ B but A 6= B); further, A ∪ B denotes the union of A and B, A ∩ B the intersection of A and B, and A \ B the set of all elements of A that are not in B. For sets S1,...,Sn, we denote by S1 × · · · × Sn the Cartesian product xiv Preliminaries xv of S1,...,Sn, that is, the set of all n-tuples (a1, . , an), where ai ∈ Si for i = 1, . , n. We use the notation S×n to denote the Cartesian product of n copies of a set S, and for x ∈ S, we denote by x×n the element of S×n consisting of n copies of x. -
Mathematics 144 Set Theory Fall 2012 Version
MATHEMATICS 144 SET THEORY FALL 2012 VERSION Table of Contents I. General considerations.……………………………………………………………………………………………………….1 1. Overview of the course…………………………………………………………………………………………………1 2. Historical background and motivation………………………………………………………….………………4 3. Selected problems………………………………………………………………………………………………………13 I I. Basic concepts. ………………………………………………………………………………………………………………….15 1. Topics from logic…………………………………………………………………………………………………………16 2. Notation and first steps………………………………………………………………………………………………26 3. Simple examples…………………………………………………………………………………………………………30 I I I. Constructions in set theory.………………………………………………………………………………..……….34 1. Boolean algebra operations.……………………………………………………………………………………….34 2. Ordered pairs and Cartesian products……………………………………………………………………… ….40 3. Larger constructions………………………………………………………………………………………………..….42 4. A convenient assumption………………………………………………………………………………………… ….45 I V. Relations and functions ……………………………………………………………………………………………….49 1.Binary relations………………………………………………………………………………………………………… ….49 2. Partial and linear orderings……………………………..………………………………………………… ………… 56 3. Functions…………………………………………………………………………………………………………… ….…….. 61 4. Composite and inverse function.…………………………………………………………………………… …….. 70 5. Constructions involving functions ………………………………………………………………………… ……… 77 6. Order types……………………………………………………………………………………………………… …………… 80 i V. Number systems and set theory …………………………………………………………………………………. 84 1. The Natural Numbers and Integers…………………………………………………………………………….83 2. Finite induction -
The Logic of Brouwer and Heyting
THE LOGIC OF BROUWER AND HEYTING Joan Rand Moschovakis Intuitionistic logic consists of the principles of reasoning which were used in- formally by L. E. J. Brouwer, formalized by A. Heyting (also partially by V. Glivenko), interpreted by A. Kolmogorov, and studied by G. Gentzen and K. G¨odel during the first third of the twentieth century. Formally, intuitionistic first- order predicate logic is a proper subsystem of classical logic, obtained by replacing the law of excluded middle A ∨¬A by ¬A ⊃ (A ⊃ B); it has infinitely many dis- tinct consistent axiomatic extensions, each necessarily contained in classical logic (which is axiomatically complete). However, intuitionistic second-order logic is inconsistent with classical second-order logic. In terms of expressibility, the intu- itionistic logic and language are richer than the classical; as G¨odel and Gentzen showed, classical first-order arithmetic can be faithfully translated into the nega- tive fragment of intuitionistic arithmetic, establishing proof-theoretical equivalence and clarifying the distinction between the classical and constructive consequences of mathematical axioms. The logic of Brouwer and Heyting is effective. The conclusion of an intuitionistic derivation holds with the same degree of constructivity as the premises. Any proof of a disjunction of two statements can be effectively transformed into a proof of one of the disjuncts, while any proof of an existential statement contains an effec- tive prescription for finding a witness. The negation of a statement is interpreted as asserting that the statement is not merely false but absurd, i.e., leads to a contradiction. Brouwer objected to the general law of excluded middle as claim- ing a priori that every mathematical problem has a solution, and to the general law ¬¬A ⊃ A of double negation as asserting that every consistent mathematical statement holds. -
Sets, Functions
Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: • real numbers, • complex numbers, C • integers, • All students in our class Defining Sets Sets can be defined directly: e.g. {1,2,4,8,16,32,…}, {CSC1130,CSC2110,…} Order, number of occurence are not important. e.g. {A,B,C} = {C,B,A} = {A,A,B,C,B} A set can be an element of another set. {1,{2},{3,{4}}} Defining Sets by Predicates The set of elements, x, in A such that P(x) is true. {}x APx| ( ) The set of prime numbers: Commonly Used Sets • N = {0, 1, 2, 3, …}, the set of natural numbers • Z = {…, -2, -1, 0, 1, 2, …}, the set of integers • Z+ = {1, 2, 3, …}, the set of positive integers • Q = {p/q | p Z, q Z, and q ≠ 0}, the set of rational numbers • R, the set of real numbers Special Sets • Empty Set (null set): a set that has no elements, denoted by ф or {}. • Example: The set of all positive integers that are greater than their squares is an empty set. • Singleton set: a set with one element • Compare: ф and {ф} – Ф: an empty set. Think of this as an empty folder – {ф}: a set with one element. The element is an empty set. Think of this as an folder with an empty folder in it. Venn Diagrams • Represent sets graphically • The universal set U, which contains all the objects under consideration, is represented by a rectangle. -
A Taste of Set Theory for Philosophers
Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. A taste of set theory for philosophers Jouko Va¨an¨ anen¨ ∗ Department of Mathematics and Statistics University of Helsinki and Institute for Logic, Language and Computation University of Amsterdam November 17, 2010 Contents 1 Introduction 1 2 Elementary set theory 2 3 Cardinal and ordinal numbers 3 3.1 Equipollence . 4 3.2 Countable sets . 6 3.3 Ordinals . 7 3.4 Cardinals . 8 4 Axiomatic set theory 9 5 Axiom of Choice 12 6 Independence results 13 7 Some recent work 14 7.1 Descriptive Set Theory . 14 7.2 Non well-founded set theory . 14 7.3 Constructive set theory . 15 8 Historical Remarks and Further Reading 15 ∗Research partially supported by grant 40734 of the Academy of Finland and by the EUROCORES LogICCC LINT programme. I Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. 1 Introduction Originally set theory was a theory of infinity, an attempt to understand infinity in ex- act terms. Later it became a universal language for mathematics and an attempt to give a foundation for all of mathematics, and thereby to all sciences that are based on mathematics. -
An Elementary Approach to Boolean Algebra
Eastern Illinois University The Keep Plan B Papers Student Theses & Publications 6-1-1961 An Elementary Approach to Boolean Algebra Ruth Queary Follow this and additional works at: https://thekeep.eiu.edu/plan_b Recommended Citation Queary, Ruth, "An Elementary Approach to Boolean Algebra" (1961). Plan B Papers. 142. https://thekeep.eiu.edu/plan_b/142 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Plan B Papers by an authorized administrator of The Keep. For more information, please contact [email protected]. r AN ELEr.:ENTARY APPRCACH TC BCCLF.AN ALGEBRA RUTH QUEAHY L _J AN ELE1~1ENTARY APPRCACH TC BC CLEAN ALGEBRA Submitted to the I<:athematics Department of EASTERN ILLINCIS UNIVERSITY as partial fulfillment for the degree of !•:ASTER CF SCIENCE IN EJUCATION. Date :---"'f~~-----/_,_ffo--..i.-/ _ RUTH QUEARY JUNE 1961 PURPOSE AND PLAN The purpose of this paper is to provide an elementary approach to Boolean algebra. It is designed to give an idea of what is meant by a Boclean algebra and to supply the necessary background material. The only prerequisite for this unit is one year of high school algebra and an open mind so that new concepts will be considered reason able even though they nay conflict with preconceived ideas. A mathematical science when put in final form consists of a set of undefined terms and unproved propositions called postulates, in terrrs of which all other concepts are defined, and from which all other propositions are proved. -
Chapter 1 Logic and Set Theory
Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic. -
The Structure of the 3-Separations of 3-Connected Matroids
THE STRUCTURE OF THE 3{SEPARATIONS OF 3{CONNECTED MATROIDS JAMES OXLEY, CHARLES SEMPLE, AND GEOFF WHITTLE Abstract. Tutte defined a k{separation of a matroid M to be a partition (A; B) of the ground set of M such that |A|; |B|≥k and r(A)+r(B) − r(M) <k. If, for all m<n, the matroid M has no m{separations, then M is n{connected. Earlier, Whitney showed that (A; B) is a 1{separation of M if and only if A is a union of 2{connected components of M.WhenM is 2{connected, Cunningham and Edmonds gave a tree decomposition of M that displays all of its 2{separations. When M is 3{connected, this paper describes a tree decomposition of M that displays, up to a certain natural equivalence, all non-trivial 3{ separations of M. 1. Introduction One of Tutte’s many important contributions to matroid theory was the introduction of the general theory of separations and connectivity [10] de- fined in the abstract. The structure of the 1–separations in a matroid is elementary. They induce a partition of the ground set which in turn induces a decomposition of the matroid into 2–connected components [11]. Cun- ningham and Edmonds [1] considered the structure of 2–separations in a matroid. They showed that a 2–connected matroid M can be decomposed into a set of 3–connected matroids with the property that M can be built from these 3–connected matroids via a canonical operation known as 2–sum. Moreover, there is a labelled tree that gives a precise description of the way that M is built from the 3–connected pieces. -
On Families of Mutually Exclusive Sets
ANNALS OF MATHEMATICS Vol. 44, No . 2, April, 1943 ON FAMILIES OF MUTUALLY EXCLUSIVE SETS BY P . ERDÖS AND A. TARSKI (Received August 11, 1942) In this paper we shall be concerned with a certain particular problem from the general theory of sets, namely with the problem of the existence of families of mutually exclusive sets with a maximal power . It will turn out-in a rather unexpected way that the solution of these problems essentially involves the notion of the so-called "inaccessible numbers ." In this connection we shall make some general remarks regarding inaccessible numbers in the last section of our paper . §1. FORMULATION OF THE PROBLEM . TERMINOLOGY' The problem in which we are interested can be stated as follows : Is it true that every field F of sets contains a family of mutually exclusive sets with a maximal power, i .e . a family O whose cardinal number is not smaller than the cardinal number of any other family of mutually exclusive sets contained in F . By a field of sets we understand here as usual a family F of sets which to- gether with every two sets X and Y contains also their union X U Y and their difference X - Y (i.e. the set of those elements of X which do not belong to Y) among its elements . A family O is called a family of mutually exclusive sets if no set X of X of O is empty and if any two different sets of O have an empty inter- section. A similar problem can be formulated for other families e .g .